
Manuali

Scienze e Tecnologie

Nuclear plants

Maurizio Luigi Cumo

Collana Manuali 18

Scienze e Tecnologie

Nuclear plants

Maurizio Luigi Cumo

Copyright © 2017

Sapienza Università Editrice

Piazzale Aldo Moro 5 - 00185 Roma

www.editricesapienza.it editrice.sapienza@uniroma1.it

ISBN 978-88-9377-029-3 (paperback part 1) ISBN 978-88-9377-034-7 (paperback part 2)

ISBN 978-88-9377-024-8 (eBook)

Printed in september 2017

Iscrizione Registro Operatori Comunicazione n. 11420

La traduzione, l'adattamento totale o parziale, la riproduzione con qualsiasi mezzo (compresi microfilm, film, fotocopie), nonché la memorizzazione elettronica, sono riservati per tutti i Paesi. L'editore è a disposizione degli aventi diritto con i quali non è stato possibile comunicare, per eventuali involontarie omissioni o inesattezze nella citazione delle fonti e/o delle foto.

All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher. All eligible parties, if not previously approached, can ask directly the publisher in case of unintentional omissions or incorrect quotes of sources and/or photos.

In copertina: rappresentazione del reattore MARS (Multipurpose Advanced Reactor inherently Safe).

Table of contents

Pr	eface		XI
I –	Nucl	ear energy in a worldwide energy outlook	1
	I-1.	Historical evolution of energy consumption	1
	I-2.	Worldwide energy sources	7
	I-3.	Outline on the evaluation of electric energy costs	16
	I-4.	Economic balance between nuclear and fossile electric	
		power generation	19
	I-5.	Environmental issues connected to energy exploitation	20
	I-6.	Mid and long term trends in energy demand	31
Π	– Ura	nium resources and fuel cycle facilities	35
	II-1.	Worldwide status of uranium resources	35
	II-2.	Treatment and conversion of uranium ores	43
	II-3.	Uranium enrichment facilities	47
	II-4.	Fuel fabrication	83
	II-5.	Irradiated fuel reprocessing	91
	II-6.	Transport of nuclear fuels	107
	II-7.	Treatment and disposal of radioactive wastes	111
	II-8.	Hot laboratories for analysis on irradiated nuclear fuels	143
	II-9.	Decommissioning of nuclear plants	148
	II-10	. International trends on spent nuclear fuel and waste issue	s156
III	– Fue	el cycles	169
	III-1	. Nuclear reactors	169
	III-2	. Core configurations	172
	III-3	. Descriptive parameters of cores performance	175

VI NUCLEAR PLANTS

	III-4.	Nuclear	reactors classification	181
	III-5.	Convers	sion of fissile and fertile fuels	185
	III-6.	Connec	tion of nuclear activities for fuel cycles	196
	III-7.	Fuel cyc	cles stages	199
	III-8.	Materia	ls balance in fuel cycles	205
	III-9.	Develop	oment strategies of reactor families	210
IV	– Plant	scheme	s of main reactor types	215
	IV-1.	Thermo	dynamic cycles for nuclear-thermoelectric plants	215
		IV-1.1 C	Cycles with vapor turbines	216
		IV-1.2 C	Gas turbines cycles	227
	IV-2.	Boiling	Water Reactors (BWR)	233
		IV-2.1	Plant characteristics	234
		IV-2.2	Reactor complex	241
		IV-2.3	Core structure	244
		IV-2.4	Auxiliary systems	248
	IV-3.	Pressur	ized Water Reactors (PWR)	251
		IV-3.1.	Scheme of plant	251
		IV-3.2.	Plant provisions	254
		IV-3.3.	Vessel structure	259
		IV-3.4.	Core structure	261
		IV-3.5.	Special auxiliary systems	265
		IV-3.6.	VVER Russian reactors	266
	IV-4.	High te	mperature gas reactors	271
		IV-4.1	HTGR origins	271
		IV-4.2	Main features	272
		IV-4.3	HTGR large reactors	279
		IV-4.4	Historical notes on MAGNOX and AGR reactors	282
		IV-4.5	RBMK reactors	289
	IV-5.	Heavy v	water reactors	292
		IV-5.1	Classification and prototypes	292
		IV-5.2	Construction features	296
		IV-5.3	CANDU type reactors	301
	IV-6.	Fast bre	eder reactors (FBR)	306
		IV-6.1	Proposed solutions	306
		IV-6.2	Sodium coolant characteristics	311
		IV-6.3	Installation requirements	318

