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Preface

This thesis collects themain results of theAuthor’s three-year Ph.D. in
Electromagnetics andMathematicalModels for Engineering at ‘Sapienza’
University of Rome, under the tutoring of Prof. Alessandro Galli. Four
months of that period have been spent as Visitor Scholar at the Univer-
sity of Rennes 1, Rennes, France, under the tutoring of Profs. Ronan
Sauleau, Mauro Ettorre and Guido Valerio. The dissertation mostly
deals with the analysis and design of different kind of antennas and
related propagation features, concerning a wide set of sensing applica-
tions. Specific attention has been given to Ground Penetrating Radar
(GPR) by developing an ad-hoc full-wave numerical setup based on a
commercial CAD software, with the aim of analyzing some important
electromagnetic issues involving both the radiative system of this instru-
ment and the post-processing procedures on the collected data. Even
though the overall activity is rather heterogeneous, most of the topics
that have been considered are related to the near-field region of the rele-
vant electromagnetic fields. The work is divided into five chapters and
is mainly focused on new techniques and relevant results rather than on
well-established instruments and approaches. Nevertheless, attention
has been paid to provide the Reader with the essential background in-
formation useful to easily deal with the original material presented here.
To better emphasize the state-of-art of the considered topics extensive
references to previousworks have been inserted; in addition, throughout
the work some references to published journal and conference papers
have been highlighted to further guide through later advances on these
topics.

Part I deals with the propagation of an electromagnetic pulse at the
interface between two half-spaces. The results outlined and discussed
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are not only interesting for themselves but are also useful for the rest of
the work. Indeed, an interfacial short dipole can be seen in first approxi-
mation as the simplest model for a GPR system. Its solution can be faced
analytically but only for observation points placed in far-field region of
the considered source. Thus, to characterize the electromagnetic field
produced at the interface a numerical solution has been carried out,
giving also the possibility of extensively analyzing the region of space
near the transmitting short dipole (typically at distances less then one
wavelength) where the receiving antenna of a GPR system is usually
located. A numerical model of a more realistic antenna has been carried
out as well, suitably sampling a half-wavelength dipole by means of
equispaced short dipoles.

Part II deals with the numerical characterization of GPR systems
for geophysical and planetary applications. In particular, attention is
devoted to the design of free-space and ground-coupled antennas, that
will be exploited later to conduct numerical analysis in various realis-
tic scenarios. A full-wave model of the GPR system designed in the
framework of the ExoMars mission on Mars has been developed as well.
Moreover, in collaboration with the Earth and Space applied physics
laboratory of ‘Rome Tre’ University an ad-hoc experimental setup has
been exploited to conduct GPR measurements by means of commercial
systems. It is important to note that the overall activity developed in
this part of the work mainly aims at analyzing the capability of these
systems to detect, locate, and reconstruct dielectric and metallic targets
buried in the shallow portion of the considered soil, i.e., in the near-field
region of the considered antenna. Finally, a novel and potentially very
interesting technique for fast and low-cost estimation of the electromag-
netic parameters of shallow soils has been investigated; a reliable and
efficient full-wavemodel of a commercial GPR system has been designed
and a comparative set of numerical and experimental studies have been
developed.

In the first section of Part III a well-known and established imaging
procedure based on the solution of a linearized inverse problem has
been described and applied on the numerical data developed in Part II,
and also to some significant experimental radargrams. This activity has
been carried out in collaboration with the Institute of Electromagnetic
Sensing of the Environment at the National Research Council of Naples
(IREA-CNR) and it has been mainly aimed at extensively investigat-
ing the capability of GPR systems to reconstruct the main features of
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metallic and dielectric targets having dimension comparable with the
dominant probing wavelength and buried in the near-field region of the
considered antenna. To introduce the Reader to this kind of algorithm,
the overall approach has been shortly summarized by starting from the
formulation of the scattering problem. Hence, the concept of ill-posed
and non-linearity for an inverse problem has been described. The sec-
ond part of this activity contains an original advanced implementation
of the microwave tomographic algorithm just described. Basically, a
new approach capable to take into account the real far- and near-field
distribution radiated by the considered antenna has been designed and
implemented; thus, the reconstruction obtained with the novel imaging
procedure has been compared with those obtainable with the conven-
tional procedure, considering both a simple 2D scalar scenario as well
as a more involved 3D vectorial implementation.

Part IV deals with a different topic focused on the study of advanced
antenna systems. It has been mainly developed in collaboration with the
researchers of the ‘Electromagnetic Field 1’ Lab, at the Department of
Information Engineering, Electronic and Telecommunication of this Uni-
versity, and considers the design of a reconfigurable leaky-wave antenna
based on planar geometry. Modal properties of both closed and open
structures made by a Fabry-Perot cavity antennas have been extensively
studied, both with analytical and full-wave approaches. In particular,
the radiative properties of a parallel-plate waveguide having the up-
per wall made by a periodic high impedance surfaces and excited with
simple sources have been analyzed through a suitable implementation
based on the reciprocity theorem. In this context a novel and efficient
equivalent transverse network for this kind of structures has been devel-
oped, considering a wire-medium slab symmetrically inserted inside
the structure with the aim to suppress spurious radiation due to the
TEM mode as well as to higher order TM leaky modes, keeping sub-
stantially unchanged radiation of the TM1 mode. The results have been
validated bymeans of multi-modal Bloch analysis of a macro-cell, that in
turns has been solved through a full-wave approach with a commercial
code. A very good agreement has been obtained on a geometry suitably
designed to provide omni-directional conical patterns with very wide
angular scanning ranges and reconfigurable features of polarization.

Part V, whose topics have been investigated at the University of
Rennes 1, treats the design and optimization of a novel antenna capable
to focus the near-field distribution of the radiated field. This represents a
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very attractive feature for a wide variety of applications such as imaging,
diagnostics and wireless power transfer. Non-diffracting solutions of
the scalar wave equation are typically named Bessel beams, and the
possibility of generating this particular configuration by means of ra-
dial waveguides has been investigated in the past years. More recently,
thanks to a customized optimization algorithm, the capability of a Ra-
dial Line Slotted Antenna (RLSA) to focus energy in a limited region of
space has been also investigated. In particular, slot positions and dimen-
sions required to generate a zero-order Bessel beam on a certain plane
in the near-field region have been suitably determined. By following
the interesting results achieved so far, in this thesis the possibility of
designing and focus a higher-order Bessel beam showing an azimuthal
phase variation is evaluated; this allows us to produce an orbital angular
momentum (OAM) beam, of recent great interest at radio frequencies.
Indeed, OAMmay be capable, among other applications, of an increased
capacity of communication channels, and enhanced remote sensing.

The list of references and publications conclude the work.



Part I

Interfacial Propagation





Introduction

Since many decades, wave excitation and propagation in planar lay-
ered media has been one of the most intensely studied topics in electro-
magnetics (see [1]-[6]). In addition to the quite straightforward and
elegant mathematical formulations of the problem ([1, 2]) and of rele-
vant numerical analyses, such structures have been proved to be of great
interest in a wide range of applications. In the last decade, the interest
in this topic renewed, due to the great amount of research related to fast
and reliable numerical codes. Generally speaking, when an elementary
source is placed at an interface between air and one or more dielectric
layers (possibly lossy), a canonical issue commonly named Sommerfeld’s
problem is defined [7],[8]. Since early years of 20th century this problem
has been widely faced [9]-[16] aiming at analytically evaluating the
far-field produced by antennas placed on the Earth surface. For some
specific cases efficient and elegant closed-form expression have been
obtained [9]-[11], that were very useful for the solution of communica-
tion problems. On this topic, a well-known controversy related to the
presence of a wrong sign in the seminal paper of Sommerfeld also arose.
More recently, two review articles [17, 18] have been published, giving
a complete description of the problem and of the related issues.

In the second half of the 20th century various authors were interested
in the evaluation of the far field produced in a dielectric half-space by
an interfacial dipole [19, 20], but only in the Seventies two important
papers [21, 22] investigated the possibility of determining electrical
properties of low-loss soil and to detect its subsurface stratification for
environments moderately transparent to electromagnetic waves, naming
this procedure radio interferometry depth-sounding. In particular, this half-
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space solutions has shown that an interface modifies the directionality
of the antenna and that a regular interference pattern is present in the
surface fields around the source. These two works paved the way for the
development of the Ground Penetrating Radar, as it is understood today.
Indeed, in the following years both the engineering and geophysical
communities extensively analyzed the far-field behavior of horizontal
simple or loaded dipoles over an interface [23]-[25]; in addition, the
possibility of modeling the interaction between a transmitting and a
receiving dipole on a dielectric soil was also investigated [26]-[29]. It is
interesting to note that a time-domain characterization of the far field
produced by an interfacial dipole has been also proposed in various
papers [30]-[32].

To the Author’s knowledge, very few works have attempted in some
way to analyze the near-field distribution generated by an interfacial
short dipole. A first contribution was described in [33], where an FDTD
code was developed to provide a temporal sketch of the pulse radiated
near a dipole placed at the interface between two media. It is important
to note that this topic represents a natural extension of the Sommerfeld’s
problem, briefly introduced at the beginning of this section.

On this basis, in the following we propose a numerical solution of
this problem to describe the near-field distribution produced by interfa-
cial elementary sources, aiming at gaining valuable information on the
behavior of the electromagnetic field with respect to the electrical param-
eters of the medium and to the position of the antennas on the surface.
We start from a typical formulation of the problem at hand, proposed in
[34], solving the relevant integrals in the complex plane by developing
an ad-hoc MatLab code. The results have been validated in the far field
region by considering an asymptotic solution of the problem already
available in literature. A more realistic basic antenna configuration has
been also synthesized by suitable sampling a horizontal half-wavelength
dipole through n short dipoles. A number of interesting information
have been obtained, which have proved to be useful for some topics
investigated in the second and the third part of this thesis.



1. Radiation from Line Source

1.1. Radiation from interfacial line source

The simplest ideal scenario to model standard GPR surveys can be
seen as made by two half-spaces, i.e., by two indefinite flat, isotropic,
homogeneous, non-dispersive and non-magnetic media, having two
different values of the dielectric permittivity, namely ε1 and ε2 for the
upper and lower half-space, respectively. Almost always throughout this
work ε1 = ε0, representing a vacuum free space medium. Consequently,
at least in first approximation, the geometry of the problem at hand can
be considered as two-dimensional (2D) and a line current placed at the
interface can be assumed as an ideal source of an electromagnetic signal.
As is known, the first 2D problem extensively studied and analyzed,
which models a wave impinging on an inhomogeneous medium, was
that of reflection and refraction of a plane wave on a flat interface. It was
solved and published for the first time by Fresnel in 1823. In particular,
a primary wave made by an incident plane wave on the interface was
considered and the direction of the refracted and reflected waves were
simply evaluated defining the well-known Snell’s laws. In the following
we are going to consider a cylindrical wave radiating from an elementary
source placed exactly or at a certain distance h from an interface. Even
though this 2D problem can be modeled by a simple scalar Helmholtz
equation, it cannot be solved by means of the method of separation
of variables, because of the additional boundary condition that have
to be enforced along the interface. Consequently, a spectral domain
method will be exploited here, which reduces the problem of finding a
solution to a complex integration. [35, 36]. To formulate the problem
mathematically, we introduce a Cartesian coordinate system (x, y, z)
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Fig. 1.1. Line source (red dot) placed at a distance h from the interface of two dielectric
media represented by ε1 and ε2, respectively.

wherein the z axis lies along the extension of the line source; as shown in
Fig. 1.1 the plane of the interface is given by y = 0. By starting from the
Maxwell’s curls equations, thanks to the 2D approximation (∂/∂z = 0),
we can write

∂Ez

∂y
= −jωµHx (1.1)

∂Ez

∂x
= jωµHy (1.2)

∂Ey

∂x
− ∂Ex

∂y
= −jωµHz (1.3)

∂Hz

∂y
= jωεEx (1.4)

∂Hz

∂x
= −jωεEy (1.5)

∂Hy

∂x
− ∂Hx

∂y
= Jz + jωεEz (1.6)

Now, by grouping these six equations in two independent sets, namely
transverse magnetic with respect to z (TMz, having as non-null com-
ponents Ez, Hx and Hy) and transverse electric with respect to z (TEz,
having as non-null components Hz, Ex and Ey), we can see that those
not containing components of the electric field in the z-direction (i.e.,
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TEz ) are source-free, consequently the only possible solution of this set
of equations consists of the null field. Hence we can write

Hz = Ex = Ey = 0. (1.7)

To solve for TMz fields we can put equations (1.1) and (1.5) in equation
(1.6), thus by recalling that Jz = I0δ(x)δ(y) we have

Hx = − 1
jωµ

∂Ez

∂y
(1.8)

Hy =
1

jωµ

∂Ez

∂x
(1.9)

∂2Ez

∂x2 +
∂2Ez

∂y2 + k2Ez = jωµI0δ(x)δ(y) (1.10)

where µ = µ0 everywhere, k2 = k2
0 = ω2µ0ε0 for y > 0 and k2 = n2k2

0
for y < 0. Next, by combining the spectral representation and the Green
function [35] we can easily find the solution of (1.10). Specifically, by
enforcing the Sommerfeld radiation conditions and recalling the spectral
representation of the operator ∂2/∂x2 [35]

δ(x − x
′
) =

1
2π

∫ ∞

−∞
ejkx(x−x

′
)dkx (1.11)

multiplying both sides of (1.11) by Ez(x
′
, y) and integrating over (−∞, ∞)

on kx we obtain the spatial Fourier transform pair

Ez(x, y) =
1

2π

∫ ∞

−∞
Êz(kx, y)ejkx xdkx

Êz(kx, y) =
∫ ∞

−∞
Ez(x, y)e−jkx xdx.

(1.12)

Hence, by taking the Fourier transform of both side (1.10) we van write

∂2Êz(kx, y)
∂y2 + k2

yÊz(kx, y) = jωµI0δ(y) (1.13)

where ky = ±
√

k2 − k2
x. It is important to note here that for the upper

half-space (y > 0) k2 = k2
0 and we can denote Êz by Êz1 , whereas for the

lower half-space (y < 0) k2 = k2
e = n2k2

0 and we consider Êz2 in place
of Êz . Since Ez must satisfy the radiation condition for y = −∞ and
y = ∞, by solving the associate Green function problem, we can show
(see [35, 36]) that solutions of (1.13) must have the following form

Êz1 = Ae−j
√

k2
0−k2

xy for y > 0

Êz2 = Aej
√

k2
e−k2

xy for y < 0
(1.14)
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thus the constant A is taken to be the same in both expressions because
Ez must be continuous across the interface, and for y = 0 we must have
Ez1 = Ez2 .

To find the value of A we should integrate equation (1.13) with
respect to y from −∆y to ∆y, consequently it is easily shown [36] that
for ∆y → 0 we get

A =
jωµ0 I

2π

1

j
√

k2
0 − k2

x + j
√

k2
e − k2

x

. (1.15)

Finally, equations (1.14) and (1.15) completely define the electric field
in both the half-spaces, thus substituting and transforming back to the
spatial domain we can write

Ez1(x, y) =
jωµ0 I

2π

∫ ∞

−∞

e−j
√

k2
0−k2

xy

j
√

k2
0 − k2

x + j
√

k2
e − k2

x

ejkx xdkx for y > 0

(1.16)

Ez2(x, y) =
jωµ0 I

2π

∫ ∞

−∞

ej
√

k2
0−k2

xy

j
√

k2
0 − k2

x + j
√

k2
e − k2

x

ejkx xdkx for y < 0.

(1.17)

We cannot obtain, for these integrals, a closed-form solution for every
point of the space surrounding the line source. However, as shown
in [36], an exact evaluation is possible for points along the interface
(y = 0). To gain a description of Ez out of the interface we can resort to
an asymptotic evaluation of the integrals, as shown again in [36]. Inci-
dentally, to determine the far field distribution of the line source may be
most convenient to use the cylindrical coordinates (ρ, φ); consequently,
by putting x = ρ cos φ and y = ρ sin φ in equations (1.16) and (1.17) we
obtain the sought integral representation of Ez1 and Ez2 . For k0ρ → ∞
and 0 ≤ φ ≤ π it is possible to get the following expression

Ez1 f ar f ield
=

ωµ0 I√
2π

1
(n2 − 1)

(sin2 φ − sin φ
√

n2 − cos2 φ)
ejk0ρ−j π

4√
k0ρ

(1.18)
while, for keρ → ∞ and 0 ≤ φ ≤ φc (where φc is the critical angle
defined as cos φc = 1/n) we obtain

Ez2a f ar f ield
= −ωµ0 I√

2π

n
(n2 − 1)

(n sin2 φ + sin φ
√

1 − n2 cos2 φ)
ejnk0ρ−j π

4√
nk0ρ
(1.19)
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Finally, for keρ → ∞ and −φc ≤ φ ≤ 0 and −π ≤ φ ≤ −π + φc we have

Ez2b f ar f ield
= −ωµ0 I√

2π

n
(n2 − 1)

(n sin2 φ + j sin φ
√

n2 cos2 φ − 1)
ejnk0ρ−j π

4√
nk0ρ
(1.20)

These formulas give the possibility of obtaining an immediate descrip-
tion of the far field radiated by a line source place at an interface between
two dielectric media. Just as an example in Fig. 1.2 the behavior of the
Ez component with respect to φ angle (measured starting form the hor-
izontal axis) has been reported. Specifically, the pattern in the upper

Fig. 1.2. Far field pattern for an interfacial line source, whose lower medium has a permit-
tivity εr = 3.2 (lower medium air) for a frequency f = 1 GHz.

medium, whose index of refraction is less than that of the lower one,
has a single lobe with a maximum normal to the interface. The pattern
in the subsurface region has two peaks separated symmetrically by a
minimum. An interesting physical interpretation of such a behavior has
been given in [36] .

1.2. Numerical solution of the integrals
As highlighted in the previous section, the integrals modeling the

electromagnetic field radiated by a line source placed at an interface
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between two dielectric media cannot be evaluated in closed form. Even
though an asymptotic solution is available, in the framework of GPR
application we usually need to characterize the electromagnetic field
in the region surrounding the antenna, both at the interface and in
the lower medium. In particular, a detailed description of the signal
which propagate along the interface and on the direct path between
the transmitting and receiving antenna of a GPR system may be of
paramount importance for some applications. Just as an example, the
characterization of the time-domain pulse collected by the receiving
antenna can provide some pieces of information regarding the electrical
properties of the lower medium. In this framework, different techniques
have been analyzed; we will give a wide description of the state of art
and of future perspectives of this activity in next sections. Since an
interfacial line source can be seen as an elementary antenna of a GPR
system (actually the simplest possible source), we are very interested in
the analysis of the spatial behavior of the radiated electromagnetic field.
Even though here we are operating in the frequency domain, by suitable
sampling the Fourier transform of the time-domain pulse transmitted by
an ideal system, we can easily synthesize the signal radiated by a GPR
antenna. To characterize the electric field a numerical solution of the
integrals (1.16) and (1.17), representing the solution of the problem at
hand, will be given. Basically, bymeans of an ad-hoc customizedMatLab
routine we have implemented a solution of the involved integrals in the
complex plane, reported in the following for convenience.

Ez1(x, y) =
jωµ0 I

2π

∫ ∞

−∞

e−j
√

k2
0−k2

xy

j
√

k2
0 − k2

x + j
√

k2
e − k2

x

ejkx xdkx for y > 0

(1.21)

Ez2(x, y) =
jωµ0 I

2π

∫ ∞

−∞

ej
√

k2
0−k2

xy

j
√

k2
0 − k2

x + j
√

k2
e − k2

x

ejkx xdkx for y < 0.

(1.22)

It is worth to note that both these integrals are made by a complex
exponential term (i.e., ejkxy) that is always oscillating for kx ranging
form −∞ up to ∞, and by a term decaying as 1√

kx
, which in turns not

converge at all. Anyway, considering these two terms together allows the
integral to converge, even in a very fast way since the term e±j

√
k2

0−k2
xy
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(a) (b)

(c) (d)

Fig. 1.3. Comparison between numerical (gray circles) and asymptotic far-field patterns
(solid lines) for different values of the permittivity of the lower medium (a) εr = 3.2, (b)
εr = 10, (c) εr = 30, (d) εr = 50.
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has a real exponential for kx > k0. Incidentally, by plotting the behavior
of the kernel of the integral at hand we would see that the fundamental
contribution to the sought solution is given by values of kx ranging
between −k0 and k0, allowing to stop the numerical integration at a
value of kx = ±5k0. Let us point out, finally, that the kernel of the
integral shows two pairs of branch cut, given by the square roots at
the denominator and respectively placed at kx = ±k0 and kx = ±ke.
Consequently, we have to suitably choice the right Riemann surface,
deforming the integration path in the complex plane [2].

To give a validation of the results obtained by means of our cus-
tomize integration routine, a comparison between the asymptotic model
previously introduced has been reported. In particular, in Fig. 1.3 the
numerical results carried out by putting ρ = 10λ inside the integral are
in excellent agreement with those obtained by means of the asymptotic
solution (based on the method of the stationary phase).

Being the code validated, we can analyze the behavior of the electric
field in the near-field region, by considering typical distances where a
transmitting and a receiving GPR can be placed. In Fig. 1.4 a fieldmap at
two distances, equal to λ/2 and λ, have been reported, considering also
three different values for the permittivity of the background medium.
As for the far-field case, even though it is not so intuitive and clearly
predictable, the field is more confined inside the lower medium, while
inside the upper one it becomes less and less strong.

Furthermore, in Fig. 1.5 more detailed behaviors of the electric field
for a number of permittivity values of the lower medium have been
reported. A particular good sensitivity of the field in air is observed
with respect to different values of εr, ranging from 2 up to 50, that paves
the way to some interesting applications, when a bistatic GPR system is
exploited to radiate and collect waves propagating along the interface
of two half-spaces.
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(a)

(b)

Fig. 1.4. (a) Numerical near field for ρ = λ/2 and for different values of the permittivity
(b) Numerical near field for ρ = λ and for different values of the permittivity.
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Fig. 1.5. Near-field distribution of an interfacial line source for a number of permittivity
values (see legend).



2. Radiation from Short Dipole

2.1. Vertical electric dipole
In this section the radiation generated by a vertical electric dipole

(VED) placed at an interface between two half-spaces will be analyzed.
Even though such a configuration is not coherent with respect to typical
GPR surveys, where transmitting and receiving antenna in most cases
are ground-coupled horizontal dipoles, it is useful to give valuable in-
formation about the physics and mathematics background lying behind
these kinds of problems. Moreover, the solution outlined in the follow-
ing is a bit less complicate from an analytical viewpoint; the geometry of
the scenario at hand shows an azimuthal symmetry, allowing to make
simpler the involved vectorial problem and to develop the computa-
tional issue in more convenient conditions. The electromagnetic field
radiated by an interfacial VED can be described by the Hertz vector π,
whose rectangular components must satisfy the scalar wave equation

∇2πz + k2πz = − Jz

jωε0
, (2.1)

the current carried by the electric dipole of equivalent length L, located
at r′ is given by

Jz = ILδ(r − r′) (2.2)

where for convenience we let

IL
jωε0

= 1. (2.3)

The dipole is located at z = h in air, where the wave number is k, whilst
the wave number in the ground medium is ke.
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In air (z > 0) we can write

∇2πz + k2πz = −δ(r − r′) (2.4)

whereas in the ground (z < 0), since there are no sources, we have

∇2πz + k2
e πz = 0. (2.5)

The boundary condition at z = 0 (i.e., electric and magnetic fields
continuous across the boundary) together with the radiation conditions
give a complete mathematical description of the problem at hand. Away
to solve equations (2.4) is to consider the solution as a sum of the primary
and secondary wave. The former is the wave radiated from the dipole
in an infinite space in absence of the boundary showing the correct
singularity at the location of the antenna; the latter represents the effects
of the boundary and has no singularity in the point where the antenna
is located.

The Hertz potential representing the primary wave is given by

πp =
e−jk|r−r′ |

4π|r − r′| (2.6)

which is, as expected, the free space Green function. Since the problem
shows a cylindrical symmetry, to satisfy the boundary conditions it is
useful to express (2.6) in terms of cylindrical waves (see Fig. 2.1) that
have the same radial wave number in air and in the ground, thus we get

1
ρ

∂

∂ρ
(ρ

∂

∂ρ
)πp +

1
ρ2

∂2

∂φ2 πp +
∂2

∂z2 πp + k2πp = − δ(ρ − ρ′)δ(φ − φ′)δ(z − z′)
ρ

.

(2.7)
Expanding πp in a Fourier series in φ and using the Fourier Bessel

transform (cylindrical equivalence of the usual Fourier transform) the
solution of the considered equation is reported in the following (further
details can be found in [34])

πp =
1

4π

∞

∑
m=−∞

e−jm(φ−φ′)
∫ ∞

0
Jm(kρρ)Jm(kρρ′)e−jkz |z−z′ | kρ

jkz
dkρ =

(2.8)
where k2

ρ + k2
z = k2. Equation (2.8) is equivalent to (2.6) but is written

in terms of cylindrical waves with propagation constant kρ. In particular,
when the antenna is located at ρ′ = 0 and z′ = 0, equations (2.8)
becomes
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πp(ρ, z) =
1

4π

∫ ∞

0
J0(kρρ)e−jkz |z−z

′ | kρ

jkz
dkρ. (2.9)

It is very interesting to note that the cylindrical wave approach allows
us to expand the field above and below the boundary in terms of the same
wave number k2

ρ, hence we are able to satisfy the boundary conditions
at any ρ.

Fig. 2.1. Vertical short dipole in a spherical coordinate system placed at a distance h from
the surface.

Considering the problem depicted in Fig. 2.1 we know that in air
(region 1), the z-component of the Hertz potential satisfies equation
(2.4). As introduced previously, πz can be written as the sum of the
primary wave πp and the scattered wave πs

πz = πp + πs. (2.10)

For the primary wave in region 1 we can write

πp(ρ, z) =
1

4π

∫ ∞

0
J0(kρρ)e−jkz(z−h) kρ

jkz
dkρ (2.11)

while in region 2

πp(ρ, z) =
1

4π

∫ ∞

0
J0(kρρ)e−jkz(h−z) kρ

jkz
dkρ. (2.12)

The difference in the exponents of the kernel of the integrals (2.11) and
(2.12) represents the singularity at z = h. It is now important to note
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that the scattered wave does not have singularity in z = h and must
satisfy homogeneous wave equation. Thus, for both regions 1 and 2 we
can write

πs(ρ, z) =
1

4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ (2.13)

where R(kρ) is an unknown function thatwill be determined by applying
the boundary conditions. In region 3 the primary wave is not present
and thus the scatteredwavemust satisfy an homogeneouswave equation

∇2πz + k2
e πs = 0 (2.14)

whose solutions, following the same procedure outlined previously, can
be written as

πs(ρ, z) =
1

4π

∫ ∞

0
T(kρ)J0(kρρ)e+jkze z−jkzh kρ

jkz
dkρ (2.15)

where again T(kρ) is an unknown function that depends on the bound-
ary conditions; the relation for the wave numbers suitably changes
k2

ρ + k2
ze = k2

e . As usual, the choice of −jqz instead of +jqz is made to
represents an outgoing wave in the +z direction satisfying the radia-
tion conditions. Analogously, −jqez represent an outgoing wave in the
z-direction (in both case q and qe are in the fourth quadrant). The out-
lined integral expression for πs and πp in regions 1,2 and 3 represent a
complete expression of the field; it remains only to enforce the boundary
conditions at the interface. Because of the symmetry of the problem
the only tangential components of the electric and magnetic field are Eρ

and Hφ. Therefore recalling the connections between EM fields and the
Hertz potential [37], it holds

Eρ =
∂2

∂ρ∂z
πz

Hφ = −jωε
∂

∂ρ
πz

(2.16)

and we can write

E(2)
ρ = E(3)

ρ H(2)
φ = H(3)

φ . (2.17)

where E(2,3)
ρ and H(2)

φ are the relevant components of the electric and
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magnetic field in region 2 and 3 respectively. Since the boundary condi-
tions must be enforced at z = 0 and for any ρ, we can write

∂

∂ρ
[

∂

∂z
π
(2)
z − ∂

∂z
π
(3)
z ] = 0 (2.18)

∂

∂ρ
[π

(2)
z − n2π

(3)
z ] = 0 (2.19)

and we finally have

∂

∂z
π
(2)
z =

∂

∂z
π
(3)
z (2.20)

π
(2)
z = n2π

(3)
z (2.21)

where of course π
(2)
z and π

(3)
z are the Hertz potential in regions 2 and 3

respectively. By considering this conditions and equation (2.11), (2.12),
(2.13) and (2.15), recalling that πz = πp + πs, in z = 0 it is possible to
obtain the sought expression for the function R(kρ) and T(kρ). Indeed,
after some algebra we get

R(kρ) =
n2kz − kze

n2kz + kze

(2.22)

T(kρ) =
2kz

n2kz + kze

. (2.23)

It is finally important to mention that the remaining components of
the electric field can be obtained by differentiation of the scalar Hertz
potential [37], as highlighted in the following

Ez =
∂2

∂z2 πz + k2πz (2.24)

Eρ =
∂2

∂ρ∂z
πz (2.25)

Hφ = −jωε
∂

∂ρ
πz (2.26)

In the next sections all the component of the electric field will be evalu-
ated and a numerical solution of the involved integrals will be outlined
in order to carried out a comprehensive study of the electric field ra-
diated by a vertical short dipole placed at the interface between two
homogeneous lossless dielectric media.
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2.1.1. Electric field in air
In air (i.e., for z > 0) considering equations (2.11) and (2.12) the

Hertz potential can be written as follows

πs(ρ, z) =
e−jk|r−r

′ |

4π|r − r′ |
+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ; (2.27)

since we want to carried out a numerical solution of the electric field we
consider here a plane-wave expression of the primary wave, that basi-
cally allows us to save time in the numerical evaluation of the equivalent
integral expression.

By considering equations (2.10) and (2.24) for the z component of
the electric field we can write

Ez =
∂2

∂z2 πp +
∂2

∂z2 πs + k2πp + k2πs (2.28)

while for the ρ component we have

Eρ =
∂2

∂ρ∂z
πp +

∂2

∂ρ∂z
πs; (2.29)

basically, to write the final expression for electric field we have to calcu-
late the second derivatives of πp and πs. To do this, it is convenient to
express πp in cylindrical coordinates as

πp =
e−jk|

√
ρ2+z2−h|

4π|
√

ρ2 + z2 − h|
(2.30)

and to introduce twodifferent cases, considering separately
√

ρ2 + z2 > h
and

√
ρ2 + z2 < h.

1. First case:
√

æ2 + z2 > h

Considering equation (2.28) we can write

Ez =
∂2

∂z2
e−jk(

√
ρ2+z2−h)

4π(
√

ρ2 + z2 − h)
+ k2 e−jk(

√
ρ2+z2−h)

4π(
√

ρ2 + z2 − h)
+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)(−q)e−jkz(z+h) kρ

j
dkρ+

k2

4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ

(2.31)
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Here for the sake of brevity the second derivative of the first term
has not been reported. Hence, recalling equation (2.29) we can
write

Eρ =
∂2

∂ρ∂z
πp +

∂2

∂ρ∂z
πs (2.32)

and finally we have

Eρ =
1

4π

∂2

∂ρ∂z
e−jk(

√
ρ2+z2−h)

(
√

ρ2 + z2 − h)
+

1
4π

∫ ∞

0
R(kρ)J1(kρρ)e−jkz(z+h)kρdkρ

(2.33)
Again, the second derivative has not been reported.
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2. Second case:
√

æ2 + z2 < h

Recalling again equation (2.29)

Ez = − ∂2

∂z2
e+jk(

√
ρ2+z2−h)

4π(
√

ρ2 + z2 − h)
− k2 e+jk(

√
ρ2+z2−h)

4π(
√

ρ2 + z2 − h)
+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)(−q)e−jkz(z+h) kρ

j
dkρ+

k2

4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ

(2.34)

Here for the sake of brevity the second derivative of the first term
has not been presented. Recalling again that

Eρ =
∂2

∂ρ∂z
πp +

∂2

∂ρ∂z
πs (2.35)

in the second region we can finally write

Eρ = − 1
4π

∂2

∂ρ∂z
e−jk(

√
ρ2+z2−h)

(
√

ρ2 + z2 − h)
+

1
4π

∫ ∞

0
R(kρ)J1(kρρ)e−jkz(z+h)kρdkρ

(2.36)
where once again the second derivative has not been explicitly
reported for space limitation.

Considering together equations (2.31), (2.33), (2.34) and (2.36), ex-
plicitly evaluating the remaining second derivatives and suitably per-
forming the complex integrations, we can evaluate the electric field
radiated by a VED in the upper medium for every radial distance and,
most of all, also in the near-field region of the considered elementary
interfacial source.

2.1.2. Electric field in the ground
By considering equations 2.24 and recalling that in the ground only

the secondary wave is present we can write

Ez =
1

4π

∫ ∞

0
T(kρ)J0(kρρ)(−k2

ze)e
+jkze z−jkzh kρ

jkz
dkρ+

1
4π

∫ ∞

0
T(kρ)J0(kρρ)e+jkze z−jkzh kρ

jkz
dkρ

(2.37)
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whilst referring to equation (2.29) for the ρ-component we get

Eρ =
1

4π

∫ ∞

0
T(kρ)J1(kρρ)(−kze)e

+jkze z−jkzh) k2
ρ

jkz
dkρ. (2.38)

In conclusion, by solving the integrals in equations (2.37) and (2.38) in
the complex plane, we can also evaluate the electromagnetic field in the
lower dielectric medium.

2.1.3. Asymptotic solution
As for the 2D case, the integrals involved in the description of the

field radiated by horizontal line source do not admit a closed-form
solution for every points of the space surrounding the antenna. Anyway,
by exploiting the theory of asymptotic expansion of double integrals
[2], it possible to obtain a simple formula describing radiation far from
the source. To handle the far-field zone, which will have the form of
a spherical wave, it is convenient to introduce a spherical coordinate
system (r, θ, φ), thus the following relations hold true

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

(2.39)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. As outlined in [38], in the far field
region only the θ component of the electric field is different from zero;
under the asymptotic solution of the involved integrals, radiation in the
upper half-space (z < 0) can be simply described by this expression

E1θ
=

−jI0

2π
η0

n2k0 sin θ cos θ

n2 cos θ +
√

n2 − sin2 θ

ejk0r

r
(2.40)

where η0 =
√

µ0/ε0 is the free space impedance, I0 is the total current
flowing on the dipole, and k0 and ke are the wave numbers in the upper
and lower half-spaces, respectively, as introduced in the previous chapter.
In the subsurface region (z <) for k0ρ → ∞ and π − θc ≤ θ < π we
have

E2θ
=

jI0

2π
η0

n2k0 sin θ cos θ

n
√

1 − n2 sin2 θ − cos θ

ejker

r
(2.41)

whereas, for k0ρ → ∞ and π/2 ≤ θ < π − θc

E2θ
=

I0

2π
η0

n2k0 sin θ cos θ

n
√

n2 sin2 θ − 1 + j cos θ

ejker

r
. (2.42)
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Fig. 2.2. Far field radiated by an interfacial vertical short dipole, whose lower medium
has a permittivity equal to εr = 3.2.

In Fig. 2.2 a plot of Eθ for a fixed value of the permittivity of the ground
medium has been reported. Generally speaking, the radiation pattern
is quite different from that of a free-space short dipole; two main lobe
are clearly visible in both upper and lower medium and a null at the
interface along the dipole axis has been obtained.

2.1.4. Numerical solution
To get a solution in each point of the space surrounding the antenna

and have the possibility of analyzing the electromagnetic field also in
the near-field region, a numerical solution of the involved integrals is
requested. As for the 2D case, outlined in the previous sections, here by
means of a customize MatLab routine a solution in the complex plane of
the integrals at hand has been also developed. The general procedure is
standard and is based on the Gaussian-Kronrod adaptive quadrature
formula; attention should be paid to the choice of the right Riemann
surface and on the adopted convergence criteria. Incidentally, kernels of
the involved integral aremade by an oscillating (i.e., J(kρρ)) contribution
and by a complex exponential term (i.e., e−j

√
k2

0−k2
z(z+h)), which becomes

real for kz > k0 allowing once again for a fast convergence.
Numerical results obtained with the customized routine have been

validated bymeans of the asymptotic formula introduced in the previous
section. Specifically, in Fig. 2.3 the far-field behavior for a vertical short
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(a) (b)

Fig. 2.3. Comparison between numerical and asymptotic far field pattern:
(a) εr = 2 (b) εr = 3.2.

dipole on a dielectric medium whose permittivity is equal to εr = 3.2 is
presented. The relevant results are in excellent agreement, confirming
the accuracy of the proposed numerical solution.

2.2. Horizontal electric dipole
In this section, following the same procedure outlined so far, the

electromagnetic field radiated by horizontal electric dipole (HED) will
be carried out. Since the geometry of the problem at hand lacks the
azimuthal symmetry, the radiation will be not azimuthally uniform.
Additionally, we will discover that on the surface of the considered
half-space most of the energy is radiated in the direction of the dipole
axis. This is clearly in contrast with the behavior of the same antenna
in free space, where the radiation is in the direction perpendicular to
the axis (i.e., at broadside). It is important to remind that analyzing the
performance of a HED may provide useful information for a number of
GPR applications. Indeed, such a configuration represents the simplest
three-dimensional (3D) source of the electromagnetic pulse and the
only one capable to lead to closed-form expression of the radiated field.
An important practical application case is the radiation from buried
antennas (underground, in ice or submerged in water); indeed, in this
case it can be shown that the horizontal dipole is most effective and
that the VED is an ineffective radiator [34]. Following the same scheme
of the previous section, the field radiated may be seen as the sum of
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Fig. 2.4. Horizontal short dipole in spherical coordinate system.

a primary and secondary wave, respectively represented again by two
Hertz potentials (i.e., πp and πs).

Let us consider a dipole located at a distance h from the surface
and oriented in the x direction. Again, the primary field can be easily
obtained from the x-component of the Hertz potential π

∇2πx + k2πx = − Jx

jωε0
(2.43)

with Jx = IxLδ(r − r′). The primary field is then given by

πp =
e−jk|r−r′ |

4π|r − r′| =

=
1

4π

∫ ∞

0
J0(kρρ)e−jkz |z−h| kρ

jkz
dkρ,

(2.44)

as usual, in the following the term IxL/jωε0 for convenience will be
omitted (fixed equal to 1). Analogously, the secondary field in the air
and in the ground is given by

πxs1
(ρ, z) =

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz |z+h| kρ

jkz
dkρ for z > 0,

πxs2
(ρ, z) =

1
4π

∫ ∞

0
T(kρ)J0(kρρ)e+jkze z−jkzh kρ

jkz
dkρ for z < 0.

(2.45)
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Generally speaking, a complete description of the electromagnetic field
(non-separable in TM and TE cases) requires two scalar functions. Thus,
in addition to πxs1

and πxs2
we need another scalar potential. A con-

venient choice, which was first introduced by Sommerferld in its sem-
inal paper [8], is the z component πz. With regards to the boundary
condition, the tangential electric fields Ex and Ey and the tangential
magnetic fields Hx and Hy must be continuous at the interface (i.e.,
z = 0); however, these conditions must be recast in terms of πx and πz.
By considering that

E = ∇(∇ · π) + k2π = E1 + E2

H = jωε∇× π
(2.46)

it possible to deduce the following boundary conditions (further details
can be found in [34])

Continuity of Ex → πx1 = n2πx2 (2.47)

Continuity of Ey → ∂

∂x
πx1 +

∂

∂z
πz1 =

∂

∂x
πx2 +

∂

∂z
πz2 (2.48)

Continuity of Hx → πz1 = n2πz2 (2.49)

Continuity of Hy → ∂

∂z
πx1 = n2 ∂

∂z
πx2 . (2.50)

By enforcing equations (2.47) and (2.50)we can determine the unknown
functions in the integral equations (2.45)

R(kρ) =
kz − kze

kz + kze

(2.51)

T(kρ) =
2kz

n2kz + n2kze

. (2.52)

In addition, equation (2.48) assesses a link between the x-component of
π and its z-component

∂

∂z
(πz1 − πz2) =

∂

∂z
(πx2 − πx1) (2.53)

thus, from equations (2.45), after evaluating the derivative with respect
to x, we can write the following expression for the z-components of the
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Hertz potential

πzs1
(ρ, z) =

cosφ

4π

∫ ∞

0
A(kρ)J1(kρρ)e−jkz(z+h)k2

ρdkρ for z > 0,

πzs2
(ρ, z) =

cosφ

4π

∫ ∞

0
B(kρ)J1(kρρ)e+jkze z−jkzhk2

ρdkρ for z < 0,

(2.54)

where

A(kρ) = − 2
k2

kz − kze

n2kz + kze

(2.55)

B(kρ) = − 2
n2k2

kz − kze

n2kz + kze

. (2.56)

Let us recast the first of equations (2.46) as follow

E = ∇(∇ · π) + k2π = E1 + E2, (2.57)

and let us consider the first term of its right side. In Cartesian coordinates
we can write

E1(x, y, z) = ∇(∇·π) = ∇(∇· (πxx0 +πzz0)) = (x0Ex1 + z0Ey1 + z0Ez1)

(2.58)
while in cylindrical coordinates we have

E1(ρ, φ, z) = ∇(∇·π) = ∇(∇· (πxx0 +πzz0)) = (x0Eρx1 + z0Eφx1 + z0Ezx1)

(2.59)
By developing the expression of the gradient of the divergence in equa-
tion (2.58) we get

E1 = x0

(
∂2πx

∂x2 +
∂2πz

∂x∂z

)
+ y0

(
∂2πx

∂y∂x
+

∂2πz

∂y∂z

)
+ z0

(
∂2πx

∂z∂x
+

∂2πz

∂y2

)

(2.60)
whereas for the expression in cylindrical coordinates (2.58) we have

E1 =x0

(
cos2 φ

∂2πx

∂ρ2 + cos φ
∂2πz

∂ρ∂z

)
+

y0

(
cos φ sin φ

∂2πx

∂ρ2 + sin φ
∂2πz

∂ρ∂z

)
+

z0

(
cos φ

∂2πx

∂ρ∂z
+

∂2πz

∂z2

)
;

(2.61)

for the three components of the electric field we can write



2. Radiation from Short Dipole 29

Ex1 = cos2 φ
∂2πx

∂ρ2 + cos φ
∂2πz

∂ρ∂z
(2.62)

Ey1 = cos φ sin φ
∂2πx

∂ρ2 + sin φ
∂2πz

∂ρ∂z
(2.63)

Ez1 = cos φ
∂2πx

∂ρ∂z
+

∂2πz

∂z2 . (2.64)

Therefore the following derivatives of the integral expression of the
potential (see (2.45) and (2.54)) must be evaluated

1.
∂2πx

∂ρ2 3.
∂2πz

∂ρ∂z

2.
∂2πx

∂ρ∂z
4.

∂2πz

∂z2

(2.65)

To simplify the discussion of the next developments, two different cases
will be considered, one for z > 0 and one for z < 0.

1. First case: z > 0

We have that

πx(ρ, z) =
1

4π

∫ ∞

0
J0(kρρ)e−jkz |z−h| kρ

jkz
dkρ+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz |z+h| kρ

jkz
dkρ

(2.66)

and

πz(ρ, z) =
cosφ

4π

∫ ∞

0
A(kρ)J1(kρρ)e−jkz(z+h)k2

ρdkρ (2.67)

• z > h

Under this condition we have that (z − h) > 0; if also h > 0
we can assume that |z + h| = (z + h) of course under this
condition we cannot place the short dipole in the second half-
space; however, for our purposes (modeling GPR surveys)
this represents an acceptable limitation, and allows us to
suppress the absolute value ni the exponential term of the
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previous integrals. Consequently, the involved integral can
be recast as follows

πxs1
(ρ, z) =

1
4π

∫ ∞

0
J0(kρρ)e−jkz(z−h) kρ

jkz
dkρ

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ

(2.68)

Now, recalling that J′n(z) = −Jn(z) + n
2 Jn+1(z), we have

∂J0(kρρ)

∂ρ
= −kρ J1(kρρ)

∂2 J0(kρρ)

∂ρ2 =
∂(−kρ J1(kρρ))

∂ρ
= kρ

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]

(2.69)

For the first derivative of (2.65) we can finally write

∂2πx

∂ρ2 =
1

4π

∫ ∞

0

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]
e−jkz(z−h) k2

ρ

jkz
dkρ+

1
4π

∫ ∞

0
R(kρ)

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]
e−jkz(z+h)| k2

ρ

jkz
dkρ

(2.70)

In order to evaluate the second derivative of (2.65) we firstly
write

∂πx

∂z
=

1
4π

∫ ∞

0
−J0(kρρ)e−jkz(z−h)kρdkρ+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h)|kρdkρ

(2.71)

thus

∂2πx

∂ρ∂z
=

1
4π

∫ ∞

0
J1(kρρ)e−jkz(z−h)k2

ρdkρ+

1
4π

∫ ∞

0
R(kρ)J1(kρρ)e−jkz(z+h)|k2

ρdkρ

(2.72)

• z < h
We have that
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πx(ρ, z) =
1

4π

∫ ∞

0
J0(kρρ)ejkz(z−h) kρ

jkz
+ dkρ

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h) kρ

jkz
dkρ

(2.73)

thus

∂2πx

∂ρ2 =
1

4π

∫ ∞

0

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]
ejkz(z−h) k2

ρ

jkz
dkρ+

1
4π

∫ ∞

0
R(kρ)

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]
e−jkz(z+h)| k2

ρ

jkz
dkρ

(2.74)

To evaluate also in this case the second derivative of (2.65)
we firstly write

∂πx

∂z
=

1
4π

∫ ∞

0
J0(kρρ)ejkz(z−h)kρdkρ+

1
4π

∫ ∞

0
R(kρ)J0(kρρ)e−jkz(z+h)|kρdkρ

(2.75)

thus

∂2πx

∂ρ∂z
=

1
4π

∫ ∞

0
−J1(kρρ)ejkz(z−h)k2

ρdkρ+

1
4π

∫ ∞

0
R(kρ)J1(kρρ)e−jkz(z+h)|k2

ρdkρ.

(2.76)

Regarding to the remaining derivative of equation (2.65) no con-
dition on the vertical position of the dipole has to be enforced.
Therefore, they can be easily calculated in the following way:

∂πz

∂z
=

cos φ

4π

∫ ∞

0
A(kρ)J1(kρρ)(−jkz)e−jkz(z+h)k2

ρdkρ (2.77)

recalling that

∂J1(kρρ)

∂ρ
=

[ J1(kρρ)

ρ
− kρ J2(kρρ)

]
(2.78)

we have

∂2πz

∂ρ∂z
=

cos φ

4π

∫ ∞

0
−jqA(kρ)

[ J1(kρρ)

ρ
− kρ J2(kρρ)

]
ejkz(z+h)k2

ρdkρ,

(2.79)
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whereas for the last derivative we can simply write

∂2πz

∂z2 =
cos φ

4π

∫ ∞

0
−k2

z A(kρ)J1(kρρ)e−jkz(z+h)k2
ρdkρ. (2.80)

2. Second case: z < 0

In this case for x-component of the Hertz potential it holds

πx =
1

4π

∫ ∞

0
T(kρ)J0(kρρ)ejkze z−jkzh kρ

jkz
dkρ (2.81)

and for the first and second derivative of (2.65) we can write

∂2πx

∂ρ2 =
1

4π

∫ ∞

0
T(kρ)

[
kρ J2(kρρ)−

J1(kρρ)

ρ

]
ejkze z−jkzhk2

ρdkρ

(2.82)

∂2πx

∂ρ∂z
= − 1

4π

∫ ∞

0
T(kρ)J1(kρρ)ejkze z−jkzh k2

ρkze

kz
dkρ (2.83)

respectively. Finally for the z-component it holds

πz =
cos φ

4π

∫ ∞

0
B(kρ)J1(kρρ)ejkze z−jkzhk2

ρdkρ (2.84)

and for the remaining derivative of (2.65) we can write

∂2πz

∂z2 = −cos φ

4π

∫ ∞

0
k2

ze B(kρ)J1(kρρ)ejkze z−jkzhk2
ρdkρ (2.85)

∂2πz

∂ρ∂z
=

cos φ

4π

∫ ∞

0
B(kρ)

[ J1(kρρ)

ρ
− kρ J2(kρρ)

]
jkze ejkze z−jkzhk2

ρdkρ.

(2.86)

Once that all the derivatives in equations (2.65) are known, it is pos-
sible to obtain the electric field E1 presented in (2.61); thus, to evaluate
the electric field radiated by a HED, expressed by equation (2.57), it
remains only to add the E2 field, whose calculation is straightforward.
As final comment, it is very interesting to note that the field given by
πz, as expected, is directional because of the cos φ factor in equations
(2.54).
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2.2.1. Asymptotic solution
As for both the line source and VED sources, once again the integrals

modeling the problem cannot be solved analytically and a closed-form
solution for each point of space is not available. An asymptotic method
provides a simple and accurate solution far from the source, that is of
course very useful for communication problem,wherein one is interested
to evaluate the electromagnetic field produced in a very remote point.
However, for the case at hand, since the problem is no more azimuthally
symmetric, in the analytical expression we also find a dependency on
the azimuthal angle (i.e., φ); additionally, as shown below, the far-field
distribution is described by two components of the electric field, namely
Eθ and Eφ.

For the field in the upper medium (labeled with the subscript 1) for
z > 0 we can write

E1θ
=

jI0k0

2π
η0

[
cos2 θ

cos θ +
√

n2 − sin2 θ
−

sin2 θ cos θ
cos θ −

√
n2 − sin2 θ

n2 cos θ +
√

n2 − sin2 θ

]
cos φ

ejk0r

r

(2.87)

E1φ
=

−jI0k0

2π
η0

sin φ cos θ

cos θ +
√

n2 − sin2 θ

ejk0r

r
(2.88)

In the subsurface region (z < 0, subscript 2) for k0ρ → ∞ and π − θc ≤
θ < π we have

E2θ
=

jnI0k0

2π
η0

[
sin2 θ cos θ

√
1 − n2 sin2 θ + n cos θ

n
√

1 − n2 sin2 θ − cos θ
−

cos2 θ√
1 − n2 sin2 θ − n cos θ

]
cos φ

ejnk0r

r

(2.89)

E2φ =
jnI0k0

2π
η0

sin φ cos θ√
1 − n2 sin2 θ − n cos θ

ejnk0r

r
(2.90)

whereas, for k0ρ → ∞ and π/2 ≤ θ < π − θc

E2θ
=

jnI0k0

2π
η0

[
sin2 θ cos θ

√
n2 sin2 θ − 1 − jn cos θ

n
√

n2 sin2 θ − 1 + j cos θ
+

j
cos2 θ√

n2 sin2 θ − 1 + jn cos θ

]
cos φ

ejnk0r

r

(2.91)
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E2φ =
nI0k0

2π
η0

sin φ cos θ√
n2 sin2 θ − 1 + jn cos θ

ejnk0r

r
(2.92)

In Fig. 2.5 and 2.6 two plots of the normalized module of the electric
field (i.e.,|E|) for two fixed values of the permittivity of the ground
medium have been reported.

(a) (b)

Fig. 2.5. Far field radiated by horizontal short dipole placed on a dielectric medium with
permittivity εr = 1.5. (a) plane φ = π/2, (b) plane φ = 0.

(a) (b)

Fig. 2.6. Far field radiated by horizontal short dipole placed on a dielectric medium with
permittivity εr = 3.2. (a) plane φ = π/2, (b) plane φ = 0.

In this case the pattern has a null at the interface, whereas in the upper
half-space a single lobe with a maximum normal to the interface has
been obtained. Additionally, in the lower medium, in the plane normal
to the interface and containing the dipole, the pattern has three lobes,



2. Radiation from Short Dipole 35

whereas in the plane normal to the interface and normally bisecting
the dipole, the pattern has two maxima located symmetrically about a
minimum.

2.2.2. Numerical solution
As discussed in previous sections, the possibility of analyzing the

electric field radiated by HED placed at the interface of two dielectric
half-spaces is highly desirable. Indeed, by following the same procedure
outlined for a VED, we are once again able to numerically characterize
the electric field in every point of the space surrounding the antenna.
The involved integrals are basically the same, thus the numerical proce-
dure outlined for the previous case is still valid. As usual, we propose a
validation of our customized MatLab routine by comparing the numeri-
cal far-field pattern with those carried out asymptotically. Specifically,
in Fig. 2.7 results obtained for a dielectric medium having a permittivity
εr = 2 have been reported for two principal planes, namely φ = π/2
and φ = 0. In Fig. 2.8, instead, a comparison for larger values of the

(a) (b)

Fig. 2.7. Comparison between numerical and asymptotic results for an interfacial horizon-
tal short dipole. (a) εr = 2, plane φ = π/2, (b) εr = 2, plane φ = 0.

permittivity, on the principal plane φ = π/2, has been shown. The
results are in excellent agreement for all the considered values, fully
confirming the accuracy of the proposed numerical implementation.

It is important to recall that we have now available a powerful instru-
ment to conduct comprehensive analysis on the near-field distribution
produced by an interfacial short dipole; it represents a simple and reli-
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(a) (b)

(c) (d)

Fig. 2.8. Comparison between numerical and asymptotic far field pattern (a) εr = 5, (b)
εr = 10, (c) εr = 20, (d) εr = 30.

able mathematical model for a realistic antenna of a GPR system.
Specifically, in the following, we focus our attention on the near field

radiated on the φ = π/2 plane, since we are interested in synthesizing
a simple mathematical model for a transmitting and receiving antenna
of a more complex system. As an example in Fig. 2.9 the near-field
distributions (E-field module in V/m, I0 = 1 A/m, equivalent length
L = 0.1 mm, frequency f = 1 GHz) for a number of permittivity values,
ranging from εr = 2 up to εr = 50, at a radial distance from the source
equal to λ/3 have been shown. The behavior of the radiated field is
extremely interesting: for increasing values of the dielectric constant
the electric field becomes stronger in the lower medium. Besides, the
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Fig. 2.9. Near-field distribution of a short dipole for a number of permittivity values
(h = 0 cm).

field in air shows a very interesting sensitivity to the εr variation, even
for observation point close to the surface where a receiving antenna
could be located. The same behavior can be observed in Fig. 2.10,
where the problem has been solved for the same parameters considered
previously but observing the field at a distance equal to λ/2. Specifically
the sensitivity of the electric field in air is still clearly visible. In the
next sections we will go back on this attractive feature, and extensive
analysis on the possibility of exploiting such a sensitivity to produce
an estimation of the soil parameters by means of GPR systems will be
investigated.

In the numerical results shown so far we have always placed the
dipole just on the surface; this since asymptotic solution of the integral
solving the problem requires h = 0 in the formulation. This value
has been also kept for the far- and near-field numerical results. In Fig.
2.11 the angular distribution of the electromagnetic field on the plane
φ = π/2 for h = 1 cm has been reported. It is interesting to note that this
position is more suitable to represent realistic GPR configurations; the
behavior of the electric field remains unchanged and a good sensitivity
of the field in air with respect to the permittivity variations is still clearly
visible.
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Fig. 2.10. Near field distribution of a short dipole for a number of permittivity values for
h = 0 cm and ρ = λ/3.

Fig. 2.11. Near-field distribution of a short dipole for a number of permittivity value for
h = 0 cm and ρ = λ/2.
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2.3. Radiation from a half-wavelength dipole
So far the near-field distribution generated by elementary sources

placed on a flat interface has been analyzed. The obtained results are
very interesting for themselves, but also because two horizontal electric
dipoles placed at distance d represent a simple mathematical model
for a ground-coupled GPR systems. To make our model even more
realistic, in this section we synthesize a half-wavelength dipole (HWD)
as a transmitting device. Basically, we consider this kind of antenna
as made by a suitable number of short horizontal dipoles, as shown in
Fig. 2.12. Since a spatial sampling has been introduced, the number of

Fig. 2.12. A horizontal interfacial half-wavelength dipole in a spherical coordinate system
synthesized by considering a suitable number of short dipoles (red dots on the red line).

short dipoles representing our HWD should be suitably designed. In
particular, being λ the selected central wavelength of the radiated pulse
(corresponding to a carrier frequency fc), at least a step s = λ/10 has
been considered. To validate our code in Fig. 2.13 and 2.14 a comparison
between the far-field pattern of a free-space short dipole and of a half-
wavelength dipole for a fixed frequency f = 1 GHz have been reported
[39]. A pattern obtained with our numerical implementation of a HWD
by sampling with n = 3 and n = 9 short dipoles is shown as well. They
are equi-spaced as shown in Fig. 2.12 and are represented by gray circles
and gray squares, respectively. Already for n = 9 (see Fig. 2.13) the
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Fig. 2.13. Far-field patterns for a free-space short dipole (SD), a HWD and the results
obtained with its discretized model. See label for the relevant details.

pattern is converging while the results obtained for n = 15 (see Fig.
2.14) confirm the accuracy of the proposed novel implementation.

In Fig. 2.15 a numerical result obtained by considering as input
waveform a modulated Gaussian pulse having a bandwidth of 1 GHz
around a carrier frequency fc = 1 GHz is reported. The signal received
by an interfacial short dipole is synthesized exploiting our frequency-
domain code for a suitable number of frequency and transforming back
in the time domain. A quite high permittivity for the lower medium is
considered to allow for the separation of two different contribution (i.e.,
air and ground wave, see part II of this thesis for further details). Our
numerical results are in excellent agreement with those obtained with
an ad-hoc full-wave solution of the considered scenario. Some visible
slight differences are possibly due to the different model of excitation
of the Gaussian pulse and to the finite thickness of the dipole’s radius
that is requested in the discretized model of the full-wave solution. This
frequency-domain code is very interesting not only for itself but because
it can also represent a valuable and efficient alternative whenever a
representation of the near-field distribution of the electromagnetic field
radiated by a realistic antenna on a lossy and dispersive medium is
requested. Indeed, full-wave solutions with ad-hoc implementation on
CAD tools could became computationally very heavy when a certain
degree of dispersion have to be considered in the model of the lower
half-space.
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Fig. 2.14. Far-field patterns for a free-space SD, a HWD and the results obtained with its
discretized model for n = 15. See label for the relevant details.

Fig. 2.15. Comparison between two Gaussian pulses (bandwidth 0.5 - 1.5 GHz) received
by a short dipole when a transmitting half-wavelength dipole is placed on a flat interface
between two dielectric media as in Fig. 2.12 (εr1 = ε0 and εr2 = 36). Solid black line
represents the signal radiated by our numerical model of the HWD, whereas the gray
circles represent a validation of the model developed through a full-wave solution.