Indice vii

	IV-6.4	Lead cooled fast reactors	327	
V – Power	and res	earch reactors. Nuclear energy applications	329	
V-1. Nuclear reactor finalities			329	
	V-1.1	Development and achievement phases	329	
	V-1.2	Research reactors	330	
V-2.	Differen	nt concepts of of nuclear reactors	338	
	V-2.1	Fluid fuel reactors	338	
	V-2.2	Organic cooled and moderated reactors (OCMR)	346	
	V-2.3	Sub-critical reactors	348	
V-3.	Marine	and space propulsion	351	
	V-3.1	Marine propulsion	351	
	V-3.2	Space nuclear power	355	
V-4.	Nuclear	r fusion	364	
V-5.	Direct o	conversion of nuclear systems	380	
V-6.	Develop	pments of nuclear power	383	
	V.6.1 Fc	ourth generation of nuclear systems:		
"Generation IV International Forum" 383				
	V-6.2 A	junction with the fourth generation in the second	l	
	ar	nd third decades of 2000: generation III+	409	
VI – Nucle	ear, ther	mal hydraulic and technological design of fuel		
elemen	its	,	423	
VI-1.	Nuclear	r design	423	
	VI-1.2		426	
	VI-1.3	Fuel irradiation and reactivity balance	433	
	VI-1.4	-	438	
	VI-1.5	Fuel loading schemes of reactor cores	444	
VI-2.		ıl hydraulic design	449	
	VI-2.1	Design criteria	449	
	VI-2.2	Fuel and coolant temperature distributions	450	
	VI-2.3	Thermodynamic characteristics of cooling gas	465	
	VI-2.4	Thermal problems in LWR cores	468	
	VI-2.5	Calculation scheme for the design of a boiling-		
		water-cooled fuel assembly	480	
	VI-2.6	Coolant mixing in LWR cores	483	
	VI-2.7	Velocity distributions in fuel elements cooled in	n	
		single phase (water, gas, liquid metals)	487	

VIII NUCLEAR PLANTS

	VI-2.8	Heat transfer correlations	491
VI-3.	Techno	logical design	507
	VI-3.1	Characteristics of irradiated materials	507
	VI-3.2	Crystalline solids irradiation	508
	VI-3.3	Structural materials irradiation	511
	VI-3.4	Nuclear-grade steels characteristics	516
	VI-3.5	Control materials irradiation	520
	VI-3.6	Graphite irradiation	521
	VI-3.7	Water radiolysis and purification	523
VI-4.	Last tre	nds in nuclear designing	526
VI-5.	NPPs a	ging and safety criteria	527
VII- Nucl	ear fuels		531
VII-1.	Nuclea	r fuels technologies	531
	Fuel ass	_	539
	VII-2.1	Fuel-cladding joint	542
		Fuel rod and fuel bundle	543
VII-3.	Thermo	o-mechanical design of fuel rods	545
	VII-3.1	Temperature field in the fuel rod	545
	VII-3.2	Thermal contact resistance between ceramic	
		fuel and cladding	549
	VII-3.3	Thermal design criteria	555
	VII-3.4	Cladding materials and ceramic fuel	
		characteristics	562
	VII-3.5	Clad mechanical design	565
	VII-3.6	Ceramic nuclear fuel damage	578
	VII-4	Fuel performance analysis codes	586
VIII – Ma	ain nucle	ear reactor components and plants lay-out	589
VIII-1.	Reactor	vessels	589
	VIII-1.1	Mechanical design of steel reactor vessels	589
VIII-2.	Pre-stre	essed concrete reactor vessels	598
VIII-3.	Reactor	internals	606
VIII-4.	Outline	of thermal shields calculation	610
VIII-5.	Control	devices	615
	VIII-5.1	Actuators of control devices	615
VIII-6.	Forced	and natural convections	621