Part II

Ground Penetrating Radar





Introduction

Ground Penetrating Radar (GPR) is a well-established geophysical
technique, widely used for shallow subsurface exploration. It has be-
come indispensable for a wide variety of geophysical, civil and forensic
applications, as it can provide fast and reliable information on the inves-
tigated subsoil by simply analyzing the reflected signal generated when-
ever the transmitted electromagnetic wave encounters discontinuities or
buried objects. Antennas, electronic systems, and post-processing algo-
rithms must be suitable designed depending on the considered scenario
and application. In the last years this technique has also gathered large
interest of the planetary and space community, and nowadays is by far
considered the most promising electromagnetic method for planetary
subsurface explorations. Dry and cold geological materials forming
planets, satellites and comets usually allow for good penetration of low-
and high-frequency electromagnetic waves. This was proven for the first
time in 1972 by the Apollo 17 mission, where two different experiments
involving subsurface radio propagation were tested. After this pioneer-
ing attempt, only in 1990s, also thanks to various improvements in GPR
technology, a new strong interest towards such a geophysical instru-
ment was induced. Indeed, several payloads for the Mars subsurface
investigation with GPR were proposed and developed. Among those,
the European Space Agency (ESA) selected MARSIS (Mars Advanced
Radar for Subsurface and Ionosphere Sounding), a multi-frequency
coherent orbiting GPR [40] operating at fewMHz, while NASA selected
SHARAD (SHAllow RADar), a similar subsurface radar operating at
higher frequency (20MHz) [41]. Both the instruments have been shown
to be capable to deeply penetrate the Martian subsoil and to detect in-
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terfaces between the bottom of polar deposits and bedrocks. Specifi-
cally, MARSIS has been able to go beyond 4 km of the planet crust and
SHARAD has produced extraordinary high resolution images of the
Martian polar caps.

In the meantime, in 2007, the Japan Aerospace Exploration Agency
(JAXA) launched its first mission on the Moon. The spacecraft SELENE
was equipped with a 5 MHz GPR (named Lunar Radar Sounder - LRS),
able to operate for weeks performing extensive subsurface exploration
of the lunar crust. Also, a surface penetrating radar, CONSERT (Comet
Nucleus Sounding Experiment by Radiowave Transmission), is part
of the payload of the Rosetta mission, whose lander (Philae) touched
down after ten years from its launch toward the comet just in these
days. The 90 MHz bi-static radar will investigate the internal struc-
ture of the comet nucleus. Finally, in the framework of JUICE (JUpiter
ICy moons Explorer) mission, a 9 MHz GPR, named RIME (Radar for
Icy Moon Exploration), has been chosen as the main geophysical in-
strument to sound Jupiter’s moons to a depth of about 9 Km. In this
planetary contest, ground-based GPR has the same potentialities of its
orbiting counterpart, as it can access the subsurface and retrieve quali-
tative and quantitative information on its composition and eventually
on the presence of scatterers of different materials and dimensions; in
fact, this would not be possible through traditional imaging systems
or spectrometers, that can only analyze the visible surface. At present,
several GPR systems have been proposed by the scientific community
for a planetary mission, but only two have been selected: one on-board
the EXOMARS rover, named WISDOM (Water Ice Subsurface Deposit
Observation on Mars), and one on-board of the 2020 NASA Mars rover,
named RIMFAX (Radar Imager for Mars’ Subsurface Experiment). The
activity of this part of thesis, outlined in the next chapters, is closely
related to the project of the WISDOM GPR. It has been developed in
collaboration with the Earth and Space applied physics laboratory of
the ‘Rome Tre’ University, with financial support provided by the Italian
Space Agency (ASI). Since the main goal of the mission will be to drill
and analyze the subsurface of the ‘red planet’, to find evidence on past
or present biological life, a rover equipped with various instruments
has been designed. A wide-band GPR, whose operative bandwidth
ranges from 0.5 to 3 GHz, has been also considered, with the main goal
to detect shallow hard rocks whose presence could dramatically damage
the drilling system. For these reasons, a realistic model of the operating
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environment is implemented and described in this investigation through
a full-wave electromagnetic simulator, which has shown to be capable
to take into account the main features of the real antenna system and
of the radiated signal. The flexibility and efficiency of this numerical
approach has allowed for the analysis of a great variety of configurations.
The background is modeled based on data from recent explorations,
while various kinds of embedded scatterers are considered with differ-
ent geometrical and physical characteristics. In addition, thanks to an
in-house laboratory setup, the simulated results have been compared
with ad-hoc GPR measurements performed on basalt rocks buried in
a mixture of glass beads, as analogue of a dry sandy Martian soil. A
very good agreement between theoretical and experimental results has
been found, thus validating the proposed numerical approach. This re-
search, accurately outlined in the next sections, has provided useful and
reliable information concerning the prediction of the scattering effects
from buried objects in the environment where the ExoMars rover will
operate.





3. GPR Antennas

3.1. Introduction

One of the most important components of a commercial or prototy-
pal GPR is the radiating system. The choice among possible solutions
and configurations is strictly related to the application and to the main
goal of the relevant GPR survey. Even tough this kind of instrument
belongs to the broad class of RADAR (RAdio Detection and Ranging)
systems, typically it radiates an electromagnetic pulse in the subsoil.
To optimize the transmitted energy and to minimize reflections and
multipaths between the air and ground interface, for many applications
the GPR antenna is placed as near as possible to the probed material,
i.e., it works in ground-coupled configuration. This means that not all the
configurations investigated and usually employed for antennas working
in the free-space can be exploited or at least partially re-adapted. To
find a complete description of the most common antennas employed
for geophysical surveys one can refer to [42] and [43]; typically, the
choice of models and topologies is related to the requirement about the
operative bandwidth. Indeed, to obtain the requested range resolution
and a good signal penetration, it is highly desirable to design an antenna
capable to provide a fractional bandwidth larger than 40 %, around the
carrier frequency, which should be lower than about 1.5 GHz. Unfortu-
nately, as it is known, the lower is the operative frequency more difficult
is to obtain large bandwidth. This means that a trade-off between depth
penetration and range resolution must be always faced. It is clear at
this point that simple resonant antennas are usually not able to provide
the desired performances, and consequently more advanced solutions
and configurations should be addressed. In the next sections, as a first
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step for the implementation of a virtual scenario for general-purpose
GPR surveys, different kind of antennas will be designed and simulated
by means of a commercial CAD tool, providing in the various cases
matching and radiative features for the proposed numerical model.

3.2. Monopole
The first kind of antenna was designed during the master’s degree

thesis of the Author with the aim to reproduce the operational band-
width and the physical dimension of a commercial systems, already
available for measurements in a laboratory environment. It has been
derived by suitable scaling and re-adapting a prototype designed and
measured in [44].

In particular, to acquire simulated data as consistent as possible with
those measured and to compare the synthetic imaging results with those
obtained through our experimental setup, a pair of wide-band printed
monopole antennas having bandwidth similar to the one nominally used
for a commercial GPR system were designed and simulated. As shown
in Fig. 3.1, our numerical model is fed by a coplanar waveguide; two
different prototypes have been implemented, one operating in monos-
tatic condition (Fig. 3.1(a)) and one for bistatic surveys (Fig. 3.1(b)). In
both cases the input port of the proposed antenna is fed with a Gaussian
pulse whose spectrum ranges between 0.5 and 1.5 GHz (defined among
frequencies having 10 % of its maximum amplitude); it is generated
as the modulation of a pulse through 1 GHz sinusoid. A parametric
analysis allow us to optimize the geometric dimension of the metaliza-
tion, the dielectric constant and the thickness of the substrate to obtain
an impedance matching lower than -10 dB inside all the operational

Fig. 3.1. Printed monopole antenna fed with a coplanar waveguide in monostatic (a) and
bistatic (b) configuration.
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bandwidth. As an example in Fig. 3.2(a) the return loss of the proposed

Fig. 3.2. (a) Reflection coefficient at the input port of the antenna; (b) Radiation pattern
in polar coordinates on the xz plane.

monostatic antenna (shown in Fig. 3.1(a)) has been presented. The
black solid curve is below -10 dB for all the expected frequency range,
confirming the potentialities of the proposed full-wave approach. In Fig.
3.2(b) the normalized 2D far-field pattern on the xz plane (see Fig. 3.2(a)
for the relevant coordinate system) for the monostatic antenna working
in free-space configuration has been also reported. As expected, the
behavior is rather omnidirectional and symmetric, as that of a cylindric
half-wavelength dipole. It is important to note that the performances
of the same antenna will be heavily influenced by the presence of a
dielectric interface; however, to test our numerical model in effective
operation conditions, a further optimization step can be introduced to
re-adapt the geometry and preserve the requested performances.

3.3. Simple and loaded dipoles
A simple antenna that could be theoretically considered to radiate

an electromagnetic pulse into a dielectric half-space is, of course, a
cylindrical half-wavelength dipole. As is well-known, it is made by a
metallic cylinder whose radius is much more smaller than the operating
wavelength; it can by fed at the center through ideal gap source, as
shown in Fig. 3.3(a). Even though the geometry is simple and easy to
design, it belongs to the family of the resonant antenna showing a rather
narrow bandwidth behavior. In particular, in Fig. 3.3(b) the return loss
has been reported for a dipole having length l = 15 cm (thus resonant
around ≈ 1 GHz) inside a bandwidth ranging from 0.5 GHz up to 1.5
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Fig. 3.3. (a) Numerical model of a cylindrical half-wavelength dipoles. (b) Impedance
matching inside the considered operation bandwidth; the S11 of a simple dipole is com-
pared with one loaded by means of a Wu-King profile.

GHz. As expected, a quite narrow fractional bandwidth, equal to about
20%, has been obtained.

Themost effective way to producewider operational bandwidthwith
this kind of antennas requires the implementation of a load profile along
the dipole’s arms. From a theoretical viewpoint, the electric currents,
excited thanks to a voltage gap, propagates along the metalization up to
the discontinuities, where they are partially reflected: this phenomenon
is continuously repeated as far as the current completely lapses going to
zero. Even though most of the input energy is radiated in the free space,
this behavior produces a prolongated time signal and consequently a
narrower bandwidth for the radiated pulse. However, by introducing a
resistively load profile along the dipole’s arm, the flowing currents can
be progressively dissipated along its path toward the end of the metal-
ization, where it can assume very low values (ideally zero). Namely, if
no currents reach the end of the dipole’s arm the reflected signal cannot
be excited and the pulse remains shorter in time.

By starting from Maxwell’s equations, as demonstrated for the first
time in [45], the optimum profile for the current flowing on a cylindrical
dipole of length L is given by the following equation

I(z) = C(L − | z| |)e−jk0 | z| . (3.1)

This represents a current traveling in the direction of increasing | z| ,
that is, from the generator towards both the ends of the two arms. By
suitably elaborating this equation it is possible to evaluate the relevant
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Fig. 3.4. Radiative features of the considered half-wavelength dipoles. (a) Two-
dimensional far field pattern on the xy plane (θ = 90◦), (b) Two-dimensional far field
pattern on the yz plane (φ = 90◦).

resistive profile implementable on the considered antenna. In particular,
for a half-wavelength structure whose profile is discretized with N total
resistors, we get this equation to express the value of the n-th resistive
load

R(n) =
L

2Aσ0

log[(L − 2)(n − 1)∆]
L − 2n∆

(3.2)

being σ0 the conductivity of the metal, A the cross-section of the radi-
ating arms and ∆ the size of the discretization step. In Fig. 3.3(b) the
return loss obtained by implementing the Wu-King profile along the
virtual model of the considered dipole has been reported. A comparison
with that generated by a simple non-loaded structure demonstrates the
improvement achievable in term of fractional bandwidth, that is grown
here from 20% to nearly 40 %. In Fig. 3.4 a comparison for the far-field
pattern in two principal planes for our dipoles is also reported. As ex-
pected, the angular dependence of the radiated field is not affected by
the resistive profile, but a lower intensity patterns has been obtained for
the loaded structure. Indeed, the presence of shunt resistances causes
energy dissipation of ohmic nature, that in turn gives rise to a lower
radiation efficiency.

3.3.1. Printed folded dipole
A folded dipole is an evolution of the half-wavelength dipole ob-

tained by connecting its two ends with additional arms (see Fig. 3.6)
[39]. It is has been proposed in the past to provide a simple and effi-
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Fig. 3.5. Comparison between the Ricker pulse radiated by simple and resistively loaded
dipole.

Fig. 3.6. Numerical model of a cylindrical folded dipole. One of the two arms is suitably
cut to allow for the introduction of an idealized voltage gap.

cient way to widen the operational bandwidth of this class of antennas.
If the additional wire has the same diameter and cross-section as the
dipole, two nearly identical radiating currents are generated; the result-
ing far-field emission pattern is nearly identical, but at the resonance
frequency its input impedance is four times the radiation resistance of a
single-wired dipole. This is because for a fixed amount of power, the
total radiating current is equal to twice the current in each wire. The
folded dipole usually is therefore well matched to 300-Ohm balanced
transmission lines. Since the bandwidth of a resonant antenna is larger
for growing section of the metalization, a folded dipole has also a wider
bandwidth with respect to that of a single dipole.

Very often to satisfy design constraints on weight and dimensions
requested by specific applications, a cylindrical loaded folded dipole
shown in Fig. 3.6 can be transformed in a printed version, as shown in
Fig. 3.7. In particular, the configuration at hand has been suitably opti-
mized to obtain an excellent impedance matching inside an operational
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Fig. 3.7. Simulated model of a printed loaded folded dipole, optimized to obtain a very
wide operational bandwidth.

bandwidth ranging from 0.6 up to 1.9 GHz. It is important to note that
the width of both two arms have been suitably designed and discretized
to introduce a resistive profile. Incidentally, the search of the optimum
values for all the resistances constituting the profile requires a rather
complex optimization scheme: for this reason an automatic procedure
has been suitable developed, capable to parametrically change at each
step the value of the shunt resistance constituting the loading profile.
In conclusion, in Fig. 3.8 the optimized return loss has been presented,

Fig. 3.8. Return loss of the printed loaded folded dipole shown in Fig. 3.7.

whose profile is just below the desired threshold of -10 dB, inside all the
considered frequency range.

3.4. Bow-tie antenna
As discussed previously, by widening the section of the metaliza-

tion of the considered class of antennas, one can effectively improve its
impedance bandwidth. By starting from a simple printed dipole and
progressively enlarging the end of its two arms, as shown in Fig. 3.9(a),
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Fig. 3.9. Printed bow-tie antenna in dual-pol configuration. (a) Virtual model of the
overall structure, (b) sketch of the coaxial cable designed to excite the proposed structure
from the back.

Fig. 3.10. Shielded dual-pol printed bow-tie antenna. (a) Shielding made by three materi-
als having different conductivity and permittivity values, (b) shielding made by homoge-
neous pyramidal shape.

it is possible to obtain a so-called bow-tie antenna (dual polarized for
this specific case) [39]. This type of antennas shows wider bandwidth
with respect to simple printed dipole, indeed they can be also seen as
the printed version of a biconical antennas [39], that is a broad-band
antenna made of two roughly conical metalization. Just to give an exam-
ple about the excitation system for this kind of element, in Fig. 3.9(b) a
coaxial cable suitably designed on our CAD tool has been highlighted.

3.5. Printed Vivaldi antenna
As discussed in the introduction of this chapter, the main scientific

objectives of the planned ExoMars mission are to search for evidence of
past and present life on Mars and to characterize the composition of its
shallow subsurface. To do this, a rover equipped with a drill capable to
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sample the subsurface down to a depth of approximately 2 m has been
designed [46]. To obtain information about the nature of the subsurface
along the rover path before drilling, a presence on board of a GPR system
is highly desirable, being its main goal that to explore the first 3 m of
the soil with a vertical resolution of few centimeters, in accordance with
the objectives and expected capabilities of the drill. Extensive surveys
will help identifying the location of sedimentary layers, where organic
molecules are the most likely to be found and well preserved. As usual,
the design requirements of the antenna system are driven by both scien-
tific objectives of the experiment and accommodation issues associated
with its integration on a remotely operated rover. The requisite resolu-
tion of few centimeters and a penetration depth of more than 2 m call
for a frequency range of about 500 MHz–3 GHz; a fully polarimetric
antenna system is also highly recommended to study depolarization
effects. The two-channel GPR system needs an antenna design that takes
into account two perpendicular linearly polarized transmitting antennas
and two co- and cross-polar oriented antennas for reception. In addition,
mass, volume, and protection requirements preclude the use of absorb-
ing material and shielding. As a consequence, the antenna pattern of
each element must be carefully focused on the ground. Ideally, the radia-
tion pattern should be wide in the rover path direction, so that point-like
reflectors are visible over relatively long distances, while the cross-path
pattern should be narrow. The gain function should increase with fre-
quency in order to compensate the frequency-dependent free-space loss
encountered at higher frequencies and also to partially account for the
gain functions of the electronic systems. These and other constraints
like EMC requirements, as well as pattern deformation due to radiation
coupling effects with the rover structure, has led to an antenna that is
based on a Vivaldi configuration [47], [48]. In this section, as in the
previous case, a virtual model developed on a commercial CAD tool
will be described. Basically, this kind of antenna, proposed for the first
time in [49], belongs to the wide family of traveling-wave antennas. In
his printed version it is made by an exponentially shaped metalization
placed on a thin substrate. In Fig. 3.11(a) a virtual model of a printed
Vivaldi has been reported. It is designed to work inside an operational
bandwidth going from 0.5 up tp 3 GHz and has dimensions of about
25 × 20 cm. As shown in Fig. 3.11(b) it is fed by a microstrip line hav-
ing variable sections and terminated with a shaped radial stub. These
degrees of freedom, together with the circular shape etched on the met-
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Fig. 3.11. Virtual model of a printed Vivaldi antenna fed with a microstrip line. (a)
monostatic model radiating linear polarize fields, (b) Back view of the virtual model; a
microstrip with variable section loaded with a radial stub is clearly visible.

alization have been suitably optimized to obtain an excellent impedance
matching. Indeed in Fig. 3.12(a) the return loss for this antenna has
been presented inside the considered frequency range: the black curve
shows the result obtained for a free-space configuration, whereas the
gray one shows the results for the structure further optimized to work in
ground-coupled configuration, close to a medium having permittivity
equal to about 3.2. In both cases an excellent performance has been
obtained, confirming the potentialities offered by this kind of structure.
Finally, in Fig. 3.12(b) the far-field pattern in the xy principal plane
has been reported as well, showing a good directive behavior. In con-
clusion, in Fig. 3.13 the same antenna designed to work in dual-pol
configuration is reported. It represents a prototype satisfying technical
and geometrical constraints as indicated in [46]; in the next chapter it
will be extensively used to produce numerical data in a virtual Martian
scenario.
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Fig. 3.12. (a) Impedance matching for the proposed linear polarized Vivaldi antenna. (b)
Two-dimensional far field pattern for the considered antenna on the xy principal plane.
Copyright © 2017, IEEE.

Fig. 3.13. Virtual model of a printed Vivaldi antenna working in dual-pol configuration. It
is fed by twomicrostrips with variable sections suitably modified to satisfy the geometrical
constraints.





4. Experimental and Numerical GPR Setups

4.1. GPR laboratory setup
A laboratory setup was exploited in order to acquire experimental

GPR data to be further processed and inverted, as will be shown in
the next chapters. The setup is constituted by a box made of fiberglass,
having approximate dimensions 150 × 100 × 30 cm (length, width, and
height, respectively), which can be filled by different background mate-
rials. In the case at hand, a mixture of glass beads was chosen as hosting
material, which can be regarded as an analogue of a sandy soil [51].
The electromagnetic features of this material, which is nonmagnetic and
with negligible losses, were investigated independently through a Time
Domain Reflectometry (TDR) analysis [52, 53, 54].

Such an instrument allowed us to fix the relative dielectric permittiv-
ity of the glass beads equal to 3.2 [54]. Measurements were performed
using the commercial GPR device ‘PulseEkko Pro’ manufactured by
Sensors and Software Inc. [50] and equipped with a pair of dipoles an-
tennas having a 1 GHz bandwidth around the nominal central frequency
of 1 GHz. In the measurements, the GPR antenna system was moved
along the length of the box at the soil smooth interface, in a multi-bistatic
configuration having an offset between the Tx/Rx antennas of about 19
cm (center to center). A view of the laboratory experimental setup is
given in Fig. 4.1. In Fig. 4.3 a zoom on the GPR Tx/Rx antennas placed
on the ground surface is reported.

This controlled laboratory setup has been extensively used to conduct
GPR surveys both on metallic and dielectric object, that can be buried at
different depth from the surface. Typically these scatterers have dimen-
sions comparable with the probing wavelength and are place at depth
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Fig. 4.1. View of the GPR laboratory experimental setup: the artificial sand box, filled
with a ground medium in which scatterers are buried. Copyright © 2013, Elsevier B.V.

Fig. 4.2. The laboratory setup used in this work for the analysis of metallic and dielectric
scatterers buried in a host medium. Side view of the setup positioned on a pair of wooden
tables. Themetallic plate has been inserted for calibration purposes and is removed during
the measurements. Copyright © 2013, Elsevier B.V.
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Fig. 4.3. The commercial GPR instrument with coupled Tx/Rx antennas for the measure-
ments at the interface.

Object Geometry
Cube Side: 9 cm
Sphere Radius 9 cm
Cone Base diameter: 9 cm; height: 10 cm

Pyramid Base: 9 × 9; height: 10 cm
Cylinder Diameter: 5 cm; height: 10 cm

Parallelepiped Base: 5 × 5; height: 10 cm

Tab. 4.1. Geometry of the objects investigated experimentally.

of 9 cm, that makes indeed the overall problem very challenging.

4.1.1. Measurements on metallic objects
In order to account for the case of electromagnetic non-penetrable

(metallic-type) scatterers, GPR measurements were carried out by the
Author with the help of some colleagues of the Earth and Space applied
physics laboratory of the ‘Rome Tre’ University on targets made of hard
woodwrappedwith aluminum foils. In particular, several targets having
canonical geometries and size comparable in terms of the dominant
probing wavelength (i.e., λ = 30 cm for fc = 1 GHz) were considered.
The details of the tested geometries are given in Table 4.1.

The objects were located at a fixed depth from the air/sand interface,
that is 9 cm with respect to the upper face or top point of the metallic
targets, according to their geometry. In Fig. 4.4 a picture showing some
of the probed targets on the surface of our glass beads has been reported;
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Fig. 4.4. Experimental setup showing metallic targets in the position where they are
buried.

in particular the cube was located on the left of the major length of the
box and a square-based pyramid was on the right side at a distance of
about 80 cm. The row GPR outcomes are given under the usual form of
radar B-scan sections or ’radargrams’ [42]. These are generated here by
transmitting a Gaussian-type pulse from each position along the survey
line and collecting the signal scattered by the buried objects from the
receiving antenna.

As an example, Fig. 4.5 shows a measured radargram: the effects of
different wave contributions appear according to well-established classi-
fications (i.e., direct and reflect waves) [42, 43]. In particular, the first
received event is a ’direct wave’, which travels straightforwardly from
Tx towards Rx antenna. This effect is partly limited by the shielding and
by the directional features of the radiators and, when the background
has rather homogeneous characteristics, as in the case at hand, it can be
dropped out from the output data, with the so-called ’background re-
moval’ procedure [42, 43]. Such a processing step gives rise to a cleaner
pattern mainly focused on the scattering contributions arising from the
buried targets. Further, the roughly hyperbolic events visible in the
radargram of Fig. 4.5 are produced by the main ’scattered wave’ and
clearly emphasize the presence of the buried objects. It is worth not-
ing a lighter and slightly delayed hyperbolic event for the pyramid, if
compared to the cube response, which is related to the lower scattering
cross section of the tip wedge with respect to a flat side. Additional
backscattered contributions appearing in Fig. 4.5 can be associated to the
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Fig. 4.5. Example of a measured GPR radargram in the sand box. The radar signatures
are due to different metallic buried scatterers placed along the major length of the box:
a cube (on the left) and a pyramid (on the right). Details on the physical parameters
chosen are provided in the main text. Copyright © 2013, reproduced courtesy of The
Electromagnetics Academy.

bottom interface of the sand box. In particular, being the box located on
two lateral wooden tables and air-suspended in its central part (see Fig.
4.2, where a metal plat has been inserted only for preliminary measure-
ments), the reflection effect is particularly visible in the central region
due to the strong dielectric contrast occurring between sand and air. The
measured radargrams are available for all the canonic targets reported
in Tab. 4.1, however for sake of brevity only the most significant results
have been described here; they will be reconsidered in the part III of this
work, where an imaging procedure will be introduced and applied to
GPR numerical and experimental data.

4.1.2. Measurements on dielectric objects
Metallic objects are non-penetrable by the electromagnetic radiation

and generate a very strong backscattered signals; this means that they
are relatively easily detectable and can be considered as limit case with
respect to typical dielectric scattered buried in natural scenarios. Indeed,
with regard to planetary exploration, very often the main goal of a GPR
system consists in detecting and localizing dielectric hidden targets or
interfaces; consequently, it is essential to refer to the contrast between the
permittivity of the backgroundmediumwith respect to that of the buried
scatterer. Since this part of the present thesis aims at characterizing
performances of a GPR in a Martian scenario, we will consider in the
following somemeasurements developed by colleagues of the Earth and
Space applied physics laboratory of the ‘Rome Tre’ University on basalt
rocks (relative dielectric constant εr = 6.7) with dimension comparable
to the probing wavelengths, buried in the shallow region of a subsoil
with permittivity of εr = 3.2, that, as outlined in the previous section,
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Fig. 4.6. Measured radar cross sections for a basalt block buried at 5 cm in the sand box,
obtained with the PulseEkko Pro GPR. The vertical axis indicates the two-way travel time
(ns), and the horizontal axis shows the position (m) along the longitudinal profile of the
box. Copyright © 2013, Elsevier B.V.

Fig. 4.7. Measured radar cross sections for a basalt block buried at 5 cm in the sand box,
obtained with the Noggin GPR. The vertical axis indicates the two-way travel time (ns),
and the horizontal axis shows the position (m) along the longitudinal profile of the box.
Since the Tx/Rx antenna separation and size are different for the two GPRs, the target
position (m) with respect to Fig. 4.17 does not coincide. Copyright © 2013, Elsevier B.V.
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Fig. 4.8. Wave propagating along the direct path between transmitting and receiving
antenna on the interface between air and glass beads.

represents an analogue of a region of theMartian sandy soil. Specifically,
attention was devoted here to finite-size three-dimensional dielectric
targets: the basalt block of quasi-regular shape (with a flat upper face
of about 12 × 9 cm and a thickness of about 8 cm) was buried in the
center of the box (see Fig. 4.1) at three different depths, i.e., with the
top of the rock at 5, 10, and 20 cm from the air/sand interface. For each
rock position, a 2D radar cross section was acquired with a step size
of 1 cm along the major axis of the dielectric box through two different
commercial GPRs, namely the PulseEkko Pro and the Noggin systems
[50], choosing a time window equal to 30 ns and a stacking of 4. The
relevant results for a depth d = 5 cm from the surface are shown in
Fig. 4.6 and 4.7 for the PulseEkko pro and Noggin Systems, respectively.
Both these GPRs are manufactured by Sensors & Software, Inc., working
at central frequency of 1 GHz. Two well-separated hyperbolic events
are clearly visible now as the dielectric object is penetrable: the first
one is related to the top face of the basalt rock, while the second one is
generated from the bottom face, after that the radiation has propagated
inside the object with a different velocity. It is worth noting that the
configuration under analysis is quite challenging: our rock is buried
in the near-field region of the considered antenna and its dimension
is comparable with the dominant wavelength of the transmitted pulse
(λ = 30 cm). In addition, both systems have a small offset (with respect
to λ): for these reason the air-ground wave interference results quite
strong. Indeed, in Fig. 4.6 and 4.7 the scattered hyperbola is overlapping
with the direct wave (w1(t) in the schematic view of Fig. 4.8), making
the depth estimation procedure quite involved. In the next section, by
starting from this measured radargrams, the capability to estimate the
depth of these shallow targets will be investigated.
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4.2. Depth estimation of shallow targets
In various important applications, GPR instruments are demanded

to operate in particularly challenging conditions, e.g., for the detection
of variously sized and shaped buried rocks in the shallow planetary
subsurface, with close Tx/Rx antennas placed at the soil interface (as
for the mentioned ESA ‘ExoMars’ mission, having a GPR on board an
on-site rover). In such cases, this instrument should be able to properly
locate scatterers at depths where the usual far-field operation could
no longer be fulfilled and the relevant performance heavily depends
on various physical parameters. Based on proper processing of the
measured radargrams described in the previous section, the depth of
shallow subsurface rocky blocks in a sandy soil has been estimated in
connection with different GPR features. The validity of the results has
been checked with suitable reference data provided by the Earth and
Space applied physics laboratory group, taking into account various crit-
ical setup parameters (host medium features, geometrical and physical
characteristics of the inclusions, GPR operating wavelengths, antenna
separation, etc.). Helpful and reliable criteria can be achieved for proper
design of such type of instruments in future planetary missions.

The main purpose of our analysis here has been focused on the
evaluation of the accuracy limits in predicting the depth of basaltic
blocks in connection with different GPR systems, particularly in the case
of rather superficial rocks. To this aim, the basaltic block considered
in the previous section (roughly cubic with 10-cm side and εr = 6.7)
has been buried at different depths d from the surface (see section 4.1.2
for further details). Based on the output of the received signals, the
depth of the top of the rock has been estimated, for both GPR systems,
by suitably evaluating the time delay τGPR between the direct wave
(straight traveling from Tx to Rx antenna at velocity vdw, w1(t) in Fig.
4.9) and the reflected wave (going from Tx to the scatterer and back to
Rx at velocity in the host medium vh, w2(t) in Fig. 4.9). By following
elementary geometric considerations, the estimated distance dest can be
expressed as

dest =
1
2

√(
τGPR +

s
vdv

)2
+ v2

h − s2. (4.1)

These values have then been tested through comparisons with ad-hoc
reference results make available by our colleagues, estimated by com-
bining a-priori information on the physical location of the rock and on



4. Experimental and Numerical GPR Setups 69

Fig. 4.9. Possible paths of the electromagnetic signal in a schematized GPR scenario.
Copyright © 2013, Elsevier B.V.

Actual Depth (cm) τTDR (ns) τGPR (ns) dest (cm)
5 ± 2 0.6 ± 0.1 0.6 ± 0.1 5 ± 0.1

10 ± 2 1.0 ± 0.1 1.0 ± 0.1 10 ± 0.2
20 ± 2 2.0 ± 0.2 2.0 ± 0.1 20 ± 1

Tab. 4.2. Comparisons between theoretically predicted (TDR-based) and experimental
values of time delays to evaluate different depths of a basalt block in a sandy soil with the
PulseEkko Pro GPR commercial systems (offset between Tx and Rx antenna equal to 19
cm).

the wave velocity in the host material already calculated with TDR (the
travel time τTDR is in this case calculated through the minimum path of
reflected wave from Tx to Rx antenna). The results of this analysis are
summarized in Tab. 4.2 and 4.3, where we present comparisons between
the actual and the estimated depths of the scatterer evaluated by means
of the two GPR instruments. Both radars show good accuracy (within
the uncertainties deriving from the error linear propagation formula
[55]). The slight systematic overestimation of Noggin values is related
to the presence of a sled in the antenna case.

Among various interesting aspects, attention has to be paid to the
resolution limits of the measurements as the scatterer becomes closer
to the surface (thus buried in the near field region of the considered
antenna), since in these cases the rock could not properly intersect
the bistatic ‘footprint radius’ [57], which depends in a rather complex
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Actual Depth (cm) τTDR (ns) τGPR (ns) dest (cm)
5 ± 2 0.5 ± 0.1 0.7 ± 0.1 7 ± 1
10 ± 2 1.0 ± 0.1 1.3 ± 0.1 12 ± 2
20 ± 2 2.2 ± 0.2 2.4 ± 0.1 22 ± 1

Tab. 4.3. Comparisons between theoretically-predicted (TDR-based) and experimental
values of time delays to evaluate different depths of a basalt block in a sandy soil with the
Noggin GPR commercial systems (offset between Tx and Rx antenna equal to 7 cm).

way on the other physical and geometrical parameters of the setup
(operating wavelengths, antenna features, shielding and separation of
the instrument from one side, dimensions and depth of the target from
the other). It is seen that in these cases the usual far-field patterns of
the antennas are no longer met and the detection could occur in general
near-field conditions. For these reasons, a theoretical investigation of
these involved behaviors based on rigorous full-wave simulated tests
allows us to make clear important criticalities in the GPR operation, as
will be addressed in the next sections.

4.3. Customized numerical setup
In order to provide further reference GPR data useful for testing

performances GPR systems and to produce a wide set of data to test
conventional and advanced inversion procedures, the scattering prob-
lem widely discussed in the previous sections was simulated by taking
advantage of a flexible numerical setup. In particular, the commercial
electromagnetic time-domain CAD tool ‘CST Microwave Studio’ [56]
was used to simulate scenarios similar to the laboratory setup described
and discussed in the previous sections. This software allow us to carry
out efficient and reliable full-wave numerical solutions of the considered
scenario to accurately study and analyze features and performances
of the proposed ground-coupled antennas. In addition, the involved
phenomena characterizing the electromagnetic propagation of different
waves detected by the receiving antenna of a GPR can be analyzed with
flexible parameterization. As the simplest configuration, an environ-
ment made of a two layers was considered. The first one is made by air,
while the second one is given by a dielectric material representing the
hosting soil used in the experiments. Accordingly, such a material is
non-magnetic, lossless and has a relative dielectric permittivity equal to
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Fig. 4.10. GPR Numerical setup designed on CST made by two half-wavelength dipoles
fed by a gap-voltage and placed at the interface between the air and dielectric medium.
A metallic sphere has been also inserted representing a possible buried object to detect,
locate and reconstruct.

Fig. 4.11. GPR Numerical setup designed with CST made by a printed Vivaldi antenna
fed by a waveguide port and placed at the interface between the air and dielectric medium.
A basalt cube has been also inserted representing analogue to those considered during
the measurement campaign.
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3.2. Moreover, since the irregularities of the sandy interface occurring
in the experimental setup are small with respect to the wavelengths of
the probing signals and considering that the smooth surface is flattened
by the GPR movements, a flat air/sand interface was simulated.

In this environment, perfect electric conductor (PEC) or dielectric ob-
jects can be inserted in locations similar to those considered during the
experiments (about 10 cm deep from the interface). The overall dimen-
sions of the simulated region are 80 cm length, and 50 cm in width and
depth. The region is discretized by means of a hexahedral mesh, whose
elements have size less than λ/15, λ being the smaller wavelength in
the considered frequency range (that is dependent by the considered
antenna). Perfect-matched-layer (PML) boundary conditions have been
imposed on the side walls and the bottom of the simulated environment,
leading to an ideal absence of reflections (homogeneous half-spaces).
This choice allowed us to efficiently reduce the dimensions of the simu-
lation region and also to focus our attention exclusively on the scattering
effects of the buried targets. Therefore, the simulations differ a bit from
the experiments, which take also into account the reflection from the
bottom of the box. It is anyway worth noting that the simulation tool
gives the possibility of considering several and complex scenarios with
affordable computational efforts. The Tx/Rx antennas are usually placed
on the soil surface, sweeping along the longer planar direction with step
of 3 cm in a bistatic configuration having a fixed offset of 19 cm, i.e.,
the same as for the PulseEkko Pro system occurring in the laboratory
measurements. The simulated setup is exemplified in Fig. 4.10, and Fig.
4.11 gives a view of the numerical environment including dielectrics,
scatterers, and two different antenna system; Fig. 4.12 shows a typical
simulated waveform of the GPR transmitted signal. At each position
on the surface, the Tx antenna radiates a pulse and at the output port
of the Rx antenna a signal, including the back-scattered wave from the
objects, is gathered. Thus, a gray-scale 2D ’simulated radargram’ for
the investigated domain can be generated. Suitable signal processing
is anyway needed to properly emphasize the scattering effects. In par-
ticular, as said, the time-domain output signal is generally made by a
first contribution guided by the soil/air interface along the linear path
between Tx and Rx antennas. This ‘undesired signal’ (direct wave) is
followed at a later time by the ‘useful signal’ (scattered wave) from
the buried target. Under the described assumptions, the direct wave
can be considered as the same for any position along the observation
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Fig. 4.12. Simulated waveforms of the GPR transmitted signal: (a) Modulated Gaussian
Pulse, (b) Ricker pulse, i.e. second derivative of a baseband Gaussian pulse.

Fig. 4.13. Time-domain representation of a truncated chirp pulse.

domain and can be evaluated numerically with a suitable simulation
of the Tx/Rx GPR signal performed in the absence of any scattering
object. Then, to improve the detectability of the targets by emphasizing
the relevant scattering contributions with respect to undesired signals,
the direct wave has been subtracted numerically from each collected
trace. An example of a simulated radargram, generated according to the
numerical procedure described above, is shown in Fig. 4.14 for a buried
PEC cube with 9-cm side, illuminated with the Vivaldi antenna shown
in Fig. 4.11 and presented in section ??. Specifically, in Fig. 4.14(a) the
result obtained before the background removal is shown. The direct
wave is here particularly strong, due to the limited shielding between
Tx/Rx antennas in the implementation. The wave scattered by the target
produces, indeed, approximately hyperbolic curves partially masked
by the direct wave. In Fig. 4.14(b), the radargram after the background
removal is given. In this figure, only the scattered echo from the cube is
present and the top of the diffraction curve is now clearly visible. It is
seen that the echoes from the lateral sides of the block are weaker than
the echoes from its top. This is an expected outcome, being the scatter-
ing from the top of the cube mainly due to strong reflection by a flat
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Fig. 4.14. GPR radargrams obtained with the simulation setup: (a) complete pattern for a
buried PEC cube including direct and reflected waves; (b) pattern for the scattered field
after background removal.

Fig. 4.15. Numerical radargram obtained with our customized setup with two alternative
input waveforms after the operation of background removal. (a) Gaussian modulated
pulse, (b) Ricker Pulse.

interface, while the scattering from the side walls is related to diffracted
fields spread over wider angles. Again to compare the scattering event
generated by considering alternative input waveforms, in Fig. 4.15 two
numerical radargrams obtained illuminating the buried object with a
bistatic monopole antenna, as that describe in section 3.2, have been
reported. In particular, in Fig. 4.15(a) and 4.15(b) the GPR outcomes
obtained respectively with a Gaussian and a Ricker pulse for a PEC cube
buried again at 9 cm from the surface have been shown. As expected,
the shapes of the scattered hyperbolas are clearly different: as a general
comment it is possible to state that a slightly better range resolution
for the Ricker waveform, due to a reduced number of oscillation of the
time-domain radiated waveform, in turns related to different spectral
content of the two signals, has been obtained. In conclusion in Fig. 4.16
results produced by putting as input waveform a time-domain chirp
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Fig. 4.16. Numerical radargram obtained with our customized setup with a time domain
chirp signal as input waveform after the operation of background removal; (a) chirp
signal before compression, (b) hyperbolic event produce by a chirp signal after a matched
filtering operation.

signal (pulse compression rate equal to 100) is reported. A compari-
son of Fig. 4.16(a), representing the signal after the operation of pulse
compression (i.e., processed through a matched filter), with Fig 4.15
allowing to identify an improved resolution obtained with the chirp
pulse, that anyway introduces noticeable complications of the involved
electronic systems.

4.4. Depth estimation on the numerical data
The experimental results on the GPR detectability of shallow inclu-

sions were also compared to simulated results derived with our nu-
merical setup, that has shown to be particularly suitable for solving
electromagnetic problems modeling GPR scenario. Here the implemen-
tation was extended in order to simulate the operation of the commercial
GPR antenna systems introduced in the previous sections, consider-
ing in particular dissimilar mutual Tx/Rx spacing and also different
signal waveforms. The simulations were specified for the same host
medium (electromagnetic model of silica glass beads) with schematized
included blocks (electromagnetic model of basalt), at variable depths.
Even though the CAD implementation allows us to suitably account also
for both ohmic and dispersion features of the media, in the operating fre-
quency range under consideration it is seen that the overall performance
is not sensitively affected. As already shown in the previous section, the
simulated numerical results for the scattering problems can be given in
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Fig. 4.17. Numerical radar cross sections for a basalt block buried at 5 cm in the sand box.
The vertical axis indicates the two-way travel time (ns), and the horizontal axis shows
the position (cm) along the longitudinal profile of the box. The antenna features are
the same of the PulseEkko Pro, in the absence of reflections from the boundaries of the
box; the reference starting time in the plots of this simulated results is set as that of the
experimental measurements of Fig. 4.6.

Fig. 4.18. Numerical radar cross sections for a basalt block buried at 5 cm in the sand box.
The antenna features are the same of the Noggin, in the absence of reflections from the
boundaries of the box; the reference starting time in the plots of this simulated results is
set as that of the experimental measurements of Fig. 4.7.

the form of radar sections by plotting the collected time signal on a gray
scale.

In particular, Fig. 4.17 shows synthetic cross sections in the same
scattering conditions as presented in Fig. 4.6 (buried basalt block in
the air/glass-bead environment), for a GPR systems simulating the
PulseEkko device. In addition, the cross sections shown in Fig. 4.18
represent those obtained by the virtual model of the Noggin instruments.
Both numerical radargrams have been evaluated focusing the simula-
tion on the effect due to the buried scatterer only (i.e., perfect matching
conditions are considered on the region boundaries). An even more
‘realistic’ comparison is shown in Fig. 4.19, where the synthetic cross
section (for the PulseEkko case) takes also into account the reflections



4. Experimental and Numerical GPR Setups 77

Fig. 4.19. Numerical radar cross sections in more realistic condition for a basalt block. The
antenna features are the same of the PulseEkko Pro; the reference starting time in the
plots of this simulated result is set as that of the experimental measurements of Fig. 4.6.
Copyright © 2013, Elsevier B.V.

due to the discontinuities caused by the bottom and the lateral walls
of the filled box (assuming an outside air region). The effect of the
echo from the bottom is now evident. It is noted that, in the numerical
results, the amplitude of the reflected wave with respect to the direct
one can be different from what measured, since the shielding and cou-
pling characteristics of the simulated and of the real antennas are quite
different. This aspect will be commented further in connection with
the next results focused on the single signal traces. Nonetheless, the
simulated events match quite well the measured ones in terms of shape
and location of the various reflections, emphasizing also some expected
discrepancies related to the two different GPR systems as regards the
signal waveforms.

To make clearer the role of the direct and reflected waves for the
revealed waveform, it is useful to explore the single traces of the signal
acquired by the receiver as a function of time. An example of simulation,
for a fixed central position of the GPR antenna, is given in the following
for the cases under analysis. The received signals (voltage vs. time) for
the simulated Noggin GPR system are presented for different depths
of the considered basalt block in the sandy soil, buried at 10 cm and
5 cm in Fig. 4.20 and 4.21, respectively. Note that, due to the lack of
precise information on the features of the real GPR antennas (radiation
patterns, mutual coupling, shielding, etc.), the wave contributions in
the simulations have been properly tuned by imposing the ratio of the
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Fig. 4.20. Simulated traces of the received voltage signals vs. time for a GPR configuration
similar to Noggin, with the basalt block buried at a depths d = 10 cm (direct wave: blue
curve; reflected wave: red curve). Copyright © 2013, Elsevier B.V.

Fig. 4.21. Simulated traces of the received voltage signals vs. time for a GPR configuration
similar to Noggin, with the basalt block buried at a depth d = 5 cm (direct wave: blue
curve; reflected wave: red curve). Copyright © 2013, Elsevier B.V.
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Fig. 4.22. Simulated traces of the received voltage signals vs. time for a GPR configuration
similar to Noggin, with the basalt block buried at d = 5 cm: patterns of the signal envelopes
of the direct (blue curve) and scattered (red curve) waves, emphasizing through the
relevant peak positions (arrows 1, 2, and 3) the possibility of correct evaluation of both
location and height of the target. Copyright © 2013, Elsevier B.V.

reflected to the direct wave equal to the one observed in the relevant
experimental data. From these numerical results, it is seen that, as
the target depth becomes lower, the reflected wave tends to be more
superimposed to the direct wave, but anyway distinguishable.

Fig. 4.22 considers again the minimal depth of 5 cm, showing the
behavior of the envelopes of the signals: in this way it can be straightfor-
wardly calculated the time delay between the peak of the direct wave
and the first peak of the scattered wave (see arrows 1 and 2 in Fig. 4.22),
the latter corresponding to the first maximum reflection due to the up-
per side of the block. It is found a very good agreement between this
simulated time delay and the one effectively measured with Noggin
GPR (τGPR), which are actually the same (0.7 ns). This gives rise to a
possible alternative numerical evaluation of the depth of the scatterer,
that comes out equal to 7 cm from the simulation (to be compared with
the analogous dest = 7 ± 1 cm from measurement and d = 5 ± 2 cm
from theory, as results from Tab. 4.3). For other target depths (d = 10
and d = 20 cm) the matching between simulated and experimental
time delay remains still very good. Moreover, the envelope form of the
scattered contribution of Fig. 4.22 allows us to give an independent eval-
uation also of the height of the target, by calculating the time delay ∆t
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between its first and second peak (see arrows 2 and 3 in Fig.4.22),which
is linked to the backscattering of the upper and lower walls of the basalt
block (see also the experimental counterpart in Fig. 4.7). From this
calculation (∆t = 1.31 ns from simulation and ∆t = 1.38 ns from mea-
surement), the numerical evaluation of the height of the block comes
out equal to 7.6 cm, to be compared to the experimental one, 9 ± 2 cm,
and to the already-established theoretical value, 8± 2 cm 4.3. An overall
excellent agreement of the results is found from measurements com-
pared to theory and simulations as well. It should be noted, for these
last results, that the clear identification of peaks in the numerical traces
is easily possible due to absence of significant environmental distortion
and noisy effects in the simulated results. It would be a more critical pro-
cedure if applied to the experimental data discussed previously, where
the estimation through the proposed cross-correlation approach can
lead to more robust and accurate results. Nevertheless, for ‘noisy’ cases,
it is easily possible to apply the same cross-correlation procedure to
simulated data as well.

4.5. Numerical setup for 3D surveys
In order to have a wide set of 3D data to be efficiently processed for

imaging purposes, the ‘forward’ scattering problem is analyzed by suit-
able extending our numerical implementation on the time-domain CAD
tool. Once again this software enables us to explore different realistic
complex GPR scenarios with affordable computational efforts and excel-
lent accuracy. The investigated domain consists again of two half-spaces
media separated by a flat interface, representing an air/soil environment,
in which various types of scatterers can be buried. The GPR system
can be simulated with various types of antennas both in bistatic and
in monostatic configurations, as already discussed in section 4.3. In
order to keep the GPR system as simple as possible in the analysis of the
imaging performance, in the present study a monostatic configuration is
chosen, with the antenna placed at the interface between air and ground
(a wide-band printed monopole antenna, already described in section
3.2). The numerical GPR environment under analysis is shown in the
3-D view in Fig. 4.23.

The antenna scanning domain at the interface is sketched in the
top view of Fig. 4.24, with the numbering of the scanning lines, the
grid points for gathering synthetic data, and the proper coordinate



4. Experimental and Numerical GPR Setups 81

Fig. 4.23. The basic GPR setup analyzed by means of the CAD tool for the forward
scattering problem: 3-D view of the simulation environment, including a wide-band
printed monopole antenna placed on the air/ground interface and a buried scatterer.
Copyright© 2013, Hindawi PublishingCorporation, https://doi.org/10.1155/2013/610389.

system. In accordance with the specifics of a GPR instrument such as the
PulseEkko Pro [50], the simulated system is fed with an input Gaussian-
like signal having a spectrum between 0.5 and 1.5 GHz, generated as
the modulation of a pulse through a 1 GHz sinusoid: this waveform
is shown by the time-domain trace of Fig. 4.25(a) , with the relevant
frequency spectrum of Fig. 4.25(b). The matching characteristics of
the antenna in the considered operational range are summarized once
again through the return loss (RL), i.e., the magnitude of the antenna
scattering reflection coefficient in dB, vs. frequency f . It is seen from Fig.
4.26 that the RL curve for our antenna in realistic operating conditions
(i.e., located at the interface of the air/ground external environment)
lies in the range of interest well below the typical matching threshold of
-10 dB, as desired. The far-field radiative features of the antenna, again
operating in the air/ground environment, are described by means of
the radiation patterns, as already done in section 3.2 for the antenna
working in free space. The pair of examples of Fig. 4.27 show the
polar-form plots vs. the elevation angle θ, for the two principal planes,
φ = 0◦ or xz plane (left) and φ = 90◦ or yz plane (right), at the central
frequency of the spectrum ( f = 1 GHz). In both cases it is noticed that,
as expected, the distribution is no longer rather omni-directional, but
the radiation is mainly more focused in the ground dielectric region
than in the air, with a certain forward squint of the main lobe (around
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Fig. 4.24. Top view of the antenna scanning domain at the interface, with the coordinate
system, the grid points, and the numbering of the scanning lines. Copyright © 2013,
Hindawi Publishing Corporation, https://doi.org/10.1155/2013/610389.

Fig. 4.25. (a) Simulated waveform of the GPR transmitted signal vs. time (ns); (b)
Amplitude of the transmitted signal vs. frequency f (GHz).
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Fig. 4.26. Behavior of the antenna return loss (magnitude of the reflection coefficient in
dB) vs. frequency f (GHz) in the matching range.

Fig. 4.27. Antenna radiation patterns vs. elevation angle θ in polar form, in the φ = 0◦

(left) and the φ = 90◦ (right) planes (fixed central frequency f = 1 GHz).
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Fig. 4.28. Section view for a fixed x (central yz plane) of the magnitude of the electric-field
distribution generated by the antenna at the interface in near-field conditions (same
fixed frequency f = 1.0 GHz). Copyright © 2013, Hindawi Publishing Corporation,
https://doi.org/10.1155/2013/610389.

45◦ in the φ = 90◦ plot) due to the asymmetry of the radiating printed
element with respect to the central plane xz. Since in general the GPR
system will not operate in far-field conditions, it is also important to
have precise information on the actual radiation in the near field. The
CAD tool can compute the distribution of the fields in the volume of
interest close to the antenna at the interface. A section view in the yz
plane (x fixed) of the magnitude of the electric field for our antenna in
the two half-spaces (air/ground) environment is illustrated by the color
plot of Fig. 4.28, for a fixed frequency (again at the central frequency
f = 1 GHz).

In this picture it is clearly emphasized the spatial focusing of the near-
field radiation, as already observed in the far-field radiation patterns
as well. As said, this piece of information on the field distribution is
particularly significant since in our cases the shallow scatterers will
just be located in such near-field region. Once again various targets
can be buried in the ground medium, at the same depth considered
in the previous sections (9 or 10 cm). In the forward problem, shape,
size, depth, and electromagnetic parameters of the scatterer are fixed.
In each simulation of the CAD tool, after the signal is launched by the
antenna, the scattering effect of such a target is evaluated bymeans of the
time-domain trace of the received signal, which is due to the scattering
from the buried object. It is reminded that our choice for an interfacial
antenna allows us to eliminate most of the signal reflection due to the
media discontinuity; in addition to this, as already described in previous
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sections, absorbing boundary conditions have been implemented in
order to avoid any further reflection effect from the surfaces enclosing
the 3-D investigation domain. The numerical evaluations of the received
signal traces are repeated in a multi-monostatic configuration, i.e., for
a number of positions of the antenna with respect to the fixed target
inside a 2-D rectangular domain (area on the xy interface plane at z =
0), scanning along the x direction for different parallel lines by changing
y, in a way similar to the actual measurements performed by a GPR
instrument. In the numerical results presented here the scanning step
along x is fixed at 3 cm; the number of points along x is Nx = 28, for
an overall investigated length of 81 cm. The distance between parallel
lines along y is also fixed at 3 cm; the number of lines along y is Ny =
8, for an overall width of 21 cm (refer to the sketch of Fig. 4.23 for the
investigated grid, the relevant numbering of the lines, and the antenna
position). Each time-domain trace of the received signal is therefore
available in the 28 × 8 = 224 points of a grid with unit cell 3 × 3 cm
(the relevant distance between grid points compared to the free-space
wavelength at the central frequency being equal to 0.1λ). As already
done so far, the results of the time-domain traces giving the amplitude
of the scattered wave received by the antenna is plotted in the form of
B-scan radargrams (time delay of the received signal vs. x scan position,
in gray-scale form for its intensity).

The environment in the simulations presented here is chosen again as
air (vacuum) for the upper medium and as a ‘dry sandy soil’ (εr = 3.2,
µr = 1, σ = 0) for the lower medium. In order to emphasize the effects
of different radar cross sections, the buried scatterers are chosen of cubic
and spherical shapes and can have different electromagnetic contrasts:
specifically, computation is presented here for εr = 6.7 (basalt block)
and for εr = 1 (air cavity). The effects of the dimensions can be also
analyzed, e.g., with possible different cubic sides or sphere diameters.
Finally, also the influence of the scatterer location can be considered,
choosing variable depths d under the surface (d being the distance of the
top point of the target from the air/sand interface). It is reminded that,
as for the 2D analysis, the characteristic dimensions of the scatterers
are generally comparable to the wavelengths of the signal (of the order
of 10 cm in the medium) and are illuminated in near-field conditions.
First examples of the GPR synthetic radargrams are shown in Fig. 4.29
for a cubic basalt scatterer of 10 cm side and buried 10 cm deep in the
sand (practically the same already considered in 2D configuration);
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specifically, each of Fig. 4.29 refers to B-scans vs. x for all the scan
lines along y, reading each row from left to right. The scattering events,
emphasized by the received-signal amplitudes in grey scale, present
expected hyperbolic shapes along x. It is seen that, considering also
the squint effect of the monopole antenna and its relevant orientation
in the scanning process (see Fig. 4.23), the reflection effect correctly
appears to be in general lower for the upper y positions (i.e., line 1),
where radiation is not properly focused on the target, and sensitively
increases as the antenna scans towards the center (i.e., line 5), where
the scattering effect is maximal; at lower y positions (i.e., line 8) the
effect is higher with respect to the upper y position (line 1) due to the
asymmetric squinted illumination. It is also observed that the position in
time of the main upper and lower hyperbolic events are fully consistent
with the traveling speed of the signal scattered by the upper and the
lower sides of the penetrable object. The echoes from the lateral sides
of the block are also present, even if weaker than those from its top:
this is related to the fact that the scattering from the top of the cube is
mainly due to strong reflection by a flat interface and edge points, while
the scattering from the side walls is related to diffracted fields spread
over wider angles. In order to illustrate the specific differences that can
be observed in the synthetic radargrams depending on the shape of
the scatterer, Fig. 4.30 presents the results for a basalt sphere of radius
5 cm, being all the other parameters fixed as in Fig. 4.29. Again, Fig.
4.30 shows B-scans for parallel lines with different y (lines no. 1, to 8,
reading each row from left to right). By using the same gray-scale as
in Fig. 4.29 for the received signal intensity, it is clearly seen that the
reflection events from the sphere are generally less strong than the cube,
as expected from the reduced scattering effect of the round shape with
respect to the flat and wedged shapes. The different radar cross section
of the two geometries affects in part also the time delays in which the
maxima of the scattered waves are found.

The effect of different electromagnetic contrast has also been evalu-
ated through the radargram forms.

The results of Fig. 4.31 refer to the case of a cube as in Fig. 4.29
(same dimensions and location) but having permittivity of a vacuum
(representing an air cavity in the sandy soil): again, sub-figures show
the B-scans for eight different lines (no. 1 to 8, reading each row from
left to right), with the relevant amplitudes in gray scale. Even if in this
case the scattering effect is related to a target which is less dense than
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Fig. 4.29. GPR B-scan synthetic radargrams from our numerical setup for a basalt cube
of 10 cm side, buried 10 cm deep from an air/sand interface (details on the other phys-
ical parameters are in the main text). Grey-scale received-signal amplitude in time vs.
longitudinal scanning position along x, for three parallel lines at different y. Each figure
can be associated to the scan line reading each row from left to right. The scatterer is
located in a central position along x. Copyright © 2013, Hindawi Publishing Corporation,
https://doi.org/10.1155/2013/610389.
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Fig. 4.30. GPR B-scan synthetic radargrams for a basalt sphere of 5 cm radius, buried
10 cm deep from an air/sand interface. Grey-scale received-signal amplitude in time vs.
longitudinal scanning position along x, for eight parallel lines at different y. Each figure
can be associated to the scan line reading each row from left to right. The scatterer is
located in a central position along x. Copyright © 2013, Hindawi Publishing Corporation,
https://doi.org/10.1155/2013/610389.
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Fig. 4.31. GPR B-scan synthetic radargrams for a vacuum cube of 10 cm side, buried 10
cm deep from an air/sand interface. Grey-scale received-signal amplitude in time vs.
longitudinal scanning position along x, for eight parallel lines at different y. Each figure
can be associated to the scan line reading each row from left to right. The scatterer is
located in a central position along x.
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Fig. 4.32. GPR B-scan synthetic radargrams for a vacuum sphere of 5 cm radius, buried
10 cm deep from an air/sand interface. Grey-scale received-signal amplitude in time vs.
longitudinal scanning position along x, for eight parallel lines at different y. Each figure
can be associated to the scan line reading each row from left to right. The scatterer is
located in a central position along x.
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Fig. 4.33. GPR B-scan synthetic radargrams for a PEC cube of 10 cm side, located in a
central position along x and buried 10 cm deep from an air/sand interface. The grey-scale
received-signal amplitude in time are presented as in Fig. 4.29.
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Fig. 4.34. GPR B-scan synthetic radargrams for a PEC sphere of 5 cm radius, located in a
central position along x and buried 10 cm deep from an air/sand interface. The gray-scale
received-signal amplitude in time are presented as in Fig. 4.30.
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the outer host environment (sand), the radargrams of Fig. 4.31 appear
quite similar to the ones of Fig. 4.29. Actually, from a careful analysis of
the single-trace numerical data (not reported explicitly here for brevity),
it is seen that the main reflection hyperbolic event, due to the upper side
of the cube, is in general slightly stronger for the vacuum cube than for
the basalt one. This is related to the fact that the reflection amounts in
the hosting medium (sand) are different for the two scattering materials,
being greater for vacuum than for basalt: in fact, for the sand/basalt
case the magnitude of the reflection coefficient for a normally incident
plane wave is about 0.35, while for the sand/air case the magnitude
is about 0.5. Furthermore, the thickness of the scattered hyperbola
appears to be different for the two objects (greater for the basalt than
for the vacuum cube), due to the propagation velocity v of the wave
transmitted through the penetrable scatterers (v being lower in the basalt
than in the vacuum), which generates a dissimilar composition with the
wave scattered from the bottom of the target. This influenced also the
resolution of the pulse propagating inside the vacuum material, where
the wavelength is greater than in the outer environment being here the
mediummore dense. The results of Fig. 4.32 refer to the case of a sphere
having permittivity of a vacuum, buried in the sand: dimensions and
location are the same as in Fig. 4.30. Sub-figures show the B-scans of the
usual eight lines (no. 1 to 8, reading each row from left to right), with the
same grey scale of Fig. 4.31. It is seen that the distinctive features already
commented for the vacuum cube can be applied to the vacuum sphere
as well. Even if the scattering effects are confirmed to be less significant
for the sphere if compared to the equivalent cube, it is again observed
that the main reflection hyperbolic event is in general slightly stronger
for the vacuum sphere than for the equivalent basalt one. From all the
shown synthetic radargrams (Figs. 4.29 to 4.32) it is seen that certain
amounts of spurious signal occur (‘flat’ events found around 2 ns), due
to slight reflections at the input port of the antenna, whose matching
features in the operational bandwidth are affected also by the presence
of nearby dielectric discontinuities. These spurious contributions are
particularly visible when the basalt scatterer is in the closest position
with respect to the antenna, whilst the undesired signals become almost
invisible particularly for the vacuum targets located far from the antenna
(see, e.g., Fig. 4.32).