Indice IX

		VIII-6.1	Fundamental relationship on circulators	621
		VIII-6.2	Natural circulation. Spatial arrangements	
			of loops	626
	VIII-7.	Steam g	generators	628
		VIII-7.1	Steam generators for PWR and HWR	629
		VIII-7.2	Steam separators design	637
		VIII-7.3	Steam generators for LMFBR	641
ΙX	– Instr	umentat	ion, control and protection systems for nuclear	
	reactor	'S		649
	IX-1	Nuclea	r plants control	649
		IX-1.2	Control variables	652
		IX-1.3	Reactor models	654
		IX-1.4	Reactivity coefficients	664
		IX-1.5	Nuclear plants instrumentation	666
		IX-1.6	Safety and reliability of control systems: an	
			outline	670
	IX-2	Radiati	ons, screens, dose limits and safety in	
	instrun	nentatio		673
		IX-2.1	Radiation sources in reactor cores	673
		IX-2.2	Neutrons attenuation in matter	678
		IX-2.3	Interaction of gamma rays with matter	680
		IX-2.4	Reactor screens	682
		IX-2.5	Fundamental radiological units	684
		IX-2.6	Dose limits for individuals	686
		IX-2.7	Radiological safety instrumentation	691
	IX-3.	I&C sys	stems: current and future challenges	692
Χ -	- Safety	of nucle	ear plants	699
	X-1.	Safety p	principles in nuclear power plants	699
		X-1.1	Reactor safety features	701
		X-1.2	Principles – based safety	702
		X-1.3	Structure of reactor safety: the defense in depth	704
		X-1.4	The human factor in safety	707
		X-1.5	Risk assessment	709
	X-2.	Evaluat	ion of plants safety. Reliability and availability,	
		risk cat	egories	711

X Nuclear plants

Evaluation of safety in nuclear installations. Historical

X-3.

	approa	ch	724	
	X-3.1 The accident of Fukushima-Daiichi			
X-4.	Evaluat	tion of accidents in light water reactors		
	X-4.1	Core overheating following Loss of Coolant		
		Accident	759	
	X-4.2	Radiative heat transfer in fuel assemblies	759	
	X-4.3	Rowetting of overheated surfaces by liquid		
		films leaching	764	
	X-4.4	Calculation models for the reference accident	767	
	X-4.5	Basic projects criteria	769	
	X-4.6	Organization systems for nuclear safety	773	
	X-4.7	Pipeline "whiplash" within reactor building	779	
	X-4.8	Sonic velocity and critical flowrate with two		
		phase mixtures	781	
	X-4.9	Boost of emerging jet by breaks. "Jet forces",		
		"reaction forces" and "whiplashes"	795	
	X-4.10	Pressure calculation for accidents in LWRs		
		containment	800	
	X-4.11	"Steam explosion" accidents	810	
X-5.		ment of accidents in fast reactors	813	
	X-5.1	Safety problems in the core of a LMFBR	813	
	X-5.2	Accident sequences	819	
	X-5.3	Local refrigeration disturbances in fuel pins	820	
	X-5.4	"Sodium fires": sodium-air reactions	825	
	X-5.5	Sodium – water reactions	826	
X-6.	Seismic	effects evaluation	829	
X-7.		cation criteria for safety purposes and other		
	design	criteria	834	
		uality assessment	836	
X.8.		for location and installation of nuclear		
		Stations	839	
X-9.	Interna	tional perspectives on nuclear energy	848	
Appendix	to Chap	oter X	851	
Bibliograp	hy		869	
Glossary			875	
Author's E	0 1	у	881	
Contribute	ors		883	

Preface

Maurizio Luigi Cumo

Many nuclear power plants are today in operation in the world to produce electric energy. New designs are developed to co-generate jointly electricity and heat for civil use (desalination of sea water and district heating). Advanced designs regard the thermo-mechanical water separation to produce hydrogen in future competition with natural gas, as fuel.

Some reactors of the 4th generation can multiply one hundred times the energy which is contained in natural uranium, ensuring an availability duration of thousand years from the present amount of uranium reserves. These same reactors may destroy the most dangerous and long living nuclear wastes, with a great help for geological repositories.

"Nuclear plants" include power and research reactors, fuel factories, uranium enrichment plants, reprocessing of exhausted fuels, waste conditioning, decommissioning of old plants, surface and geological repositories, etc.

Nuclear disciplines span from nuclear reactor physics, thermal fluid-dynamics, metallurgy, and nuclear chemistry, all in continuous evolution. Nuclear engineering is often a compromise among opposite requirements of the above disciplines: this should be one of the future nuclear engineer's main task.

Original results of experimental and theoretical researches performed in thirty years by the author in the Italian State for its nuclear energy Institution are utilized in this book.

Many of these researches pertain to critical situations in heat and mass transfer in extreme conditions for reactor safety.

The author has been enriched by important information coming from the Nuclear Energy Direction of the French Commissariat à

XII NUCLEAR PLANTS

l'Energie Atomique, where he served as chairman of an International Scientific Committee from 2002 to 2010.

For this book, the author is greatly indebted to Mrs. Lisa Kassab for her continuos assistance, without whom this book would not have been possible.

For english translation a group of ENEA researchers (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) whose names are specifically indicated in pages 883-887. Their work was enriched by the addition of new scientific evidences in the last years also for this contribution goes to them my deep gratitude.

An appendix to Chap. 10 dedicated to Chernobyl accident and its very long evolution has been elaborated by Dr. Ivo Tripputi, SOGIN director and co-author of the book "Nuclear plants decommissioning" Università Sapienza of Rome, ISBN 88-900812-0-1.

Comitato Editoriale Sapienza Università Editrice

Coordinatore

Francesca Bernardini

Membri

Gaetano Azzariti Andrea Baiocchi Maurizio Del Monte Giuseppe Familiari Vittorio Lingiardi Camilla Miglio

Il Comitato editoriale assicura una valutazione trasparente e indipendente delle opere sottoponendole in forma anonima a due valutatori, anch'essi anonimi. Per ulteriori dettagli si rinvia al sito: www.editricesapienza.it

Collana Manuali

1. Il Tempo e la Verità

Ernesto Capanna

2. Aerodinamica

Giorgio Graziani

3. Medicina Nucleare in Oncologia

Francesco Scopinaro e Maria Gemma Parisella

4. Impianti Nucleari

Maurizio Cumo

5. Accounting for Equity and Other Comprehensive Income

Francesco Bellandi

6. Gasdinamica

Filippo Sabetta

7. Segnali - Processi Aleatori - Stima - Vol. I

Gaetano Scarano

8. Segnali - Processi Aleatori - Stima - Vol. II

Gaetano Scarano

9. Esercizi di analisi matematica

Paola Loreti e Daniela Sforza

10. Meccanica dei fluidi sperimentale

Antonio Cenedese e Monica Moroni

11. Impianti Nucleari - 2ª edizione

Maurizio Cumo

12. Lettere in classe

Percorsi didattici del TFA di area letteraria della Sapienza

a cura di Paola Cantoni e Silvia Tatti

13. Gastrostomia Endoscopica Percutanea (PEG)

Massimo Chiaretti, Alessandra Santiloni, Giovanna Angela Carru

Annalisa Italia Chiaretti

14. E questo tutti chiamano Informatica

L'esperienza dei TFA nelle discipline informatiche

a cura di Anna Labella

15. Creando saberes

Aproximaciones a la didáctica de E/LE en el aula

a cargo de Daniela Rago, Elisabetta Sarmati, María Pilar Soria Millán y Patricia Toubes González

16. Der Weg ist das Ziel Imparare il tedesco in un mondo plurilingue Jörg Senf

17. Conoscere la famiglia Strumenti clinici e di ricerca a cura di Mimma Tafà

18. Nuclear plants *Maurizio Cumo*

Manuali

► Scienze e Tecnologie

This book of the Publishing House of Sapienza University outlines the operative experience of a great number of nuclear power plants and devices of the nuclear fuel cycle. With main reference to nuclear plants of the so called third generation (III or III+, i.e. advanced ones) of the European Union and of Euratom research Centres the prospects of future plants of fourth generation (IV, years 2050s) are also described.

Large advancements have been obtained by extended cooperation of EU with USA, Japan and connections with Russia, China, India, Canada and other Countries. After Chernobyl (1986) and Fukushima-Daiichi (2011, 3 reactors) accidents with heavy consequences, people interest in nuclear energy decreased all over the world. This book examines in details such accidents to obtain safer designs Gen. IV reactors.

In 2003 an initiative of the DOE (USA Department of Energy) launched the so called Generation IV International Forum with 13 Countries (USA, England, France, Canada, Japan, South Corea, South Africa, Argentine, Brasil, Switzerland, EU with Euratom) to design and realise the future reactors of Fourth Generation to substitute third generation reactors at the end of their operative life. Lectors have so a description of the evolution of future reactor types and of prospects that nuclear energy may offer to mankind.

Maurizio Luigi Cumo is em. prof. of Nuclear Plants at the University of Rome Sapienza and is member of the Foundation Sapienza, Institution which gives prizes to Sapienza top students and may propose to Sapienza Administrative Council new researches to be undertaken. He was engaged in many international nuclear Institutions and Organisations. In years '80s he was engaged in the design of a small-medium reactor inherently safe called MARS (described in this book). Presently, he is in the group of senators and electors of the European Academy of Sciences and Arts of Salzburg, representing Italy, and is president of SIPS, the Historical (1839) Italian Society for the Advancement of Sciences.