The three-dimensional direct problem has also considered for the
same cube and sphere made by perfect electric conductor. Antenna and
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grid configurations are the same as in Fig. 4.23 and 4.24. In particular,
the results of Fig. 4.33 refer to a PEC cube with dimension and location
as in the previous pictures. Again the reflection effect correctly appears
to be lower for the upper y positions (i.e., line 1), where the radiation is
not focused on the target, and increases while the antenna scans towards
the center of the domain where the flat metallic face is fully intercepted;
at lower y positions (i.e., line 8) the effect is higher with respect to
the upper position due to asymmetric illuminations. It is important to
note that, in accordance with the strong scattered signal generated by a
metallic object, the gray scale considered in this case is different with
respect to those of Figs 4.29 and 4.31, being indeed more than ten times
larger. Sice the object is non-penetrable a well defined hyperbola event
is clearly visible, being also well compact and shorter in time.

Fig. 4.34, finally, presents a result for the same metallic sphere con-
sidered so far, being parameters and configurations fixed as in Fig. 4.33.
To allow direct comparison between the hyperbolas generated by the
metallic cube, the gray-scale has been fixed at the same interval. As
expected, the intensity of the non-penetrable curved shaped is generally
lower but follows the same patterns as in the previous cases (minimum
for upper position of the antenna along y directions and maximum at
the central position).

From this analysis it is seen that all such synthetic data concerning the
forward scattering problem appear to be pretty consistent and regular,
so that they are particularly suitable to be processed by an efficient
inversion algorithm, as discussed in part III of this thesis.



5. GPR Early-Time Technique

5.1. Introduction
Over the past few decades, significant advances have been done in

the development of geophysical methods to investigate and characterize
the shallow subsurface by means of non-invasive procedures [21, 22, 42].
A number of different techniques have been investigated in order to
characterize the electromagnetic parameters of the considered medium
at different depths. Specifically, GPR has shown to be one of the best
options in terms of spatial resolution, fast acquisition time, extension of
the investigated area and repeatability of measurements. As discussed
previously, this system employs high-frequency electromagnetic waves,
which in low-loss and non-magnetic soils respond primarily to the bulk
dielectric permittivity of the medium. Consequently, as the permittivity
of liquid water is much larger than other geologic constituents, a GPR
instruments can be highly suited for measuring the volumetric water
content [59].

More generally, quantitative evaluations of electromagnetic proper-
ties of materials is an important goal for a wide area of applications. In
this chapter, the capability to estimate physical soil properties in a fast
and non-invasive way through GPR surveys will be addressed. By start-
ing from a novel alternative GPRmethod formonitoring electromagnetic
(EM) parameters directly below the air/soil interface, firstly introduced
in [63]-[65], numerical and experimental studies will be described to
assess the theoretical background and to provide additional reliable
information on the effective potentialities of the proposed approach.

Typically, surface GPR technique exploits a transmitting (Tx) and
receiving (Rx) antenna positioned at the interface between air and di-
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electric ground medium; the most common operational mode is the
so-called common offset reflection profiling [42]. Basically, for this kind
of survey, the Tx and Rx antenna are placed at a constant offset (i.e.,
constant separation) distance and are moved along a survey line to
map reflection from underground vs. position. The system is usually
moved along the scan line at a uniform step size between two sounding
locations. This procedure is repeated multiple times and a typical raw
output is obtained displaying on a horizontal axis the position of the
system on the surface and on the vertical axis the travel time of the
collected signal. As shown in the previous chapter, reflection events are
originated from a contrast in the EM properties of different medium,
typically due to the presence of an interface or a buried object. The
common mid-point (CMP) survey collects reflection data while Tx and
Rx antenna are moved apart about a fixed location, sequentially and
with a certain step, allowing the separation of different events of the
field, i.e., direct air wave, direct ground wave, and subsurface reflection (see
Fig. 5.1, where all the main GPR events have been highlighted). Very
often, CMP sounding is primarily used to obtain an estimate of the radar
signal velocity with respect to depth in the ground by simply varying
the antenna separation at a fixed location, thus measuring the change
of the two-way travel time of the reflected signal. Consequently, by
increasing the horizontal distance at a constant rate, variations of the
two-way travel time can be used to calculate EM wave velocities, as well
as the depth of a reflector (further details can be found in [42, 43]).

In reflection methods a GPR transmits EM waves into the soil, hence
moisture content can be retrieved by analyzing the travel time of the
wave reflected at an interface. Anyway, as is well known, this approach
requires good signal penetration and the presence of a subsurface di-
electric interface that yields clear GPR reflections. Another commonly
used approach is the so called ‘ground-wave method’, which can be
applied for soil EM characterization when no shallow reflectors are
present. The ground wave must be recognized in the collected data
using a multi-offset GPR acquisition configuration, and its velocity can
be determined from the slope of the linear relationship between the
antenna separation and the ground-wave travel times. However, this
slope is not always well defined, when, as an example, near-surface het-
erogeneities are present. Additionally, the method is time-consuming
and the information on soil permittivity may be averaged only over a
large horizontal distance. The ground-wave method can be also used
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Fig. 5.1. GPR waves at the receiving antenna for a ground-coupled bistatic system.

with a single-offset configuration; even though this method is more
attractive with respect to CMP surveys, because gives the possibility of
performing faster acquisition, it is affected by some uncertainties related
to the potential difficulty of separating the ground-wave arrival from the
clutter of critically refracted and reflected waves. Moreover, it might be
difficult to choose the proper antenna separation for which air-ground
waves are always well separated for a wide range of soil water content
(i.e., a wide range of soil permittivity), which can be encountered in
large field measurements. In addition, for all the proposed cases one
has to take into account that the range of influence on the considered
signal attributes depends on the wavelength, which in turn is a function
of the dielectric properties of the analyzed soil [58]. Consequently the
region of influence depends itself on the moisture content, making an
accurate evaluation of the investigated area rather involved.

When working in bistatic configuration, in addition to the signal
reflected by an object (or more generally by an interface) buried in
the ground under analysis, one has to consider also the signal which
propagates along the direct path between the transmitting and receiving
antenna. This contribution travels at a velocity that is not well specified
and has a value that ranges between the free-space velocity of the wave
and that in the medium. As shown in [21, 68] such a signal is composed
by a complex superimposition of the air wave and the ground wave.
In single-offset configuration, for a fixed carrier frequency, these two
waves arrive totally separated at the receiving antenna, i.e., they do not
interfere, only if the permittivity of the material and/or the distance
between the antenna is large enough. Just as an example, we can find
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Material Static Conductivity Relative Permittivity
σs (mS/m) εr

Air 0 1
Dry Clay 1–100 2–20
Wet Clay 100–1000 15–40
Dry Concrete 1–10 4–10
Wet Concrete 10–100 10–20
Freshwater 0.1–10 78–8
Freshwater ice 0–1 3
Seawater 4000 81–88
Seawater ice 10–100 4–8
Dry Sand 0–1 3–5
Wet Sand 0.1–10 10–30
Dry Sandy Soil 0.1–100 4–6
Wet Sandy Soil 10–100 15–30
Dry Clayey Soil 0.1–100 4–6
Wet Clayey Soil 100–1000 10–15
Average Soil 5 16

Tab. 5.1. Typical values of relative permittivity (real component) and static conductivity
for common subsurface materials for quasi-static conditions ( f = 100 MHz). For further
detail see [43].

that with an offset between Tx-Rx antenna equal to about 10 cm and
for a dominant wavelength in free-space of 30 cm, such a separation is
clearly visible when the lower medium has a relative dielectric constant
larger than 20 (see Table 5.1 for indication on typical values of most
commonmaterials). In this particular condition the ground wave can be
easily exploited to estimate the signal velocity in the material, to extract
the value of the permittivity and therefore the water content [59, 62].
It is worth to note that even though this technique is quite simple and
easy to implement, it can work only in specific condition, providing an
estimation of the water content mediated on relatively wide areas, that,
as already introduced, is also influenced by the penetration depth of the
ground wave in the medium under analysis. However, the obtainable
accuracy is usually evaluated by comparing the relevant results with
other more traditional and well-established technique, such as Time
Domain Reflectometry (TDR) and gravimetric measurements.

Generally speaking, when the permittivity of the probed medium is
lower than 20 (i.e., for a great number of common media) and working
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with offsets that are sufficiently large, the first signal arriving at the re-
ceiver is the combination of the direct and ground waves. On this basis,
more recently, a new radar approach named Early-Time Technique has
also been proposed in [63]; it is based on the amplitude analysis of the
early-time portion of the GPR collected waveform, using a fixed-offset
ground-coupled antenna configuration where the separation between
transmitting and receiving antenna is of the order of the dominant pulse
wavelength. Indeed a number of studies, particularly in the last decades,
observed systematic variations of the GPR direct-wave peak-to-peak am-
plitude with the degree of saturation of concrete [59, 60, 61]. Actually, it
is expected that changes in amplitude, shape, and time duration of the
GPR received signals should occur, since the ground-coupled antenna
parameters are sensitively affected by the electromagnetic properties of
the underlying media and the overall environment. A number of labo-
ratory experiments supported such indications, emphasizing different
cases in which the ground-medium dielectric constant and conductivity
manifestly influence the characteristics of the first direct signal in simple
GPR configurations. In particular, with close ground-coupled antennas,
a high degree of correlation was found between the shallow-soil per-
mittivity and the instantaneous amplitude of that portion of the signal
where the air and ground waves partially overlap and are not still clearly
separated (that is just referred early time signal or ‘ETS’ in short). It
was experimentally tested that dielectric-constant variations affect am-
plitude, shape and duration of the first-arrival GPR signals, whereas
changes in soil conductivity mainly alter their amplitude [63, 64]. How-
ever, there is a complex dependence of the signal properties on the GPR
scenario that can be chosen, involving the type and radiative properties
of the antennas, the setup geometry (e.g., the location of the Tx/Rx
elements), the characteristics of the transmitted signal waveform and
relevant frequency spectrum, the EM contrast of the media, and their
dispersion and loss effects. If an effective quantitative assessment of the
technique is searched for, it looks therefore essential to investigate such
problem extensively by means of accurate EM numerical approaches.

Theoretical analyses could confirm these overall behaviors, even
though a number of significant approximations and simplifications were
necessarily required in the EM problem modeling. Indeed, some details
have been recently examined in [65], where under certain hypotheses
and conditions, a solution of the frequency-domain integral modeling
the problem has been introduced. In particular, also a closed-form
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solution of the inverse Fourier transform requested to go back in the time
domain has been presented. Basically, introducing strong approximation
on the operative frequency and on the distance between transmitting
and receiving antenna, the follow closed form expression connecting
the instantaneous amplitude of the direct wave with soil EM parameters
has been obtained

Aair−wave =

√
ε0µ0

2π(ε2 − ε0)d2

Aair−wave =

√
ε1µ0

2π(ε2 − ε0)d2 e−
1
2

√
µ0√
ε1

σ1d
(5.1)

where σ1 and ε2 are the conductivity and the permittivity of the medium
under analysis and d is the antenna separation. It is interesting to note
that the exponential term in the second equation expresses the evanes-
cent nature of the groundwave, moving away along the direction normal
to the surface. Incidentally, in this work also information about the por-
tion of the time-domain signal that is more suitable to correlate with the
EM parameters has been discussed. In particular, it has been found that
the first positive half cycle of the ET signal may represent the best choice
for the instantaneous amplitude evaluation, allowing us to maximize the
SNR and minimizing interferences from reflection caused by shallow
interfaces.

Equations (5.1), showing an inverse relationship between the early-
time amplitude and the soil permittivity, will be further investigated in
the following by extensively developing a simulation setup of a realistic
scenario. By means of a suitable implementation on a commercial CAD
tool, wide-ranging efficient surveys will be conducted; this enables us
to identify which are the more revealing signal attributes able to give
predictable correlation with the ground permittivity and conductivity
values, and also if alternative and more accurate functional relations can
be outlined among the involved parameters. Novel reliable information
are thus achieved on the effective potentiality of the ETS technique for
various geophysical applications.

5.1.1. Complex trace analysis
The amplitude information on the collected pulse can be extracted

from the ET signal through a so-called complex trace analysis; it can
be applied to computing both the average value over a selected time
window or more simply the instantaneous value at a fixed time. This
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method is based on the Hilbert transform, that basically is defined as
the imaginary part of a time domain signal whose negative part of
the spectrum has been suppressed. Namely, being s(t) a time domain
signal (for the case at hand it will be the GPR trace), we define Sa( f ) as
the spectrum of s(t) with a suppressed negative frequency contribute;
transforming back in the time domain we introduce the so-called analytic
signal, that is related to the starting signal as follow [66]

sa(t) = s(t) + jh(t) (5.2)

here h(t) is the Hilbert transform of s(t). Generally speaking, discarding
negative frequency components of the involved signals does not cause
a loss of information, but induces us to deal with a complex-valued
function. This procedure makes certain attributes of the signal more
accessible and facilitates the derivation of modulation and demodula-
tion techniques. As long as the manipulated function has no negative
frequency components (i.e., it is still analytic), the conversion from com-
plex back to real can immediately obtained discarding the imaginary
part. Additionally, since sa(t) is a complex signal, it can be expressed in
polar for as

sa(t) = A(t)ejφ(t) (5.3)

where

A(t) = |sa(t)| =
√

s2(t) + h2(t)

φ(t) = ∠sa(t)
(5.4)

These functions are respectively called the instantaneous amplitude en-
velope and instantaneous phase of the starting signal s(t). Specifically,
the instantaneous envelope is usually a slow varying function, ranging
from zero and the maximum amplitude of the collected trace, containing
information on the true resolution of the data.

In Fig. 5.2(a-b) a typical GPR waveform is reported. The bold line
highlight the portion of the signal that can be considered and related to
the EM properties of the probed medium. In addition, in Fig. 5.2(c-d)
the relevant instantaneous envelope have been reported: the averaged
value of the bold portion or more simply the instantaneous value can be
considered and elaborated to estimate permittivity and conductivity of
the investigated medium.
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(a) (b)

(c) (d)

Fig. 5.2. Typical GPR signals gathered for ETS analysis. (a) Ricker waveform vs. time,
with its ‘onset’ (bold line in the picture on the left) and ‘first half cycle’ (bold line in the
picture on the right); (b) relevant instantaneous ‘envelope amplitude’, again for the ‘onset’
(left) and ‘first half cycle’ trace (right). Copyright © 2017, IEEE.
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5.2. Laboratory scale experiments

As discussed so far, the ET approach is based on the amplitude
analysis of the first portion of the GPR waveform using a fixed-offset
ground-coupled antenna configuration, where the Tx and Rx antennas
are separated by a distance comparable with the dominant wavelengths
of the transmitted signal. In this section some results obtained by chang-
ing in a controllable way the electromagnetic conductivity of the probed
medium will be presented; measurements carried out with controllable
variations of the permittivity are not yet available, but some interest-
ing results developed in an open test site have already been described
in [64]. Indeed, the change of the permittivity of the medium under
analysis through a reliable and low-cost method requires rather compli-
cated procedures, whereas, as will be outlined in the follow, it has been
possible to merely control the conductivity variations by acting on the
potassium-chloride concentration (KCl) of a porous material.

The data presented in the following were collected again by col-
leagues of the Earth and Space applied physics laboratory of the ‘Rome
Tre’ by using a bistatic radar unit manufactured by Sensors and Soft-
ware Inc., equipped with 1 GHz shielded antennas and having 7 cm
center-to-center antenna separation. The analyses were performed in a
specifically designed laboratory-scale test site (see Fig. 5.3), to remove all
the factors that can affect the antenna/material coupling (e.g., large-scale
roughness of the surface, lateral inhomogeneities in the solid matrix,
lateral permittivity variation), except for the influence of the electric
conductivity whose effects are specifically investigated. To this purpose,
measurements were performed on a homogeneous porous material, a
0.35 m× 0.35 m× 0.17 m box filled with glass beads (the same medium
for the analysis described in the chapter, having bead radius ranging
to 400 − 800 µm), saturated with deionized water, changing every time
the potassium-chloride (KCl) concentration (i.e., the conductivity) and
measuring variations using TDR, as illustrated in Fig. 5.4. For this
purpose data were acquired using a three-pronged probe having a rod
length of 15 cm. The probe was connected through a 50 Ω coaxial line
to a Tektronix 1502C cable tester (Tektronix, Inc.), which applies a step
function wave front and measures the signal reflected by the impedance
discontinuities. The TDR data give minimum and maximum conductiv-
ities of 0.0061 ± 0.0004 S/m and 0.21 ± 0.01 S/m, respectively, as shown
in Fig. 5.5, where the conductivity values are presented with respect to
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Fig. 5.3. An experimental laboratory setup for the analysis of ETS features, developed
at the applied geophysical lab of ’Roma Tre’ University. An air/dielectric environment
is investigated by means of a simple commercial GPR system with interfacial fixed close
antennas. The ground dielectric constant and conductivity can be changed in controllable
ways. Copyright © 2016, IEEE.

Fig. 5.4. TDR measurement setup to control the conductivity variation due to change on
the Kcl concentration. Copyright © 2017, IEEE.
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Fig. 5.5. The TDR-derived electrical conductivity as a function of salt (KCl) concentrations
in a porous sandy soil, for all the measurements. Copyright © 2016, IEEE.

the saline concentration applied to the porous material. Through the
use of the same instrument, for each set of measurement, it has also been
verified that the relative dielectric constant does not significantly change,
being always almost equal to εrTDR = 28.9 ± 0.3. This averaged value
of the TDR-derived permittivity was also compared with that derived
through the GPR survey, which was determined from the two-way travel
(TWT) time according to standard procedures. It is important to note
that at the bottom of the test site a metal sheet was placed (clearly visible
in Fig. 5.3) to precisely detect the arrival of the GPR reflected signals.
Therefore, to extract the permittivity information from the collected data,
the cross-correlation function between the direct and reflected wavelet
envelopes [67] has been calculated, determining a permittivity average
value of εrG PR = 29 ± 2.

As already discussed in section 5.1.1 a robust method for extracting
the early-time amplitude information is through the use of the complex
trace analysis. As an example in Fig. 5.6 a single collected trace is pre-
sented together with its instantaneous envelope; also the signal reflected
from the bottom of the medium under analysis is clearly visible and
well positioned in time with respect to two-way path in the glass beads
medium. Again, in Fig. 5.7 the traces collected for different values of
the conductivity variation has been presented. It is observed that, as
σ increases, the overall signal mainly decreases in its amplitude, even
though the sensitivity of such variations does not look very high. To
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Fig. 5.6. Example of a GPR acquired trace (solid line) and relevant envelope amplitude
(dashed line). The bold portion of the curve represents the first half-cycle, while the
reflection from the bottom of the investigated medium is highlighted by the red dashed
line. Copyright © 2016, IEEE.

Fig. 5.7. GPR traces collected by the receiving antenna for different KCl concentrations
(i.e., conductivities), with our the experimental setup. In the legend the term ‘sat’ refers
to the deionized water, while KCl1 to KCl7 refer to the lowest and the highest value of the
potassium-chloride concentration. Copyright © 2017, IEEE.

Fig. 5.8. Relevant instantaneous envelope for the signals presented in Fig. 5.7. Copyright
© 2016, IEEE.
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Fig. 5.9. Maximum envelope value of the reflected wave as a function of the corresponding
conductivity values derived from the TDR measurements. The curve is the exponential
data fitting. Copyright © 2016, IEEE.

better understand the variation of the instantaneous amplitude of the
collected traces, in Fig. 5.8 the relevant envelopes with respect to the
signal presented in Fig. 5.7 have been shown. As expected, this analysis
allows for clearer detection of the ealry-time signal features (see Fig.
5.2). To quantitatively compare these data, the degree of the exponen-
tial correlation between the GPR averaged envelope maximum of the
first half-cycle and the TDR-derived conductivities has been estimated:
an exponential function clearly represents both the experimental data
(r = 0.95), and the simulated data (r = 0.99). The variations of the elec-
trical properties of the material can be also cross-checked by analyzing
the reflected wave from the investigated medium bottom. Fig. 5.9 shows
the exponential attenuation that conductivity causes in the GPR wave
propagation.

5.3. Numerical setup
To develop an effective quantitative assessment of the proposed novel

technique, it looks essential to extensively investigate the problem by
means of accurate EM numerical techniques. As discussed in the in-
troduction, this issue is faced mainly here by developing a synthetic
setup based on an efficient and accurate implementation of a full-wave
time-domain CAD simulator, CST Microwave Studio as already used in
previous chapter. In this way, systematic and comprehensive parametric
analyses are possible, aimed at establishing rigorously the functional
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Fig. 5.10. The synthetic setup based on a EM software tool. Implementation of a GPR
system for the simulation of ETS. The scenario consists of two half-space media (e.g., an
air/soil environment, described by the EM parameters εr , µr , σ) where a close fixed bistatic
ground-coupled Tx/Rx antenna system is located. Standard or resistively loaded folded
dipoles are chosen in this case to simulate a commercial GPR antenna system.

relations between the ground-soil permittivity features and the most
significant ETS attributes. In the basic GPR configuration of our interest,
we are referring to a two half-space environment (that is generally air for
the upper medium and an unknown dielectric for the lower medium),
with a fixed ground-coupled Tx/Rx antenna system having electrically
small mutual separation (in terms of dominant signal wavelengths).
Specifically, our synthetic setup (see a sketch in Fig. 5.10 and section
4.3) allows us to design a bistatic antenna, to choose the input signal
waveforms and, above all, to vary the probed medium EM parame-
ters (including loss and dispersive effects too). Thus, thanks to this
suitable implementation of the EM software tool, in conjunction with
the experimental experience gained for this kind of approach, it has
been possible to extensively analyze our numerical problem. Since, as
emphasized, we are interested in deeply analyzing the effects of the
antenna position and of the various involved physical parameters with
respect to the fundamental features of the received signals in quick and
flexible way, this numerical approach gives us the possibility of several
efficient, versatile, and inexpensive analyses. In the next subsection, we
will begin from the analysis of the collected trace obtained by suitable
changing the distance between Tx and Rx antenna, in order to roughly
understand what are the configuration that provide a clear overlap be-
tween the air and ground wave. Indeed, as discussed in section 5.1, this
represents an essential requirement to extract reliable information from
the instantaneous amplitude of the early time signal.
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Fig. 5.11. Received signal for the numerical model of the GPR surveys. εr = 3.2 is fixed,
variable offset is considered (see label). It is clearly visible that the air-ground waves are
always overlapping. Copyright © 2016, IEEE.

Fig. 5.12. Received signal with our numerical model. εr = 10 for various antenna offset
distances, ranging from d = 14 cm to d = 28 cm (see label). It is clearly visible that already
starting from the lower distances, the air-ground waves are always separated. Copyright
© 2016, IEEE.

5.3.1. Air/ground waves analysis
When an electromagnetic pulse is transmitted by a source placed at

an interface between dielectric media, since the wave velocity depends
on the permittivity of the medium, in a certain position and for a fixed
time two different wavefronts may be distinguishable. However, if the
permittivity or the offset is not large enough, this two contribute may be
still overlapping. The main goal of this section consists in giving some
quantitative information about this issue. A first representative example
of a simulated configuration is shown in 5.11 where various collected
signals have been reported for εr = 3.2 (as usual, a common value for
dry soils, equal to the glass beads used in the laboratory setup) and
three different offsets of the antenna system. It very interesting to note
that even for d = 28 cm (light gray in the picture), a single well-defined
pulse is visible, indicating that the two waves are still overlapping. In
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Fig. 5.13. Received signal with our numerical model. εr = 20 for various antenna offset
distances, ranging from d = 14 cm to d = 28 cm (see label). It is clearly visible that now
the air-ground waves are always separated. Copyright © 2016, IEEE.

Fig. 5.14. Received signal for the numerical model of the commercial GPR antenna. For
d = 7 cm and εr ranging from 1 to 20 the air-ground wave are always overlapping.
Copyright © 2016, IEEE.
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the following figures (5.12, 5.13), the same configurations have been
considered for larger value of the soils permittivity: starting from d = 14
cm the two signals are already clearly separated and are also inversely
polarized, as demonstrated and discussed in [68].

For all the presented plot, progressive shape variations of the wave-
forms are clearly visible. Also, the main distinctive feature of this tech-
nique, that is the overall decreasing of the ETS amplitude as εr increases,
is anyway confirmed. Fig. 5.14, instead, summarizes the behavior for
d = 7 cm, showing different traces for the values of dielectric constant
considered so far (i.e., εr = 3.2, 10 and 20). The influence of εr on the col-
lectedwaveforms is clearly visible: even for the largest value (i.e, εr = 20,
light gray curve), no separation for the two contributes is detected and
the ETS attributes can be quite clearly revealed.

As expected, the results shown in this section allow us to state that for
distances between Tx and Rx antenna less than the relevant wavelength
(equal to 30 cm for this case, d = 7cm thus d ∼ λ/4), the collectedwaves
are always fully overlapping, even for rather large values of the dielectric
constant. Consequently, in the next section we will always consider this
offset as starting value, that is actually the one exploited for the available
GPR commercial systems. As anticipated by the experimental analysis,
these results give us a first numerical confirmation that the ETS features
are strongly dependent on the permittivity variations and on the location
of both transmitting and receiving antennas.

Fig. 5.15. Simulation results of ETS for a ground-coupled radar system having Tx/Rx
λ/2 dipoles designed at the central frequency f = 1 GHz (dipoles fixed with mutual
offset d = 7 cm and elevation above the interface h = 1 cm), using a suitable Gaussian
modulated pulse as an input signal. The waveforms of the output signal (V) vs. time (ns)
for a number of different εr of the ground medium have been presented (see labels).
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Fig. 5.16. As in Fig. 5.15 but applying a Ricker pulse as input signal. Again the waveforms
of the output signal (V) vs. time (ns) for a number of different εr of the ground medium
have been presented (see labels).

(a)

Fig. 5.17. Relevant overall signal amplitude envelope of the received signal A (V) vs. time
(ns) for a Gaussian pulse as input signal. Copyright © 2016, IEEE.

Fig. 5.18. Relevant overall signal amplitude envelope of the received signal A (V) vs. time
(ns) for a Ricker pulse as input signals. Copyright © 2016, IEEE.
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Fig. 5.19. Collected signals for a modulated Gaussian pulse ( fc = 1 GHz, BW = 0.5 GHz,
d = 7 cm) and different values of the permittivity (see legend).

5.4. Parametric analyses
The choice of the input signal waveforms is also related to the char-

acteristics of the antenna type. In connection with the time-domain
waveform and relevant spectral features of the chosen signal (Ricker,
Gaussian pulse, etc.), the antenna frequency characteristics have to be
evaluated in terms of input matching (return loss) and field distribution
(radiation patterns).

These aspects are further complicated because in our scenarios the
system typically works in inhomogeneous environments (i.e., the an-
tenna features can be sensitively modified by the ‘loading’ due to the
interfacial ground medium) and the radiation pattern is not as regular
as in far-field conditions (the Tx/Rx antennas can be strongly coupled
through involved near-field effects). As an example, we report the ETS
characteristics simulated for a pair of typical pulse signals used in GPR
instruments: a Gaussian modulated pulse in Fig. 5.15, and a Ricker
pulse in Fig. 5.16.

Both the received signal and relevant amplitude attribute are dis-
played, as different ground dielectric constant εr are chosen for a fixed
antenna geometry (see relevant figure captions). In order to emphasize
the influence of the antenna type, these results are derived for a Tx/Rx
system based on a pair of half-wavelength dipoles (at a center frequency
f = 1 GHz and an overall bandwidth BW= 1GHz as well). The fact that
such radiating elements are basically resonant (if not properly improved
in terms of bandwidth through proper loading or other techniques, see
Chapter 3 for more details) is emphasized bymarked ‘ringing’ behaviors
of the gathered time-domain waveforms in both cases (see again Figs.
5.15 and 5.16).



114 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

Fig. 5.20. Instantaneous envelope of the received signals (modulated Gaussian pulse,
fc = 1 GHz, BW = 0.5 GHz, d = 7 cm) and different values of the permittivity (see
legend).

In Fig. 5.17 and 5.18 the relevant instantaneous envelope amplitude
have been reported of the two set of signals presented in Figs. 5.15
and 5.16 to better highlight the sensitivity of the signal amplitude with
respect to the permittivity of the probed medium. As expected, at a first
glance it is clearly visible that the amplitude decreases for increasing
values of the permittivity with a non-linear behavior. This is fully in
agreement with the frequency-domain analysis on the near-field distri-
bution developed in Chapter 1 for interfacial elementary sources.

Just as a further example in Figs. 5.19 and 5.20 the signals and the
relevant envelopes obtained by considering as excitation a Gaussian
pulse having the same carrier frequency but a different bandwidth have
been presented. All the considerations made previously are confirmed.

After having examined various fundamental issues so far neglected
in the analysis of ETS approach, we focus now our attention on the
distinctive feature of the method, that is the functional relationships
between ETS amplitude and dielectric constant. Based on our synthetic
model, in the following we illustrate various behaviors of different ETS
attributes as a function of εr (the range of values spans continuously
between 1 and 20). In particular, Fig. 5.21 reports the results for the
Ricker pulse, whereas Fig. 5.22 for the Gaussian modulated pulse.

According to the standard definitions and procedures on ETS (see Fig.
5.2 and related comments) and referring to the relevant figure captions,
for both Figs. 5.21 and 5.22, different signal attributes are displayed,
considering the ETS amplitudes of the ‘onset’ (‘-OA’) and of the first
‘envelope’ (‘-EA’), both for its ‘maximum’ (‘M-’) and for its ‘average’
values (‘A-’). In Fig. 5.23 and 5.24 also the influence of the offset d is
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Fig. 5.21. MEA and MOA for a fixed distance between Tx-Rx antenna (Ricker pulse, d = 7
cm). Copyright © 2016, IEEE.

Fig. 5.22. MEA and MOA for a fixed distance between Tx-Rx antenna (Gaussian pulse,
d = 7 cm). Copyright © 2016, IEEE.

Fig. 5.23. MEA and MOA for a various distances between Tx-Rx antenna (see legend,
Ricker pulse, h = 1 cm).

Fig. 5.24. MEA and MOA for a various distances between Tx-Rx antenna (see legend,
Gaussian pulse, h = 1 cm).
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Fig. 5.25. Behavior of the maximum envelope amplitude with respect to permittivity
variations (Ricker pulse, h = 1 cm). It is clearly visible that for the considered range the
link is not linear. Copyright © 2016, IEEE.

Fig. 5.26. Behavior of the maximum envelope amplitude with respect to permittivity
variations (Gaussian pulse, h = 1 cm). As for the Fig. 5.25 in the considered range the
link is not linear. Copyright © 2016, IEEE.

also taken into account (different curves for d = 7, 14, 28 cm).

As a basic comment, it is seen that, even though an inverse relation-
ship between early-time amplitudes and permittivity always occurs, the
actual functional dependence between these quantities is not related
to the simple formulas [65] presented in equations (5.1). In particular,
the dependence of any ETS amplitude A on εr is not a simple inverse
proportionality (i.e., of the type 1/εr). This can be verified by plotting
as in Fig. 5.25 and Fig. 5.26 the quantity A · εr as a function of εr and
noting that this curve is not at all a constant. Only for the envelope peak
of ETS and for quite high values of dielectric constant (greater than 10)
this simple rule can be seen approximately useful.
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Fig. 5.27. Behavior of the maximum envelope amplitude with respect to permittivity
variations for different height of the antenna from the interface (Gaussian pulse, d = 7
cm). It is clearly visible that the MEA, for higher value of εr , is sensitive to the value of h.
Copyright © 2016, IEEE.

5.4.1. Numerical analysis on alternative parameters
Various additional issues, so far quite disregarded but that can in-

stead suitably accounted for in our analysis, are further addressed in
this section. One of the significant aspects is the ETS sensitivity with re-
spect to Tx/Rx antenna location. In addition to their offset, even though
in ground-coupled configurations the antennas are very closed to the
interface, another variable geometrical parameter that can deeply affect
the features of the received signal is the vertical height (elevation) h of
the antennas from the surface. Indeed, the waveforms are very sensitive
even to small elevation from the ground, due to the presence of unde-
sired excitation of spurious reflections. From the analytical side this
problem is rather complicated and in our context we show just some
numerical representative effects of this issue. An example of the degree
of influence of the antenna elevation h on the ETS attributes is calculated
in Fig. 5.27. It is seen that the curves of the amplitude maintain an
overall typical decaying behavior as εr increases, and in general tend
to rise as h is raised as well (the interval for h is here from 0.5 to 2 cm).
This interesting property, related to different coupling effects close to the
interface, can be suitably interpreted: for low values of the permittivity
the dominant wavelength of the transmitted pulse is still large enough
to ‘see’ the antenna as perfectly coupled to the ground, whereas as εr

increases the distance h from the surface is not more negligible and the
amplitude of the collected signal can be sensitive even to small varia-
tions of the distance. Anyway, this qualitative information could be very
useful in order to improve the overall understanding of the problem at
hand. Additional studies have also been carried out in order to evaluate
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Fig. 5.28. Behavior of the signal energy with respect to permittivity variations for different
antennas separation (Gaussian pulse, h = 1 cm). Copyright © 2017, IEEE.

Fig. 5.29. Behavior of the signal energy with respect to permittivity variations for different
antennas separation (Ricker pulse, h = 1 cm).

attributes that are alternative with respect to the time-domain ampli-
tude of ETS. Among these, for instance, the overall ETS energy has been
evaluated and correlated to the dielectric constant. An example of this
behavior is reported in Fig. 5.28 and 5.29, respectively for a Gaussian
and a Ricker pulse. The dependence of the signal energy on the dielec-
tric constant is qualitatively similar to what already recognized, even
though the rate of decaying is different, as expected. In particular, it is
confirmed that the antenna offset d is rather critical, since the amount of
energy is quickly decaying when the mutual distance of the antennas
raises significantly. As already reported in Fig. 5.27, it is interesting to
analyzed the behavior of the signal energy with respect to the antenna
distance from the interface. In Fig. 5.30 again a parametric analysis
has been considered, showing as expected that for lower values of the
permittivity the energy is not sensitive to the distance, whereas starting
from εr = 6, the dominant wavelength becomes small enough to ‘see’
even small value of h.
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Fig. 5.30. Behavior of the signal’s energywith respect to permittivity variations for different
height of the antenna from the interface (Gaussian pulse, d = 7 cm).

Fig. 5.31. The synthetic setup based on a EM software tool. Implementation of a GPR
system for the simulation of ETS. The scenario under analysis consisting of two half-space
media (e.g., an air/soil environment, described by the EM parameters εr , µr , σ) where a
close fixed bistatic ground-coupled Tx/Rx antenna system is located. Resistively loaded
folded dipoles are chosen in this case to simulate a commercial GPR antenna system, as
that of Fig. 5.3. Copyright © 2016, IEEE.

5.4.2. Numerical model of a GPR commercial system
By starting from the numerical setup described in the previous sec-

tions and comprehensively tested to develop numerical analysis on the
Early-Time technique, an ad-hoc numerical model of a GPR commercial
system has been suitably designed. As already discussed in Chapter
3, most of standard GPR systems are equipped with simple cylindri-
cal or printed dipoles. However, in order to improve the impedance
bandwidth, even though this kind of solutions entails a loss of efficiency
and consequently of penetration depth, a certain distribution load along
the profile has been considered. Thanks to an ad-hoc design and a
comprehensive optimization procedure, a very good results shown in
Fig. 5.32 has been obtained, where also the gathered numerical trace
(solid lines), evaluated in the already presented experimental scenario
(dashed lines), is shown and compared. If we take into account that
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(a)

Fig. 5.32. Behavior of a time-domain signal waveform measured by the GPR in the experi-
mental configuration of Fig. 5.31, emphasizing the direct wave (ETS contribution) and the
first reflected wave due to the presence of a bottom metal sheet. The measured traces are
in dashed lines. The received waveform (signal voltage amplitude A vs. time t), given by
a Ricker pulse in an air/sand environment and a metallic reflecting surface on the bottom
of the enclosing box. Copyright © 2016, IEEE.

a number of uncertainties and idealization are present (related to the
incomplete knowledge of the specifics of the commercial instrument),
the agreement between experiments and simulations looks excellent.
Indeed the received traces are very well superimposed, as regards time
location and amplitude of the ripples, both for the direct ETS portion
and for the reflected contribution. In Fig. 5.33, the matching between
measured and simulated frequency spectrum of the signal is also re-
markable. It is worth to note that the commercial instrument considered
so far is, as said, a TR1000 system manufactured by Sensors&Software,
equipped with a fixed offset bistatic antenna (d = 7 cm, fc = 1 GHz).
Nevertheless, also other GPRs, belonging to the same series, have been
numerical designed and tested. Having available an accurate and effi-
cient model of the considered GPR bistatic system, various numerical
analyses have been carried out, by introducing parametric variation
of the most important involved quantities and of the electromagnetic
properties of the dielectric half-space.

A first general result that confirms the theoretical basis introduced
and discussed in the previous section is reported in Fig. 5.34.

Specifically, parametric simulations changing the dielectric constant
of the probed medium (εr variable from 1 to 20 in step of a unity) have
been shown. To make clearer the presentation of the picture, only a
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Fig. 5.33. Signal’s spectrum for the waveform presented in Fig. 5.32. See legend for the
relevant details. Copyright © 2016, IEEE.

Fig. 5.34. Collected signals for a Ricker pulse radiated through the numerical model of the
TR1000 commercial system ( fc = 1 GHz, d = 7 cm) for different values of the permittivity
(see legend).

Fig. 5.35. Instantaneous envelope of the received signals (Ricker pulse TR1000, fc = 1
GHz, d = 7 cm) and different values of the permittivity (see legend).
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Fig. 5.36. MEA and MOA for a fixed distance between Tx-Rx antenna (TR1000 Ricker
pulse, d = 7 cm).

Fig. 5.37. Behavior of the maximum envelope amplitude with respect to permittivity
variations for different height of the antenna from the interface (TR1000 Ricker pulse,
d = 7 cm). It is clearly visible that the MEA, for higher value of εr , is sensitive to the value
of h.

limited set of results are reported; as expected, a good sensitivity of
the instantaneous amplitude of the collected signals can be observed,
whereas air and ground wave are overlapping.

Relevant instantaneous envelope are shown in Fig. 5.36, allowing us
to assess the true resolution of thewaveforms, both in terms of amplitude
variation and time occupation. According to the standard definitions
and procedures on ETS (see Fig. 5.2) and referring to the relevant figure
captions, in Figs. 5.36, different signal attributes are displayed. As a
fundamental comment, once again it is seen that, even though an inverse
relationship between early-time amplitudes and permittivity always
occurs, the actual functional dependence between these quantities is
not related to simple formulas, as supposed so far [65]. To complete the
scenario in Fig. 5.37 and 5.38 the behavior of the maximum envelope
amplitude with respect to permittivity variations for different height
and the behavior of the signal energy for a number of heights of the
antenna from the interface have been reported.
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Fig. 5.38. Behavior of the signal energy with respect to permittivity variations for different
height of the antenna from the interface (TR1000 Ricker pulse, d = 7 cm).

Fig. 5.39. Behavior of a time-domain signal waveform measured by the GPR in the experi-
mental configuration of Fig. 5.3, emphasizing the direct wave (ETS contribution) and two
reflected waves due to the presence of a metal sheet and air discontinuities (see legend).
The measured traces are in dashed lines. The configuration is the same as in Fig. 5.32, but
the ground medium has been saturated with ionized water (εr = 29).

The same trends outlined in the previous section are confirmed; the
numerical model presented here, in conjunction with all the reported
results, has allowed to predict and analyze the behavior of early-time
attributes in real operative conditions.

5.4.3. Numerical analysis of the loss effects
The experimental results obtained by changing the conductivity of

the medium under analysis, discussed in the previous section, has also
been simulated by means our implementation on the electromagnetic
tool. Some results of the signal traces deriving from this simulated
environment, as a function of various conductivity values, are presented
in Fig. 5.41. From comparisons between themeasured and the simulated
traces, together with their related envelopes, it is confirmed that the sig-
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Fig. 5.40. Comparison between time-domain signal waveforms measured by the GPR
in the experimental configuration of Fig. 5.3 and simulated with our setup in Fig. 5.31,
emphasizing the direct wave (ETS contribution) and the first reflected wave due to the
presence of a bottom metal sheet. The configuration is the same as in Fig. 5.32, but the
ground medium has been saturated here with ionized water (εr = 29).

Fig. 5.41. Simulated time-domain ETS traces as themedium conductivity is varied through
different saline concentrations (KCl) in a water solution, as in the experiments. The
subsequent time signal replica is related to the location of a bottom metal screen.
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Fig. 5.42. Simulated behaviors of ETS ‘alternative’ attributes: the ‘carrier frequency am-
plitude’ (CFA) vs. εr . The development of suitable interpolation formulas leads to good
fitting and prediction of the ETS.

nal amplitudes are consistently affected by the conductivity variations.
In these cases, apart from an overall distortion on the gathered trace
shape principally related to dispersion for the presence of the water, it
is confirmed that the main effect of increasing losses is just on a rela-
tively limited reduction of the signal amplitude. The relevant behaviors
of simulated traces for the chosen GPR instrument show again good
matching. In fact, the simulated results of Fig. 5.41 agree quite well with
those obtained experimentally (see details in Fig. 5.7 and the relevant
caption).

5.4.4. Frequency domain elaboration
By proper processing the time-domain data of the traces in the spec-

tral domain, we have also investigated the amplitude of the received
signal carrier frequency, as a possible additional ETS observable. An
example of the relevance of such analysis is provided referring to the
analysis of both permittivity and conductivity effects; as a conclusion
of the present study the frequency-domain behaviors of measured data
will be provided.

The last considerations refer to the study of other unconventional
observable parameters for possible improvement of the sensitivity of
the ETS approach and also for proper derivation of useful interpolation
formulas able to well predict these behaviors. In fact, if we refer to the
spectral content of the signals, it is interesting to monitor the magnitude
of the Fourier-transformed (FT) signal at the central operative frequency
(what we call here ‘carrier frequency amplitude’, CFA in brief), as a pos-
sible descriptive parameter of the main feature of the gathered ETS. This
can be easily performed by standard FT processing of the time-domain
data (either numerical or experimental ones). It is seen that such alter-
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Fig. 5.43. Behavior of the interpolation formulas in equation (5.5).

native attribute presents dependence on the physical and geometrical
parameters that is basically similar to those of other observable quan-
tities, but in tested situations the functional relationships look more
regular and better predictable. This characteristic can be related to the
main signal properties summarized by the carrier frequency, possibly
less sensitive to the overall dispersion effects in the investigated scenario.
An example of this study is given in Fig. 5.42 for data from the synthetic
setup. The curves vs. dielectric constant are given for the usual ETS
envelope and for the carrier amplitude. It is manifest a more regular de-
caying of CFA as εr increases. It is important to note that such consistent
behavior makes the derivation of interpolation formulas much simpler.
As an example of data fitting, the excellent matching with CFA is also
illustrated in Fig. 5.43, according to an empirical formula as a function
of the dielectric constant, given by the following closed-form expression
of algebraic type:

CFA =
a

b + cεr + dεr
(5.5)

where in this case: a = 0.43, b = 5, c = 0.48, d = 0.044. In addition
to the benefit of achieving valid fitting expressions for the data related
to a chosen GPR setup, it should be also emphasized that this method
can take advantage of well consolidated approaches that are performed
directly in the frequency domain (i.e., in harmonic regime) for canoni-
cal Tx/Rx systems of interfacial antennas (particularly, dipoles). Even
though these approaches require various approximations and simplifi-
cations, the empirical formulas derived through our numerical study
give the significant possibility of testing their degree of accuracy and
addressing perspectives for improved functional relationships.

The frequency-domain analysis of ETS traces can be accomplished
also for the study of the effects of conductivity. The last example of Fig.
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Fig. 5.44. Evaluation of the measured behavior of the Carrier Frequency Amplitude
(CFA) as an alternative ETS observable quantity, compared with the Maximum Envelope
Amplitude (MEA), for a lossy case (different value of a KCl concentration, as in Fig. 5.7).
CFA shows a more regular and wide sensitivity with respect to the conductivity variations.
Copyright © 2016, IEEE.

5.44 refers again to the changes of salt concentration in the porous mate-
rial discussed in Section 5.2. The carrier amplitude analysis is applied
in this case directly to the data from measurements (see Fig. 5.41). It
is interesting to note that, with respect to the already considered maxi-
mum envelope amplitude (MEA), the CFA behavior looks again more
regularly sensitive to the variation of conductivity, with the consequent
considered advantages.

5.5. Conclusion
In this chapter, the early-time signal, that is the first-arrival wave col-

lected by a bistatic ground-coupled radar in simple configurations with
close fixed antennas, has extensively been tested as a possible advanta-
geous alternative method for monitoring and mapping the permittivity
properties of shallow surfaces at small and intermediate scales. This
study has shown that, in spite of its conceptual simplicity, the determi-
nation of the most effective observable quantities and, above all, the
predictability of the relevant functional relationships, as a function of the
various involved parameters, represents a rather difficult task to be tack-
led. Suitable experimental and numerical setups have been employed
as the most viable strategy for a systematic analysis of this complex
topic. Accurate and wide-ranging parametric surveys have thus been
presented, starting from basic test studies. For the first time, a com-
prehensive and reliable view of the most significant issues influencing
the practical use of such technique has been assessed. In connection
with the revealed dependence of the ETS amplitude on the permittiv-
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ity parameters, it is seen that, for a satisfactory accuracy in evaluating
both dielectric constant and conductivity, initial careful calibration pro-
cedures should be performed for each specific GPR instrument. Fur-
thermore it is observed that, as the permittivity values tend to increase,
the sensitivity of ETS amplitude strongly decreases and can be easily
overwhelmed by strong waveform distortion and environmental uncer-
tainties (noise, clutter, inhomogeneities, etc.). Even though involved
coupling phenomena occur between the Tx/Rx antennas, it is seen that a
‘small offset’ configuration is generally preferable for ETS clear detection.
On the other side, accurate quantitative predictions of the medium EM
parameters have been demonstrated much more delicate and not at all
straightforward. The sensitivity of ETS on the type and location of the
antennas, the input waveform, and other environmental parameters
appear in fact extremely significant and should be treated by means of
accurate implementations of numerical methods. Specific behavioral
trends of observable quantities have thus been highlighted as a function
of different physical and geometric parameters. Particular advantageous
choices of original attributes have also been addressed, which allow
for suitable polynomial interpolations, deriving empirical but accurate
formulas able to adequately evaluate the EM properties of a probed
medium and to check the validity of established approaches based on
the frequency domain. The results of this analysis can provide a first
consistent description both of the potential attractive features and of
the critical aspects of the ETS technique. Future research following the
strategies delineated in this frame can make this original method in-
creasingly useful in specific operative conditions as a valid alternative
to other consolidated approaches.



Part III

Inverse Problems





Introduction

As is well-known the capability of electromagnetic waves to pen-
etrate material objects is dependent on its frequency. Our every-day
experience shows that in the range of the optical frequencies, even if
an excellent resolution can be obtained, it not possible to penetrate
the most common media. On the contrary, frequency lower than few
GHz can penetrate low-loss dielectric materials, giving the possibility
of inspecting the internal nature of the considered object by means of
non-destructive procedures. Generally speaking, when an electromag-
netic wave impinges on an object having arbitrary shape and material,
it induces conduction or polarization currents, that in turn radiates an
electromagnetic field that is dependent on its electrical properties. By
suitable measuring and elaborating this scattered field, one is potentially
able to obtain unique and valuable information on the investigated sce-
nario. The wide class of problems that aims at recovering electrical and
geometrical properties of unknown scatterers embedded in inaccessible
regions illuminated by known primary sources are typically named
as inverse problem. Theoretically, they are said inverse because as they
simply represent the counterpart of a class of the problems, called direct,
that for historical reasons have been extensively studied. However, from
a physical viewpoint, they are not on the same level: the direct problem
is often considered ‘more important’ and for this reason in the past has
attracted the attention of the scientific community much more than the
inverse one. Anyway a very simple definition can be given: an inverse
problem consists in founding an unknown cause (the scatterer in our
case) by starting from known consequences (the measured scattered
electromagnetic field).
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Since we will consider inverse problems in the framework of GPR
applications, we will talk in this part of the present thesis of Microwave
Tomography, being the second term derived from the ancient Greek to-
mos, ‘slice’ or ‘section’ and graphō, meaning ‘to write’. The interest in
Microwave Tomography (MT) techniques arose contextually with the
invention of radar. In fact, by starting from the second half of the 20th

century it has extensively applied in many applicative contexts wherein
non-invasive and non-destructive procedure are required, such as for
instance medical diagnostics [69], geophysical and geological probing
[70], preservation of cultural heritage [71, 72] and monitoring of sub-
surface services [73]-[75].

With regard to general sub-surface applications, MT has demon-
strated to be a valuable tool to detect, localize, and reconstruct buried
objects by starting from GPR data. Indeed, even if a number of different
procedures and algorithms have been already developed [42], they have
shown non-trivial limitations. First of all, since the radargram (i.e., the
most common outcome for a GPR survey) is usually plotted assum-
ing that velocity of the wave in the investigated medium is constant, it
may give rise to misleading results deriving from possible presence of
inhomogeneities. In addition, they are not able to provide exhaustive
information about shape and electric properties of the investigated tar-
get, allowing only detection and rough localization of them; moreover,
its interpretation strongly depends on the user’s expertise and on its
subjective evaluation. Consequently, as can be easily understood from
the above arguments, use of MT technique in the GPR framework, may
lead to a remarkable improvement in the interpretation and evaluation
of the final outcome. For these reasons, this class of topic has been
widely investigated in the past years and various algorithms have been
designed and tested.

It is important to note that, to reconstruct the permittivity profile of
a probed object, a solution of an inverse scattering problem is required,
based on an appropriate model accounting for the electromagnetic inter-
actions between transmitting and receiving antennas, hosting medium
and scattering objects. However, we have to consider that the solution of
the integral equation usually modeling the inverse scattering problem
is not a straightforward task. As a matter of fact, due to particular ana-
lytical properties of the kernel of the scattering operators, the problem
is inherently ill-posed [76]. A definition of this concept and the con-
sequences on the performances will be discussed in the next sections.
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However, various strategies such as the Tikhonov regularization [76]
and other ones aimed at exploiting available a priori information [77]
have been proposed in the past. The solution of the inverse problem is
further complicated by the non-linearity of the relation between data
(i.e., the scattered electromagnetic field from the buried object) and
unknowns (its permittivity or conductivity profiles). Several linearized
models have been proposed in the literature, in the following the Born
approximation [88] will be extensively described. It is worthmentioning
that applying MT techniques on scattered data from the investigated
subsurface to produce images entails many other difficulties. As an
example, when inhomogeneous environments have to be tackled, the
problem is further complicated by the necessity of accounting for the dis-
continuities between different layers and the involved interactions with
the buried objects. In addition, when data are derived by GPR surveys
one has to face with a reduced illumination, that strongly shrinks the
amount of information in the data. Moreover, to completely characterize
the integral equation modeling the problem at hand, one should have
available an analytical model of the antennas that transmit and collect
the electromagnetic field radiated by the objects, as well as the Green’s
function of the problem, which is related to the field scattered by an
ideal point target buried in the considered scenario. In recent times
various authors have extensively analyzed the capabilities of microwave
tomographic algorithms to localize and reconstruct buried objects, both
in idealized condition and in more realistic cases [78]. As a matter of
fact, it has been seen that, while preventing the possibility of obtaining
quantitative information on the dielectric permittivity and electric con-
ductivity of the targets, linear inverse scattering approaches can give
well-focused images of the internal structure of the investigated region
providing reliable information on the presence, location, and shape of
hidden targets.

In this part of the present work, developed in collaboration with
the Institute of the Electromagnetic Sensing for the Environment of
Naples, a well-established imaging procedure has been applied to both
numerical and experimental GPR data presented and discussed in the
previous sections. In particular, we aim at testing the capability of this
kind of algorithm to localize and provide information about shape and
dimension of a buried object in quite challenging operative conditions.
Specifically, we consider here targets having size comparable with the
dominant wavelength and possibly placed in the near-field region of
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the considered antenna. It is worth noting that the electrical parameters
of the considered scenario (permittivity of both hosting medium and
scatterers) are usually chosen to virtually reproduce a shallow Martian
subsurface. Both two-dimensional and three-dimensional versions of
the same tomographic algorithm have been applied, with the aim of
providing useful information also for 3D more realistic cases. In this
way the capabilities of this kind of approach to obtain further useful
information with respect to those retrievable from a typical radargrams
have been fully addressed.

In conclusion, as a further contribution to the Born-approximation
based Microwave Tomography, we investigate here also the potential
improvements achievable by taking into account that in general the
scattering experiment is not activated by an ideal source, as typically
done so far, but through a real transmitting antenna, having its own
radiation pattern. To do this, we exploit our full-wave implementation
(the same developed for the solution of the relevant direct problem) to
numerically model the incident field radiated by the considered antenna.
Hence, several examples are provided to assess the benefits reachable
if the radiation pattern of the antennas is taken into account in the
implementation of the tomographic approach, i.e., in the expression of
the incident field and the Green’s function, which are the key elements of
the imaging problem formulation. Moreover, two figures as the spectral
content and the point spread functions are used to carry out a theoretical
analysis, which allows us to outline some general considerations on
the performance of this advanced approach in terms of reconstruction
capabilities, expected when directive antennas are used.
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6.1. Scattering equation
As is well-known, the interactions between the electromagnetic sig-

nal radiated by a GPR antenna and scattered by a buried target are
governed by the Maxwell equations. Consequently, in order to give an
overall description of this problem, extensively faced in the next sections,
we start here from the very beginning, briefly deriving the scattering
equation. Let us assume that the object illuminated by the GPR antenna
is characterized by a permittivity ε and a permeability µ and is buried
in a homogeneous and infinite medium, in turns characterized by εb

and µb. In this context, in addition to the unperturbed or incident field,
usually denoted by Einc and Hinc, also a perturbed overall field is present,
indicated by E and H. It is important to note that the perturbed field
is the only one that can be measured in the presence of a scatterer, and
that the incident electric (or dually magnetic) field is a known quantity,
that can be expressed in term of the Green function of the problem as
follows

E(r) = jωµ
∫

V
J0(r′) · G(r, r′)dr′ (6.1)

Additionally, the difference between the perturbed field (i.e., the field
when the object is present) and the unperturbed field (i.e., the field
when the object is not present) is called the scattered field, hence we can
write

Es(r) = E(r)− Einc(r) (6.2)
Hs(r) = H(r)− Hinc(r). (6.3)

This means that the scattered field can be related to the presence of a
target and to the interaction between the incident field and the target
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itself. It is finally worth to mention that often the perturbed field E
is named as total fields. As is the case for most of GPR applications, if
the target is unknown, one can deduce some piece of information on
it starting from a set of measurements of the total field, that anyway
can be collected only outside the unknown object, usually along one or
more parallel scan lines. This kind of problem is very challenging and
belongs to the family of the mentioned inverse problems. For a half-space
configuration, typical for GPR applications, the incident field and the
value of εb and µb are assumed known for every r. On the contrary, the
volume V and the distributions of ε(r) and µ(r) are unknown quantities;
of course, the total electric andmagnetic field, E(r) and H(r), are known
quantities only outside the volume V occupied by object. Usually it is
measured at a discrete set of points. It has to be noticed that in most
applications some a priori informations about the objects that one wants
to localize and reconstruct could be available, being essential to limit the
region of space wherein the solution of the inverse problem is searched.
In order to find the equation connecting the scattered field with the
dielectric features of the target in a free space region, we can start by
the integral form of the Maxwell equation (see [1] and [79] for further
details); anyway another interesting strategy, obtained in half-space
conditions by starting from the differential form of theMaxwell equation
can be found in [80]. Considering a surface S (whose unit normals n0)
delimited by a contour C, for a linear, stationary and isotropic medium,
it is possible to write in harmonic regime

∮

C
E(r) · dl = −jω

∫

S
µ(r)H(r) · n0ds (6.4)

∮

C
H(r) · dl = jω

∫

S
ε(r)E(r) · n0ds +

∫

S
J0(r) · n0ds (6.5)

Analogously, the incident field satisfies the following equations

∮

C
Einc(r) · dl = −jω

∫

S
µb(r)Hinc(r) · n0ds (6.6)

∮

C
Hinc(r) · dl = jω

∫

S
εb(r)Einc(r) · n0ds +

∫

S
J0(r) · n0ds (6.7)
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Subtracting the two previous pair of integral equations we have
∮

C
[E(r)− Einc(r)] · dl = −jω

∫

S
[µ(r)H(r)− µb(r)Hinc(r)] · n0ds

(6.8)
∮

C
[H(r)− Hinc(r)] · dl = jω

∫

S
[ε(r)E(r)− εb(r)Einc(r)] · n0ds (6.9)

Thus, according to equation (6.2), we obtain
∮

C
Es(r) · dl = −jω

∫

S
µ(r)H(r)− µb(r)[H(r)− Hs(r)] · n0ds (6.10)

∮

C
Hs(r) · dl = jω

∫

S
ε(r)E(r)− εb(r)[E(r)− Es(r)] · n0ds (6.11)

Now, by introducing the equivalent electric and magnetic sources

Meq(r) = jω[µ(r)− µb(r)]H(r) (6.12)

Jeq(r) = jω[ε(r)− εb(r)]E(r) (6.13)

we can finally rewrite equations (6.10) as follow
∮

C
Es(r) · dl = −jω

∫

S
µb(r)Hs(r) · n0ds −

∫

S
Meq(r) · n0ds (6.14)

∮

C
Hinc(r) · dl = jω

∫

S
εb(r)Einc(r) · n0ds +

∫

S
Jeq(r) · n0ds (6.15)

By comparison of equations (6.4) and (6.14) we can conclude that the
scattered field can be considered to be generated by an equivalent electric
and magnetic density current, both radiating in free space. Such sources
have support coinciding with the space region occupied by scatterers
and depend on their dielectric properties and on the total internal field,
which in turn depends on the incident field. Since we have defined a
new set of source (i.e., Meq and Jeq), recalling equation (6.1) the scat-
tered electric field produced by an object occupying a volume V can be
expressed in integral forms as

Es(r) = jωµb

∫

V
Jeq(r′) · G(r, r′)dr′ +

∫

V
∇× Meq(r′) · G(r, r′)dr′

(6.16)
Let us suppose that the object that we want to localize and reconstruct
is non-magnetic; this means that µ(r) = µ0 and considering equation
(6.12) we deduce that Meq(r) = 0. Consequently, the term on the right
side of equations (6.16) containing the equivalent magnetic current
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density vanishes. We obtain the following simplified expression for the
scattered field

Es(r) = jωµb

∫

V
Jeq(r′) · G(r, r′)dr′ (6.17)

Even though an expression for the scattered electric field is now available,
the problem at hand is not yet solved, since Jeq is related to the total
electric field E and to the permittivity of the target ε, which are both
unknown function (specifically the total field can be known only on
a discrete set of points outside the volume V of the unknown sought
target).

Recalling the first of equation (6.2) and considering (6.17) we can
write the total field as follow

E(r) = Einc(r) + jωµb

∫

V
Jeq(r′) · G(r, r′)dr′ (6.18)

Finally, by using equation (6.12), we can write

E(r) = Einc(r) + jωµb

∫

V
τ(r′)E(r′) · G(r, r′)dr′ (6.19)

where
τ(r) = jω[ε(r)− εb] (6.20)

is the so-called object function. Of course, in (6.19) r′ represents the
point of the unknown volume V occupied by the object. Consequently,
E(r′) is the unknown total field which is penetrated inside the object we
want to localize and reconstruct. In direct scattering problem equations
(6.19) must be solved for any r and the only unknown is the total electric
field vector E. If the shape of the volume V is arbitrary, a solution of
such equation can be obtained only using a numerical method. In the
inverse scattering problem, which is of paramount importance for GPR
applications, E(r) is assumed to be measurable only outside the volume
V. So, equations (6.19) turns out to be a non-linear integral equation,
since both E(r) and r inside the integral are unknowns; in addition, a
variation of τ(r′) produces a variation on the value of the field E(r′). It
is very important to note that, for the scenario considered here, also the
shape of the unknown target is itself not known a-priori. This means
that we do not have detailed information about the volume V occupied
by the scatterer; in those cases, it is usual to define an investigation
domainVi, which bydefinition includes the support (or volume)V of the
scatterer under test. The scattering formulation reported so far concerns
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a general three-dimensional configuration. However, thanks to specific
assumptions about the considered object and on the illumination system,
the imaging procedure can simplified by considering a two-dimensional
scenario. Specifically, if the object to be localized and reconstructed
shows an elongate shape with respect to the space region illuminated by
the source, it can be approximated as an infinite cylinder. Of course, this
is an assumption that should be carefully verified for each application,
but it is highly convenient for many problem faced in this work. In fact,
it allows us to manage a 2D scalar problem and to understand which
kind of information one can obtain keeping the complexity of problem
low. However, in the next also a 3D configuration will be considered,
giving the possibility of analyzing the limitation of the such a simplified
approach. Under this approximation the cross section of the cylinder
can be assumed to be independent of one of the spatial coordinates (e.g.,
the z axis), thus we can write

ε(x, y, z) = ε0εr(x, y)

µ(x, y, z) = µ0µr(x, y)
(6.21)

This means that the 2D object has an arbitrary cross section inside the
xy plane. Moreover, we can assume that the incident field is z-polarized
and uniform along z (TM incident field)

Einc(r) = Eincz(rt)z0 (6.22)

where
r = xx0 + yy0 + zz0 = rt + zz0. (6.23)

Now, for symmetry reasons and for a linear and isotropic medium both
the scattered and the total electric field turn out to be independent of z
and z-polarized, allowing us to write

Es(r) = Esz(rt)z0

E(r) = Ez(rt)z0
(6.24)

Under the previous assumptions equation (6.19) can be rewritten as

E(rt) = Einc(rt) + jωµb

∫

S

∫ ∞

−∞
τ(r′t)E(rt

′) · G(rt, r′)dz′dr′t (6.25)

where S is the cross section of the cylindrical object. Recalling the ex-
pression of the free space dyadic tensor [1]

G(r, r′) = − 1
4π

[
I +

1
k2 ∇∇

] e−jk|r−r′ |

|r − r′| (6.26)
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we have

E(rt) = Einc(rt)+ jωµb

∫

S
τ(r′t)E(rt

′) · [I+ 1
k2 ∇∇

]∫ ∞

−∞

e−jkb |r−r′ |

|r − r′| dz′dr′t
(6.27)

Now, since the following relation hold [1], [123]

G2D(rt, r′t) =
j
4

H(2)
0 (kb|rt − r′t|) = − 1

4π

∫ ∞

−∞

e−jkb |r−r′ |

|r − r′| dz (6.28)

we can finally write the 2D scattering equation

Ez(rt) = Eincz(rt) + jωµb

∫

S
τ(r′t)Ez(rt

′)G2D(rt, r′t)dr′t (6.29)

It is worth mentioning that, when the incident field is a TE field we have
that

Einc(rt) = Eincx x0 + Eincy y0. (6.30)

The problem at hand is still two-dimensional but the vector nature of the
integral equations is conserved. In some cases this kind of illumination
can provide better results, due to the increased information contained
in the measured samples of the new component of the scattered field.
However, the simplification provided by the scalar problem is lost. Fur-
thermore, as already described for the 3D formulation of the problem,
if the cross section of the object is unknown (as for most of GPR appli-
cations), a two-dimensional investigation domain D which contains a
cross section of the illuminated scatter should be defined, thus we can
write

Ez(x, y) = Eincz(x, y) + jωµb

∫∫

D
τ(x′, y′)Ez(x, x′, y′)G(x; x′, y′)dx′dy′

(6.31)
Finally, if the cylinder under test is made of metal, under a TM

illumination equation (6.29) can be rewritten as

Ez(rt) = Eincz(rt) + jωµb

∮

L
JSz(rt

′)G2D(rt, r′t)dr′t (6.32)

where L is a closed line that determines the profile of the scatterer
in the considered transverse plane, and JSz is the z component of the
surface current density JS flowing on the metallic profile of the object
and representing the unknown of the problem at hand.
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6.1.1. Contrast function
Very often in the specialized literature the scattering equations is

represented in terms of a contrast f unction [80]-[84], defined as follow

χe(x, y, f ) =
ε(x, y)− εb

εb

χm(x, y, f ) =
µ(x, y)− µb

µb

(6.33)

where εb = εbr ε0 and µb = µbr µ0. In the most general case, because of
the dispersion of the medium, the contrast is a function of the frequency,
but in many practical applications such a dependence is just neglected,
also because it is not easy to predict a reliable dispersion law for the
specific case at hand. If we consider again a non-magnetic target we can
re-write equations (6.33) as follow

χe(x, y) =
ε(x, y)− εb

εb

χm(x, y) = 0
(6.34)

It is worth noting that this contrast function is rather similar to the object
function consider so far, reported here for convenience

τ(x, y) = jω[ε(x, y)− εb] (6.35)

in fact, by suitably recasting the second term (i.e., the scattered electric
field) of equation (6.31) we obtain

Es(x, y) = jωµb jωεb

∫∫

D
G(x, y; x′, y′)Ez(x, y; x′, y′)

jω[ε(x, y)− εb]

jωεb
dx′dy′

(6.36)
thus, recognizing the contrast function in the kernel of the previous
integral we can finally write

Esz(x, y) = −k2
b

∫∫

D
G(x, y; x′, y′)Ez(x, y; x′, y′)χe(x′, y′)dx′dy′ (6.37)

This form of the 2D scattering equation is very common and represents
the mathematical link among the scattered field, the Green function of
the problem, the internal electric field and the dielectric features of the
illuminated target.
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6.1.2. Half-space 2D scattering equations
In the previous section the scattering equation in the more general

case (i.e., when a scatterer si illuminated in the free space) has been
outlined. However, if we are considering a GPR scenario, a rigorous
approach cannot be based on this kind of hypothesis. In simple realistic
case the GPR antenna is placed at the interface between two smooth
dielectric media, then to give a coherent mathematical representation of
the scattering equation we have to consider two different Green func-
tions, one accounting for the field radiated in the upper medium and
one for the lower medium, where the object under analysis should be
buried. To do this we can directly start by a differential representation of
the Maxwell equation, following the procedure outlined in [80] for the
2D case (by considering ys = 0, meaning that the source point is on the y
axis). We report here only the final results, which give us the possibility
to introduce the distinction between internal and external Green function.

Ez(xs; x, y) = Einc(xs; x, y)+ k2
b

∫∫

D
Gi(x; x′, y′)Ez(xs; x′, y′)χe(x′, y′)dx′dy′

(6.38)

Esz(xs; x0, y0) = k2
b

∫∫

D
Ge(x0; x′, y′)Ez(xs; x′, y′)χe(x′, y′)dx′dy′

(6.39)
where (x, y) is the generic point within the investigation domain, xs is the
source point within the observation domain (i.e., a line) and (x0, y0) is
the receiving point within the observation domain. Gi and Ge in equation
(6.38) and (6.39), respectively, are the dielectric internal and external
Green functions. It is important to highlight that this function are pro-
portional to the electric field generated by spatially impulsive source
buried in a homogeneous soil. More specifically, the internal one is
proportional to the field in the soil, whereas that external is proportional
to the field in air. This makes the Green functions square integrable
functions, since they are essentially electromagnetic fields generated by
finite energy sources.

It is important to note that the scattering equations is outlined here
in the frequency domain; this forces us to consider always the total field,
because the incident and scattered field are defined at every point of the
investigation domain. However real data are collected in time domain,
but considering a Fourier Transform operation we can insert the data
inside the scattering equations. Consequently, under specific conditions
(e.g., if incident and scattered field do not overlap) we can consider only
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the scattered contributions, merely subtracting the incident field on both
sides of equation (6.38). Unfortunately, this operation in most realistic
cases is not feasible, because of non-ideal effects of the illuminated
scenario, but also due to the presence of noise and clutter on the data.
Anyway, some advanced operations of background removal have been
introduced by various author [80] [42]; its description is anyway beyond
the scope of the present work.

6.2. Ill-posedness and nonlinearity
The solutions of the scattering equations introduced in previous sec-

tions belong to the wide class of the inverse problems. As outlined so far,
in GPR prospecting we want to retrieve some piece of information about
the illuminated object by starting from measurements of the electric
scattered field data, gathered outside the probed volume and generated
by known sources. As said, the reason why this problem is called ‘in-
verse’ is connected to historical issues: the way to approach the problem
is practically reversed with respect to another problem conventionally
labeled as ‘direct’ or ‘forward’ scattering problem. It consists in the
calculation of the field scattered from a known dielectric permittivity,
under the radiation of electromagnetic waves radiated by known sources
and is defined well posed. Mathematically, this means that for such class
of problem the solution exists, is unique, and has a continuous dependence
on the data (this definition has been firstly introduced by Hadamard in
1923). The first two conditions are quite intuitive, whereas the last one,
if satisfied, involves the fact that a small error on the data must induce
small error on the solution. In applications such as GPR prospecting,
this means, as an example, that small error in the evaluation of the per-
mittivity of the background medium will produce small error in the
evaluations of the scattered field.

A problem is said to be ill-posedwhen at least one of the conditions
previously outlined for the well-posedness is not satisfied. With regard
to the inverse problem related to GPR data processing, the most relevant
issue is the non continuous dependence of the solution on the data.
This means that even a small error on the scattered field (e.g., additive
thermal noise) can induce meaningful error in the reconstruction of the
dielectric characteristics of the background scenario. This does not mean
that ill-posed problem do not have physical sense, however to outline
a solution an operation of regularization is always necessary. There are
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endless possibilities to regularize an inverse problem, all based on the
general idea to renounce to an ideal solution, looking indeed for suit-
able, not fully detailed, refined and robust results. Various authors have
given a mathematical demonstration of the ill-posedness of an inverse
scattering problem [76]-[87], we are not giving here detailed descrip-
tion of this issue. Generally speaking, let us consider a specific class
of contrast functions represented by a sinusoidal (i.e., sin(kx) sin(ky))
variations inside a finite investigation domain D. Additionally, let us
consider the limit value of the scattering equations when the oscillations
of the contrast become faster and faster (i.e., for k → ∞). Expressing the
total field E in (6.38) in term of the so-called Born series, we will find in
every term of such a series the following integral (multiplied by other
terms whose kernel are not depending by the incident field)

k2
b

∫∫

D
GiEincχedx′dy′ (6.40)

Since this integral is composed of the contrast function times a square
integrable function (independent from it), for the Riemann-Lebesgue
lemma, we can easily show that it vanishes for k → ∞. Consequently, in
this limit (for a detailed demonstration see [88]), it is possible to show
that the series decomposition of the total field E converges uniformly at
the incident field Einc. Therefore, we can state that very fast oscillating
and limited contrasts will be transparent to the radiation. This reasoning
could be repeated also for a contrast given by the sum of a slow and
a fast oscillating contribution: we will find that the internal field is
influenced only by the slow varying portion of the contrast profile. Now,
considering E = Einc inside equation (6.39) we have

Esz ≈ k2
b

∫∫

D
GeEincz χedx′dy′ (6.41)

Since both the external Green functions and the incident field are square
integrable functions independent from the contrast, we have that in
the limit for k → ∞ the contrast χe produces a null scattered field (i.e.,
it represents an invisible target). To generalize the approach we can
consider that any square integrable function χe can be expanded, within
the investigation domain D, along its Fourier series, then any target can
be generically seen (with a certain degree of continuity) as composed
by a slow varying part plus a fast varying part. As highlighted pre-
viously, at a certain point the fast oscillating part becomes more and
more transparent, and in the considered limit completely transparent.
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Consequently, due to uncertainties on the data it will become more and
more difficult (and eventually impossible) to retrieve the profile of the
object. We have finally demonstrated in this way the ill-posedness of the
inverse scattering problem, which basically involves the impossibility to
retrieve all the details of the considered target.

The non-linearity of the problem can bemore simply explained. As is
clearly visible in equation (6.38) the electric field inside the investigation
domain depends on the contrast function. Consequently, if in (6.38) χe is
multiplied by any arbitrarily constant, the scattered field will be not just
multiplied for the same constant, because in meantime the internal field
has changed too. Generally speaking, we can say that any mathematical
relationship f between two quantities is said to be linearwhen, given two
value of the independent variable x1 and x2 and two scalar quantities a
and b, the following property holds

f (ax1 + bx2) = a f (x1) + b f (x2) (6.42)

If this property is not satisfied the physical phenomenon at hand is
nonlinear. Unfortunately, the inversion of a nonlinear relationship is in
general more difficult than the inversion of a linear one, due to possible
presence of false solutions or local minima. In the more general case,
one looks for the minimum of nonlinear function by making use of
the gradient of the curve in any point, following the direction where
the gradient itself vanishes. Of course at a certain point one reaches a
minimum of the function: if the starting point of the procedure is in
a suitable position the actual global minimum can be obtained; but if
the starting point does not lie in the valley of the global minimum (not
individualized a priori) the procedure will converge at a local minimum,
and it will be erroneously interpreted as the solution of the problem
at hand. Just as an example, a method to face the problem of the local
minima consists in repeating the minimization procedure starting from
several point, chosen and updated by means of ad-hoc stochastic criteria.
In this way the probabilities to achieve the global minima increase,
at a price of an increased computational burden. By exploiting both
deterministic or statistical minimization procedure, nonlinear approaches
can require heavy computational effort, compromising the possibility
of applying this technique for large-scale problems. Specifically, GPR
data processing involve problems that are very large with respect to
the considered wavelength, consequently a class of approximated linear
algorithms are usually exploited.
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6.2.1. Born approximation
If the Born series for the scattered field is truncated to the first term

we obtain the first-order Born Approximation (BA) [80, 88], which, as
we have seen in previous section, basically means that the internal elec-
tric field inside the unknown object is assumed equal to the impinging
field. Of course, under the BA the scattering is approximated as a linear
phenomenon, thus it is not affected by the problem of local minima. This
means that it is possible to carried out faster and easier processing algo-
rithms with respect to actual nonlinear model. Moreover, even though
is less intuitive, BA allows a noticeable insight about the characteristics
of the expected results, that are essentially based on the spatial filtering
properties of the linear scattering operator, that in turns depends on
the impulsive response of the considered antenna. It is very interesting
to note that from a physical point of view, the BA tends to neglect the
mutual interactions between any two different buried target or (which is
mathematically the same) between two different parts of the same target.
Specifically, if we consider two different very small object, whose contrast
is a low norm function, we can assume that each of them, in absence of
the other one, would provide a scattered field given by equation (6.39),
where the contrast is a function that describes each of the two targets
in turn. Consequently, the integral term in the scattering equation (see
(6.38)) can be regarded as a negligible perturbation with respect to the
incident field. However, if the two targets are present at the same time
(so that the contrast is given by the sum of the contrasts relative to each
of the two targets separately considered), they interact with each other,
and consequently the comprehensive scattered field is not simply given
by the sum of the scattered field that each of them would produce in
absence of the other. This interaction is the mathematical genesis of the
nonlinearity, because it makes the internal total field different from the
internal incident field. Let us conclude highlighting that in framework of
GPR a ‘weak scatterer’ is defined as just an object for which the internal
field, and (in case of magnetic targets) its first-order spatial derivatives,
can be approximated with those of the incident field. The ‘weakness’,
in particular, is a feature not only related to the maximum level of the
contrast, but also to the electrical size of the buried target (which implies
a dependence on the frequency), to the shape and to the nature of the
background medium (homogeneous or layered, lossless or lossy). It is
important to emphasize that, independently from the validity of the BA
in the current situation (with GPR field data, very often BA is not valid),
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the secondary sources that generate the scattered field under BA have
the same support of the actual secondary sources, and this support is
just the extension of the buried targets. Now, assuming that both the
incident and the actual internal fields are supported throughout the
entire investigation domain, it is clear that, either under the exact model
or under the BA, the support of the secondary source is equal to the sup-
port of the dielectric contrast, which is just the extension of the buried
targets. Therefore, it is licit to expect that in many cases the position, the
size, and (under certain limits) the shape of the buried targets can be
satisfyingly retrieved under BA, even in cases when the targets are not
weak [89, 90]. This has also been widely shown experimentally [91, 92].
Let us also state that ‘satisfyingly’ is a rather generic term: it means
that the achievable results are useful for some applications but does
not mean that the geometrical reconstruction is ‘perfect’ or resembles
those obtainable with an optic system. In particular, the achievable re-
construction is affected by the filtering properties of the linear scattering
operator (i.e., related to the antenna and to the observation domain);
consequently, in any case, in situations beyond the limits of the BA, we
will not achieve a quantitative reconstruction of the electromagnetic
characteristics of the buried object.

6.3. Microwave tomographic algorithm

The microwave tomographic algorithm considered here has been
developed and extensively tested by some authors [83, 93] in the last
years assuming a homogeneous half-space and a 2-D geometry as a
reference scenario. The adoption of the 2-D geometry is theoretically
well suited to simulate only elongated objects, whereas we consider here
canonical shaped targets. In addition, it introduces a further approxima-
tion for the transmitting and receiving modeled antennas that should be
in principle treated as 3-D sources. Anyway a three-dimensional version
of the proposed algorithm is also considered, giving the possibility of
evaluating the impact of this kind of assumption. The geometry of the
problem typically consists of two half-spaces (air and soil) separated
by a planar interface. The upper half-space is a free space, whilst the
lower one is described by a relative dielectric permittivity εb and conduc-
tivity σb and is non-magnetic (i.e., µ = µ0). The incident field source
is assumed to be a time-harmonic (with ejωt time dependence, where
ω = 2π f ) line current source (TM-polarization), of infinite extent, and
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invariant along one of the Cartesian axis (z). It radiates within the de-
fined frequency band ( fmin, fmax), determined by the bandwidth of the
transmitted numerical or experimental pulse and by the antenna system.
Both multi-monostatic and multi-bistatic GPR configuration is assumed;
in the first case the location of the transmitting and receiving antennas
coincides at each observation point, whereas in the other one shows an
offset (chosen here as d = 0.19) m. The objects are considered invariant
along the direction of extension of the line sources, and their section is
a priori known to reside within the investigation rectangular domain.
The objects are searched by assuming them as actual unknowns of the
problem and represented by a relative dielectric permittivity profile
εt(x, z), and by a conductivity profile σt(x, z) inside D. The problem is
then recast in terms of the so-called unknown contrast function, already
introduced in section 6.1.1 and reported here for convenience

χ(x′, y′, f ) =
εc(x′, y′)− εcb

εcb

(6.43)

where

εc(x′, y′) = ε0εt(x′, y′)− jσt(x′, y′)/ω

εb = ε0εcb − j(σb/ω)
(6.44)

Under the Born Approximation, as discussed in section 6.2.1, the rela-
tionship between the unknowns and the data is provided by the linear
integral equation in the frequency domain

Es(x, xs, ω) = k2
b

∫∫

D
Ge(x0 = xs; x′, y′, ω)Einc(xs; x′, y′, ω)χ(x′, y′)dx′dy′

(6.45)
where Es denotes the scattered electric field probed at xs when the source
is located at the same point xs on in xs + d and ks is the wavenumber in
the lower half-space. The scattered field is collected over an observation
domain at the interface at step ∆ < λ. The scattered field Es is defined
as the ‘difference’ between the total field and the incident field. The
former is the field backscattered by both the buried target and the air/soil
interface, while the latter only accounts for the reflection at the air/soil
interface. According to the reference scenario outlined previously, the
quantities defining the kernel of linear integral equation (6.45) have the
following meaning. The external Green’s function Ge(x0 = xs; x′, y′, ω)

accounts for the electric field radiated at the antenna position xs by a
line source electric current with unit strength located at (x′, y′), while
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Einc(xs; x′, y′, ω) is the electric field radiated by the line source located
at xs, at the generic point (x′, y′) of the lower medium, for the case when
the target is not present.

In order to achieve the robustness of the solution against the noise on
data and the uncertainties of the parameters of the reference scenario,
the inversion of the linear operator in (6.45) has been performed thanks
to the truncated singular value decomposition (TSVD) expansion [76]

χ =
N

∑
n=1

1
σn

〈Es, vn〉un (6.46)

where [σn, vn, un]
K
n=0 is the singular system of the matrix L, arising from

the discretization of the operator in equation (6.45), 〈·, ·〉 denotes the
scalar product in the data space and K denotes the number of mea-
surements, being N ≤ K. By restricting the solution space to the one
spanned by the first N + 1 singular functions un, this regularization
scheme does not amplify the effect of errors and uncertainties on data,
so that the solution is made stable. The choice of the index N is per-
formed with regard to ‘the degree of regularization’ that one wants
to apply in the inversion procedure. In particular, the reconstruction
results will be given as a spatial map of the modulus of the retrieved
contrast function; the regions where it is significant different from zero
indicate the location of the buried objects. As a further simplification,
typically considered as appropriate if the antenna is placed in direct
contact with the lower medium, the probed scenario can be schema-
tized as homogeneous (i.e., the presence of the two half-spaces is not
considered), whose dielectric constant is equal to εb. We do not give
here any result obtained by applying this algorithm to canonical shaped
dielectric objects, because in the next chapter a number of interesting
reconstruction will extensively discussed to compare performances of
this standard approach with those achievable by means of an advanced
implementation.

6.4. Reconstruction of PEC scatterers
Shape reconstruction of strongly scattering objects, especiallymetallic

ones, is also an important issues in the frameworks of GPR applications.
A number of method have been developed so far, including linearized
techniques based on physical optics (PO) or Kirchhoff approximation.
It is important to note that under this hypothesis the relationship be-
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tween unknown and data is linear, but unlike the case of dielectric target
(which is based on the image of the contrast functions) here the re-
construction provides an image corresponding to the support of the
induced surface currents distribution on the illuminated region. In the
specialized literature, also various nonlinear iterative inverse scattering
techniques are proposed as optimization problems, but that based on the
PO approximations does not suffer from local minima problem and is
computationally less expansive. Of course, as already highlighted in the
previous section, absence of local minima favorably affects the reliability
of the results and the low computational burden allows us to deal with
electrical large investigation domain. However, PO requires that the
radii curvature of the illuminated scatterers to be large as compared to
the impinging wavelengths, and in case of a complex scenario (in term
of number of targets) interactions are not accounted for. Additionally,
the considered target should be convex. For all these reasons, PO is
usual classified as a high-frequency single-scatteringmodel. Under these
hypothesis, it has been shown that PO provides good approximations
(in terms of small errors) both for direct problem and inverse problem
[94, 95]. Specifically, when a shape reconstruction problem is faced, it
possible to relax the previous assumption and a Kirchoff-based inverse
approach is able to give useful information even in the case of objects
whose extent is comparable to the probing wavelength.
The scattering equation for PEC target, conveniently reported in the
following, has been already introduced in section 6.1, where the overall
model of the scattering phenomena has been outlined. We consider here
an object invariant along the y axis and a line source oriented along the
same direction, thus orthogonal to the investigation domain; indeed the
z axis here represents the vertical extension of the probed target, while
the x axis is the scanning direction of the GPR. Recalling equation (6.32)
we can write

Ez(rt) = Eincz(rt) + jωµb

∫

L
JSz(rt

′)G2D(rt, r′t)dr′t (6.47)

where S and Js are the unknown to be reconstructed. Within the above
hypotheses, under the Kirchhoff approximation, the scattered field Es

collected in the upper half-space for z = 0 at each ω, when the trans-
mitting and receiving antenna are at the source abscissa xs, is given
as

Ez(xs) = −jωµb

∫

L
JPOz(xs, y, x)Ge(xs, x, y)dL (6.48)
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where L denotes the contour of the scattering object and Ge is the external
Green function of the problem for the angular frequency ω; for an half-
space geometry we have the following integral expression

G(xs, x, y) = − j
2π

∫ +∞

−∞

e−jky2 y

ky1 + ky2

e−jkx(xs−x)dkx (6.49)

where kyi =
√
(k2

i − k2
x), ki being the wavenumber of the i-th medium

(i = 1, 2) and kx, ky the spectral variable along x and y respectively.
Moreover, JPO is the physical-optics surface current density, namely

JPO(xs, x, y) =



(2n0 × H i(xs, x, y)) · z0 on Li

0 on Ls
(6.50)

where Hi is the incident magnetic field in the lower half-space when
there are no objects (i.e., the magnetic field transmitted in the lower
region), n0i (x, y) = (nx(x, y), ny(x, y)) is the outward-directed unit
vector normal on the scattered surface at the generic point r = (x, y),
while Li and Ls, being L = Li ∪ Ls, are respectively the illuminated
and shadowed sides of the scatterer. By accounting for the relationship
existing among the electric incident field and the magnetic one, the
current density JPO can be expressed as

JPO(xs, x, y) =




1
π

∫ +∞

−∞
[nx(x, y)k′x + ny(x, y)ky2 ]

e−jky2 z

ky1 + ky2

e−jk′x(xs−x)dk′x on Li

0 on Ls

(6.51)

By replacing equations (6.49) and (6.50) in equation (6.48), after some
algebra, the scattered field can be rewritten as

Es(xs) = −ωµ0

2π2

∫ +∞

−∞

ejkx xs

ky1(kx) + ky2(kx)

∫ +∞

−∞

ejk′x xs

ky1(k′x) + ky2(k′x)
∫

D
[nx(x, y)k′x + ny(x, y)ky2(k

′
x)]δL(x, y)

e−j(ky2 (k
′
x)+ky2 (kx))ze−j(k′x−kx)xdxdydk′xdkx

(6.52)

where the quantity δL(x, y) denotes a single-layer distribution and al-
lows us to pass from an integral over the contour of the scatterer to the
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integral over the investigation domain D [76]. According to the above
scattering model, the reconstruction problem is stated as the inversion
of the equation (6.52), which can be rewritten for all the frequencies
belonging to the considered range in a synthetic form as

Es(xs, ω) = L[γ] (6.53)

where the unknown is given by the vector distribution (see [96])

γ(x, y) = (nx(x, y), nz(x, y))δL(x, y) (6.54)

Equation (6.53) states a linear integral relationship between the mean-
ingful signal, i.e., the field scattered by the targets, and the unknown
object function γ(x, y), which is expressed through the compact operator
L [76, 86]. Being the imaging problem faced as the inversion of the
relationship in equation (6.54), as already highlighted in section 6.3, an
ill-posed linear problem has to be suitable faced through a regularized
inversion scheme [86]. A well-known commonly exploited tool to solve
this kind of problems is, as said, the truncated singular value decompo-
sition (TSVD) scheme [76]. Thus, an approximate and stable solution
of equation (6.54) is given as

γ̃ =
N

∑
n=0

1
σn

〈Es, vn〉un (6.55)

where, as already introduced, [σn, vn, un]
K
n=0 is the singular system of

the matrix L, arising from the discretization of the compact operator in
equation (6.53), 〈·, ·〉 denoted the scalar product in the data space and K
denotes the number of measurements, being N ≤ K. The choice of the N
index is performed in order to ensure a trade-off between the contrasting
needs for accuracy and resolution from one side (which should push
to increase such an index) and for the stability of the solution from the
other side (which should push to limit the increase of the index). As
result of our inversion approach, we consider γ̃ =

√
| γ̃x| 2 + | γ̃z| 2

(modulus of the vector γ̃) as the quantity that can be imaged to obtain a
tomographic reconstruction. Finally, it is worth noting that the involved
computational timemainly depends on the time needed to fill the matrix
L and to compute its SVD. Such a time grows upwith the number of cells
discretizing the investigated domain under test (Ncells); on the other
hand, since L does not change once the measurement configuration and
the features of the investigated domain have been fixed, they can be
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computed off-line and stored in a database. In this way, the involved
computational time is drastically reduced and real-time results can be
achieved.

6.4.1. Inversion with experimental data
The reconstruction capabilities of the tomographic approach on the

experimental data presented in section 4.1 are investigated by applying
the inverse scheme just introduced. The results are given in terms of
the normalized amplitude of the reconstructed function presented by
equation (6.55) with respect to its maximum inside the investigation
domain D. It should be reminded that the tomographic reconstructions
here manage critical cases of non-penetrable objects, whose dimensions
are comparable with the dominant probing wavelength, buried in the
shallow region of the lower half-space. In addition, data are gathered
under a reflection measurement configuration, hence most of the infor-
mation achievable is expected relating to the upper illuminated parts of
the targets that give rise to the main scattering effects. Accordingly, only
the upper side of the objects is expected to be actually well retrieved.

Measurements have been developed thanks to our experimental
setup, already presented in section 4.1. In the following, further details
about the overall configuration will be given. The GPR commercial
systemworks in bistatic modality with the source and receiver separated
by 19 cm, spanning in the range [−70; 70] cm. The antenna system
sweeps along the air-soil interface at 61 spatial points with a step of
2 cm. In particular, the Tx antenna moves between [−69.5; 50.5] cm,
whereas the Rx antenna moves within [−50.5; 69.5] cm. The working
frequency ranges between fmin = 0.3 GHz and fmax = 1.3 GHz, with 26
frequencies spaced of 40 MHz (this slightly modified frequency range
with respect that nominally presented in section 4.1 is related to the
specific evaluation of the effective spectrum of the signal transmitted by
the GPR instrument when positioned on the ground-medium surface).
The first tomographic reconstruction from measured data is shown in
Fig. 6.1 and is referred to the case of a pair of metallic targets already
presented in Fig. 6.1, with a cube (9-cm side) and a pyramid (10-cm
height and 9-cm side square basis), both located at a depth of 9 cm (for
the top parts) and spaced side by side along x axis of 80 cm. From this
figure, one can observe a spot at about x = −30 cm, which correctly
accounts for the upper side of the cube and provides a good estimation
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Fig. 6.1. Tomographic reconstruction of targets from experimental data for metallic cube
and pyramid buried in a sandy soil. Other physical parameters in the text. Copyright
© 2013, reproduced courtesy of The Electromagnetics Academy.

of the major reflecting side. The spot at the center of the investigation
domain (around x = 0), at depth of about 30 cm, is concerned with the
reflection from the bottom of the dielectric box (as already emphasized
in the radargram of Fig. 6.1). Finally, the spots at about x = 50 cm are
concerned with the location of the main reflecting areas of the pyramid
shape. A further inversion result from measurements refers to the case
of parallelepiped and cylinder targets, whose dimensions were already
presented. The scatterers were placed in this case with their major
length perpendicular to the scanning direction, and again spaced along
the x axis of about 80 cm and 9 cm deep. The relevant tomographic
reconstruction is presented in Fig. 6.2. As in the previous case, the main
features of the probed scenario can be enlightened from the tomographic
reconstruction. The stronger spot at about x = -30 cm accounts for the
upper side of the parallelepiped. As above, the wider spot at the center
of the investigation domain is concerned with the bottom of the box.
Finally, the spot at about x = 50 cm is concernedwith the proper cylinder
location, whose scattering effect is correctly less strong than that arising
from the parallelepiped (the former presenting a round contour instead
of a flat face and edges).
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Fig. 6.2. Tomographic reconstruction of targets from experimental data for a metallic
parallelepiped and a cylinder buried in a sandy soil, with theirmajor lengths perpendicular
to the scanning direction. Other physical parameters in the text. Copyright © 2013,
reproduced courtesy of The Electromagnetics Academy.

6.4.2. Inversion with numerical data
According to the simulated environment already presented in section

5.3, the investigated domain is in the lower half-space and its half-size
along the longitudinal x axis is equal to a = 40 cm (80 cm overall), while
its extent along the depth ranges from zmin = 1 cm to zmax = 50 cm. The
measurement configuration assumes a bistatic modality with source and
receiver separated, as said, by an o f f set = 19 cm. The antenna system
is moved along the air-soil interface at 25 spatial points with a uniform
step of 3 cm. In particular, the Tx antenna moves between [−40; 40]
cm, whereas the Rx antenna moves within [−21; 59] cm. The working
frequency ranges between fmin = 0.3 GHz and fmax = 1.3 GHz with 41
discrete frequencies spaced of 25 MHz. The inversion is regularized
by the TSVD approach, where the TSVD index N is chosen to retain
in the summation (6.55) the singular values larger than 0.1 times the
highest singular value. The first set of results accounts for three buried
PEC cubes having different sizes in the simulations (5 cm, 9 cm, and 13
cm) and upper side at depth of 10 cm. Their center is laterally shifted
of about 7.5 cm along x with respect to the center of the investigated
domain. The color-plot reconstructions of the ‘object function’, i.e., the
tomographic images, are shown in Figs. 6.3(a,b), and 6.4 for the three
cube sizes, respectively. In these figures, as in the following ones, the
black lines represent the contour of the actual objects. These corrobo-
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Fig. 6.3. Tomographic reconstruction from simulations of three PEC cubes having different
sizes (the upper side of the object is at 10 cm depth from the interface): (a) ’small’ cube
with side 5 cm; (b) ’middle’ cube with side 9 cm. Other physical parameters are given in
the text. Copyright © 2013, reproduced courtesy of The Electromagnetics Academy.

Fig. 6.4. As in Fig. 6.3 for a cube having side 13 cm. Copyright © 2013, reproduced courtesy
of The Electromagnetics Academy.

Fig. 6.5. Tomographic reconstruction from simulations of buried PEC parallelepiped and
cylinder, placed with their major length along the scanning x direction: (a) parallelepiped;
(b) cylinder. Other physical parameters in the text. Copyright © 2013, reproduced courtesy
of The Electromagnetics Academy.
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Fig. 6.6. Tomographic reconstruction of PEC pyramid and cone from simulations: (a)
pyramid; (b) cone. Other physical parameters in the text. Copyright © 2013, reproduced
courtesy of The Electromagnetics Academy.

rate that, despite the relevant wavelengths of the signal in the hosting
medium are in the range around 15 cm (i.e., actually comparable to the
typical dimensions of our scatterers), accurate images are obtained. It
is seen that the extents of the upper sides are reconstructed with good
accuracy, and this feature is more evident for the larger cubes. Moreover,
the main vertical position is properly localized by the peak values of the
TSVD reconstructed function. The thickness of the spot along the depth
is due to the finite working frequency and is anyway comparable to
the ideal resolution limits, given by c0/(2B

√
εb) = 8.4 cm, being B = 1

GHz the signal bandwidth. The second set of results concerns two other
metallic targets previously introduced: a parallelepiped with length
10 cm and square section with side 5 cm, and a cylinder of the same
length and diameter 5 cm, both the objects being 10-cm deep. The two
targets are placed with their axis parallel to the scanning x direction.
Fig. 6.5 shows the tomographic reconstructions of the parallelepiped
(Fig. 6.5(a)) and of the cylinder (Fig. 6.5(b)). Again, the object func-
tion describes quite well the location and size of these scatterers. The
third considered numerical data-set is referred to pyramidal and conical
metallic targets. Both targets have the same height (10 cm); the pyramid
has a square basis with side 9 cm, and the diameter of the conical basis is
9 cm (see Table 4.1); the axis of both targets is placed vertically. Fig. 6.6
gives the tomographic reconstruction of the pyramid (Fig. 6.6(a)) and
of the cone (Fig. 6.6(b)). It is interesting to note that the reconstructions
are very similar one the other, according to the features of the two shapes
in the imaged slice. In particular, the main contribution of the object
function appears to be placed slightly below with respect to the upper
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edge, due to the reduced scattering effect of the wedge shape.

6.5. 3D microwave tomographic algorithm

So far the capabilities of a well-assessed microwave tomographic
algorithm to produce two-dimensional images in challenging conditions
have been investigated. As discussed, this assumption is well suited
only for elongated targets, that keep the same cross-section for distances
larger than the probing wavelengths. Even tough this hypothesis leads
to good results it does not account for the three-dimensional nature of
the scattering mechanism. Since we are considering canonical shaped
target that do not present any privileged direction of extension, this
assumption may be not always adequate to accurately represents more
complex configurations of the investigated scenario. Moreover, under
this hypothesis, the integral equations modeling the problem is reduced
to its scalar version, preventing the possibilities to analyze other compo-
nents of the scattered electromagnetic (whenever the antenna is able to
manage also the components of the field) and to study possible depolar-
ization effects. It is worth mentioning that the 3D imaging procedure
outlined in the follow must be clearly distinguishable from a ‘pseudo-
3D’ algorithm, that is simply based on interpolation procedures of a
two-dimensional reconstruction developed on different parallel planes
sampling the investigated scenario. Incidentally, it has also been demon-
strated that this algorithm does not always offer the same performances
[97]. The simulated GPR data to be processed have already been de-
scribed in section 4.5, where a virtual model of a GPR system is placed
at the ground interface to derive three-dimensional information on the
features of buried dielectric and metallic targets (location, dimension,
and shape). Once again the scatterers can have size comparable to the
resolution limits and can be placed in the shallow subsurface in the
antenna near field. To this aim, the microwave tomographic algorithm
presented in section 6.3 has been suitably extended. Data are gathered
on a planar surface, along several parallel linear traces. Once again,
our approach basically exploits the Born approximation to model the
underlining scattering phenomenon [83, 88]. Therefore, the imaging
is faced as the solution of a linear inverse scattering problem, wherein
the data/unknown relationships account for the dyadic nature of the
interaction between the field and the probed materials. In particular, the
scattering equations for our 3D scenario has been already introduced in
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section 6.1. By suitably recasting equation (6.19) and referring to Fig.
4.23 and 4.24 we can write

Ey
s (rr; rs, ω) = k2

b

∫∫

D
Ge(rr; rs, ω)E(rr; rs, ω)χe(r)dr = Lyy(χe)

(6.56)
where Ey

s is the y component of the field scattered by the targets, G is
the dyadic Green function, that is the electric field radiated at each point
of measurement grid (see Fig. 4.24) by an arbitrary oriented electric
dipole located in D, and Ey

inc is the incident field in D due to a y-oriented
electric dipole. Moreover, the vectors

rs = xsx0 + ysy0 + zsz0 = xrx0 + yry0 + zrz0

r = xx0 + yy0 + zz0
(6.57)

specify the position of the source and of the receiver (that coincide for
this monostatic case), and of generic point of the investigated domain
D, respectively. It is worth pointing out that, since the antenna system is
very close to the air/ground interface, also in the case the Green function
as well as the incident field is herein approximated as those referred to
a homogeneous medium having the electromagnetic properties of the
ground hosting the targets. Their analytical expression can be found
in the next section. This simplification will be removed thanks to our
advance approach, when the actual field radiated by transmitting an-
tenna and the actual Green function for the problem will be accounted
for in the solution of the scattering equation. The imaging problem is
formulated as the inversion of the relationship in 6.56, that is similar
to the equation modeling the two-dimensional problem (see equation
(6.45) and (6.48) for dielectric and metallic targets, respectively). To
regularize the problem and obtain a stable solution, as already described
by (6.46) and (6.55), TSVD as a scheme is implemented.

6.5.1. Dyadic Green function for a homogeneous medium
As is well-known and discussed, by starting from the Maxwell equa-

tion it is possible to express the electric field vector E produced by a
generic current distribution J as follows

E(r) = jωµ
∫

G(r, r′) · J(r′)dr′. (6.58)

The dyadic Green function can be written as [1]

G(r, r′) =
[

I +
∇∇
k2

]
g(r, r′) (6.59)
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where g(r, r′) is the scalar Green function for the free space, whose
expression is reported here for convenience

g(r, r′) =
e−jk | r−r′ |

4π | r − r′| (6.60)

Incidentally, let us recall that the dyadic Green function and the scalar
one are, respectively, solution of the following Helmholtz equations

∇2g + k2g = −δ(r − r′)

∇×∇× G − k2G = −Iδ(r − r′)
(6.61)

Now, we can demonstrate that the expressions of the gradient and of
the gradient of gradient of the Green function (for further details see
[1]) have the following forms

∇g =

(
jk +

1
4π | r − r′|

)
g u

∇∇g =

[ (
−k2 +

3jk
| r − r′| +

3
| r − r′| 2

)
uu

−
(

jk
| r − r′| +

1
| r − r′| 2

)
I
]

g(r, r′)

(6.62)

where
u =

r − r′

| r − r′| (6.63)

In addition, considering that

uu =
(x − xm)

R
x0 +

(y − ym)

R
y0 +

(z − zm)

R
z0 (6.64)

it holds

uu =
[
x0 y0 z0

]



(x−xm)2

R2 · ·
· · ·
· · ·







x0

y0

z0


 (6.65)

thus, the sought dyadic Green function can be written as follow

G =




1 0 1
0 1 0
0 0 1


 g(r, r′) +

1
k2

[(
−k2 +

3jk
| r − r′| +

3
| r − r′| 2

)
uu

−
(

jk
| r − r′| +

1
| r − r′| 2

)
I

]
g(r, r′)

(6.66)



6. Microwave Tomography 161

Finally, the explicit expression of the first terms filling 3 × 3 matrix is
reported (we put for convenience R = | r − r′| )

Gxx =

[
1 +

1
k2

(
−k2 +

3jk
R

+
3

R2

)
(x − xm)2

R2 −
(

jk
R

+
1

R2

)]
g(r, r′)

(6.67)

the remaining term (Gxy, Gxz and so on) are not reported here for the
sake of brevity, but can be easily found in [1, 80].

6.5.2. Dual-pol tomographic algorithm
As iswell-known, the dyadic Green function can bewritten in explicit

form as follow

G =




Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz


 (6.68)

Once that the scattering equation reported in (6.56) has been discretized
into a linear algebraic system using the Method of Moments [98], as
usual the imaging is formulated as the solution of the matrix inversion
problem

Es =

L︷ ︸︸ ︷
G · Einc χe (6.69)

by placing L = G · Einc we can write the discretized scattering equation
more compactly as

Es = L(χe) (6.70)

again, by considering equation (6.68) and (6.69) we can write



Esx

Esy

Esz


 =




GxxEx GxyEy GxzEz

GyxEx GyyEy GyzEz

GzxEx GzyEy GzzEz



[

χe

]
(6.71)

now considering that

Einc(r) = jωµ
∫

G(r, r′) · J(r′)dr′ (6.72)

for the incident field we can write

Einc =




Ex

Ey

Ez


 =




Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz







Jx

Jy

Jz


 =




Gxx Jx + Gxy Jy + Gxz Jz

Gyx Jx + Gyy Jy + Gyz Jz

Gzx Jx + Gzy Jy + Gzz Jz




(6.73)
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thus, recalling equations (6.69) for the scattered field

Es =




Esx

Esy

Esz


 = G · Einc =




Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz







Gxx Jx + Gxy Jy + Gxz Jz

Gyx Jx + Gyy Jy + Gyz Jz

Gzx Jx + Gzy Jy + Gzz Jz




(6.74)
If as transmitted antenna only a short dipole oriented along x is consid-
ered, we have Jx �= 0 and equation (6.73) becomes

Einc =




Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz







Jx

0
0


 =




Gxx Jx

Gyx Jx

Gzx Jx


 (6.75)

hence, for the scattered field we can write

Es =




Esx

Esy

Esz


 = G · Einc =




Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz







Gxx Jx

Gyx Jx

Gzx Jx




=




GxxGxx Jx + GxyGyx Jy + GxzGzx Jz

GyxGxx Jx + GyyGyx Jy + GyzGzx Jz

GzxGxx Jx + GzyGyx Jy + GzzGzx Jz



[

χe

]
(6.76)

If only Esx is measured by the receiving antenna, we have

Esx = GxxGxx Ix + GxyGyx Ix + GxzGzx Ix (6.77)

and more compactly, as for the right side of equation (6.56), we can
write

Esx = Lxx(χe) (6.78)

where the first subscript ofLxx represents the orientation of the receiving
antenna (i.e., the collected component of the electric field), while the
second one points out that of the transmitting antenna (i.e., the radiated
component). If it is possible to radiate and measure two components of
the electric field (x and y in this case), we can write

[
Esx

Esy

]
=

[
Lxx

Lyx

] [
χe

]
(6.79)

where [
Lxx

Lyx

]
=

[
Gxx Gxy Gxz

Gyx Gyy Gyz

] [
Gxx Jx + Gxy Jy

Gyx Jx + Gyy Jy

]
(6.80)
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that is the operator describing the scattering phenomena when a dual-
pol antenna is exploited, both to transmit and receive the scattered elec-
tromagnetic field. The expression of each element of the relevant dyadic
Green function can be found in (6.67) and in the related bibliography.

6.6. Inversion with 3D numerical data

The 3D images obtained by processing the set of forward synthetic
data discussed in Sec. 4.5 will be presented in this section. They repre-
sent the amplitude of the reconstructed contrast function χ as provided
by equation (6.56). The investigation domain D has size 0.8m× 0.4× 0.5
m and it is discretized by means of Nc = 13090 cubic cells, whose side
is 2.24 cm long. The TSVD truncation threshold is fixed in such a way
to filter out all the singular values which are 20 dB lower than the maxi-
mum one. The first processed data sets are referred to the buried basalt
cube and sphere already analyzed in Fig. 4.29 and 4.30, respectively. The
depth slices of the reconstructed contrast functions in color-plot form
(related to its intensity according to a proper scale from red to blue) are
shown in Fig. 6.7 for the cube and in Fig. 6.8 for the sphere. These
figures present 20 planar (xy) color plots corresponding to z values
which regularly increase moving from the interface towards the bottom
of the ground medium, with a spatial step of 2.24 cm, for an overall
investigated height of about 50 cm. The analysis of Figs. 6.7 and 6.8 show
that the two dielectric objects are approximately located at the same
depth, which is properly retrieved, and allows us to obtain a satisfactory
estimation of the upper cross-section size of both targets, while their size
along the depth direction is overestimated. This agrees with the fact that
the objects are characterized by a larger relative permittivity than the
hosting medium and thus by an actual wave propagation velocity v that
is lower than the modeled one (this latter being that corresponding to
the background). Moreover, even if the actual shape is not accurately re-
constructed and no information on their relative permittivity is available,
from Fig. 6.7 and 6.8 it is possible to infer that the objects have different
shape and are made by the same material. As a matter of fact, while the
reconstructed cross sections for the cube do not significantly vary with
z ranging from about 12 cm to 16 cm, this correctly does not happen for
the sphere (in the latter case the radius of the circular scattering section
changes as z varies). In addition, both the reconstructions exhibit similar
features as far as their behavior along the z axis is concerned. To corrobo-
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Fig. 6.7. Depth slices of the contrast function reconstructed by processing the data set
referred to a buried basalt cube as in Fig. 4.29. Copyright © 2013, Hindawi Publishing
Corporation, https://doi.org/10.1155/2013/610389.

Fig. 6.8. Depth slices of the contrast function reconstructed by processing the data set
referred to a buried basalt sphere as in Fig. 4.30. Copyright © 2013, Hindawi Publishing
Corporation, https://doi.org/10.1155/2013/610389.
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Fig. 6.9. Depth slices of the contrast function reconstructed by processing the data set
referred to a vacuum cube as in Fig. 4.31. Copyright © 2013, Hindawi Publishing Corpora-
tion, https://doi.org/10.1155/2013/610389.

rate the previous considerations, Figs. 6.9 and 6.10 show the depth slices
of contrast functions retrieved by processing the data sets corresponding
to vacuum cubic and spherical objects (with data analyzed in Fig. 4.31
and Fig. 4.32), respectively, which have the same size and location of
the already-considered basalt ones. These figures show that the targets
depth is again properly retrieved, as well as the size of their upper cross
section. Moreover, it is evident that, as in the case of basaltic objects,
the reconstructed cross sections of the cubic object do not significantly
change for z ranging from about 12 cm to 16 cm, while this is not true for
the sphere. Furthermore, the reconstructions in Fig. 6.11 and Fig. 6.12
referred to a PEC cases have a similar behavior along the z axis, which
is different from that shown in Fig. 6.7 and Fig. 6.8. In this respect, it
is worth noting that now the targets size along the depth direction is
underestimated in agreement with the lower relative permittivity of the
objects than the one of the hosting medium.
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Fig. 6.10. Depth slices of the contrast function reconstructed by processing the data set
referred to a buried basalt sphere as in Fig. 4.32. Copyright © 2013, Hindawi Publishing
Corporation, https://doi.org/10.1155/2013/610389.

Fig. 6.11. Depth slices of the contrast function reconstructed by processing the data set
referred to a PEC cube as in Fig. 4.33. Copyright © 2013, Hindawi Publishing Corporation,
https://doi.org/10.1155/2013/610389.
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Fig. 6.12. Depth slices of the contrast function reconstructed by processing the data set
referred to a buried PEC sphere as in Fig. 4.34.

6.7. Conclusion
In this chapter performances achievable applying an inverse tomo-

graphic algorithm on data gathered by means of GPR systems were
investigated aiming at characterizing specific features of metallic and
dielectric targets buried in a ground medium. An efficient inversion
technique, developed in the past years at the Institute of the Remote
Sensing for the Environment of Naples, was applied by processing and
imaging direct ad-hoc data produced from both measurements and
simulations. Most of the investigations were performed in challenging
practical conditions, with scatterers placed in the near-field region of
shallow subsurface andwith dimensions comparable to the typical wave-
lengths of the GPR signals. The results showed a very good capability of
proving a correct spatial localization of the targets, in conjunction with a
satisfactory prediction of size, shape and depth. This has been observed
even for realistic measurements in the presence of noise on data and
uncertainties about the background scenario. It is important to note that
the intrinsic limits related to the limited range of illumination by the
transmitting antenna and the finite bandwidth of the signal spectrum
do not anyway allow for the identification of finer geometrical details.
Valuable information have been provided to evaluate performances of
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the GPR systems designing in the framework of the Exomars mission,
since both the permittivity of hosting medium and buried target were
chosen to represent the subsurface of the red planet, where basalt rocks
of different shape and dimension is proven to be present. The capability
of the systems to provide useful 3D image of the considered subsurface
has been also investigated. A consistent analysis of results for canonical
metallic and dielectric scatterers has been possible by suitably designed a
two-dimensional scan domain in our virtual model of a monostatic GPR
systems. The angular spread of the radiated field by the GPR antenna,
particularly significant when operating in the near-field regions, has
been presented and discussed; in conjunction with the critical position
and dimension of the considered targets it represents an additional pa-
rameter which adversely affects the resolution features of the procedure.
Despite these aspects, it has been quantitatively tested that, starting from
an accurate set of forward data and using a stable reconstruction algo-
rithm, designed by suitably extending the two-dimensional inversion
procedure, this approach possesses a good capability to prove the cor-
rect spatial position of the reflecting parts of the targets, in conjunction
with a quite satisfactory prediction of its shape and size.
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7.1. Introduction

As discussed in the previous chapters, the main goal of the ExoMars
mission to Mars will be to drill the first 2 meters of the Martian subsur-
face and analyze the extracted samples on site, to look for evidence of
past or present life on the red planet. Although the final landing site has
not yet been defined, it is likely that the rover will land in the equatorial
belt in an area with soil conditions similar to those already examined by
other rovers (see the introduction at the Part II of this thesis for further
details). Consequently, the most probable geological scenario will be a
dry sandymaterial (as thatmodeled in the experimental setup described
in Section 4.1) whose surface is partially covered by variable-sized rocky
blocks. However, it is assumed that a similar density distribution of
the blocks also occurs in the shallow subsurface. In order to prevent
the dangerous and energy-consuming drilling of hidden hard rocks,
the geological nature of the first few meters of the subsoil should be
known in detail. As already discussed, among various potential instru-
ments, a GPR is considered as the best candidate to non-destructively
investigate the shallow Martian subsoil and to image the electromag-
netic discontinuities generated by any lithological variations. Generally
speaking the capability to successfully detect the presence of buried
rocks will mainly depend on the target/background electromagnetic
contrast and on the overall attenuation within the subsurface. Moreover,
the evaluation of the depth of such targets, as shown in Sections 4.2 and
4.4, will require the estimation of the electromagnetic properties of the
background soil, using some inversion procedure. In this context, the
present chapter aims at accurately modeling and numerically predicting
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the performances of the tomographic algorithm presented in Chapter 6
to localized and reconstruct buried object in a Martian-like scenario. In
particular, the potential improvements achievable by taking into account
that the scattering effect is not activated by an ideal source, but through
a real transmitting antenna having its own radiation pattern and pro-
ducing a certain near-field distribution, will be demonstrated. Thanks to
our fully numerical implementation based on an high-frequency electro-
magnetic Computer Aided Design (CAD) package (see Section 4.3), the
actual far- and near-field distribution of a Vivaldi antenna (see Section
3.5 for the relevant details) has suitably accounted for in the imaging
process. In addition, two figures as the spectral content and the point
spread functions [76],[80] are used to carry out a theoretical analysis,
which allows us to trace some general considerations on the expected
performances when directive antennas are used. Several examples are
provided to assess the benefits obtainable if the field radiated is taken
into account to determine the expression of the incident field and the
Green function, which are key elements for the model of the imaging
problem. The analysis is focused on canonical shapes possibly buried in
the near-field region of the considered antenna, with the goal of under-
standing the effect of the geometry and dimensions of the rocks as well
as the effect of target/background electromagnetic contrast. Even tough
we focus our attention on the numerical model of the Vivaldi antenna
developed in the framework of the Exomars mission, the proposed ap-
proach has general validity for different antennas and will be applied
on both metallic and dielectric objects by acting on the two algorithms
presented in Section 6.3 and 6.4. It is worth noting that these procedures
are nearly identical, one has only to relate the actual incident electric
field (i.e., that produced by the same antenna exploited to solve the
direct problem, a Vivaldi in this case) with the contrast function and the
incident magnetic field to the current flowing on the unknown metallic
target. We initially assume an exact knowledge of the probed medium,
then this assumption is removed and also the effects due to a not fully
accurate model of the investigated scenario are considered.

7.2. 2D numerical model of the incident field

Aswe have seen in Chapter 6, in the frequency domain the interaction
between the electromagnetic field radiated by the transmitting antenna
and an object buried in the investigation domain is governed by the scat-
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Fig. 7.1. 2D section of the 3D numerical domain where the incident field radiated by the
Vivaldi antenna is spatially and spectrally sampled. Copyright © 2017, IEEE.

tering equations. Under the Born approximation for a two-dimensional
geometry we can write

Es(x, xs, ω) = k2
b
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′
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′
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′
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′
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′
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In Section 6.3 the solutions of this equation has been developed following
standard approaches, widely studied and described in the specialized
literature [83, 84]. So far, the time harmonic incident field has always
been assumed as those generated by a line source radiating in free space,
since in this way themathematical complexity of the problem can be kept
as lower as possible. However, this choice introduces an approximation
that becomes less and less adequate for increasing directional features
of the actual antenna involved in the solutions of the direct problem.
Additionally, if the medium hosting the buried target is inhomogeneous
or the source is placed at a certain distance from the interface, a line
source radiating in free space turns out to be inaccurate to mathemat-
ically model the actual field impinging on the object. In Chapter 4 a
numerical model of a GPR system has been developed and extensively
tested for the solution of the direct scattering problem. A number of
antennas having different operational bandwidth and directional fea-
tures have been used as transmitting and receiving systems. Since a
full-wave solution makes everywhere available the electromagnetic field
inside the investigated medium, in the rectangular domain D where
the solution of the inverse problem is searched for we can spatially and
spectrally sampling the electric field radiated by the same antenna ex-
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Fig. 7.2. Spatial discretization of the investigated domain. A time-domain pulse radiated
by the Vivaldi antenna is shown for a fixed instant t0 on a vertical section of the 3D domain
presented in Fig. 7.1. Copyright © 2017, IEEE.

Fig. 7.3. Comparison between the near- and far-field distribution of the considered antenna;
see relevant legends for further details.

ploited to solve the relevant direct problem. As shown in Fig. 7.1 for
a two-dimensional implementation of the algorithm the longitudinal
plane lying just below the antenna is selected; thus the time-domain
electric field propagating inside this region is collected for a suitable
number of time instants and for each pixel constituting the discretized
domain shown in Fig. 7.2. By means of an ad-hoc MatLab routine a
‘big’ matrix is created and elaborated to achieve the frequency domain
electric (or magnetic for non-penetrable targets) field to be placed inside
the scattering equation. For the examples presented in the next sections,
as said a Vivaldi antenna designed to fulfill constraint imposed by the
Exomars Mission project will be always considered. Performances of
this advanced implementation of the microwave tomographic algorithm
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will be compared with those achieved through standard procedure (see
Section 6.3 for all the relevant details). Since the spatial distribution of
the electric (or magnetic) field radiated by a Vivaldi and a filamentary
antenna are rather different both in the near- and far-field region (see
Fig. 7.3 and relevant legend), substantial improvements are expected
when the actual field is considered instead of that produced by a line
source, simply modeled through an Hankel function [35].

7.3. Spectral performance analysis
In this section the effect introduced by the radiative behavior of the

transmitting and receiving antenna on the reconstruction capabilities
of the advanced version of the microwave tomographic algorithm will
be discussed. The spectral content of the object space [80] and the
regularized Point Spread Function (PSF) [76] are taken into account
to compare the performances achievable by using the Vivaldi antenna
with those provided by a line source. Generally speaking, the spectral
content sp is defined as the sum of the modulus of the discrete Fourier
transform of the singular vectors vn (see Section 6.3 for further details)
corresponding to the singular values that are above the fixed TSVD
threshold T, thus we can write

sp(kx, kz) =
T

∑
n=1

| ṽn(kx, kz)| (7.2)

where kx and kz are the spectral variables (with respect to x and z re-
spectively) and ṽn the two-dimensional discrete Fourier transform of vn.
Once the scenario and the measurement configuration have been fixed,
the spectral content gives an indication of the filtering effects introduced
by the regularized inversion of the matrix L, that in turn is related to
antenna (seen as a spatial filter), to the spectrum of the transmitted
signals and finally to the measurements configuration. Consequently,
it provides a global indication on the spatial harmonics of the targets
that can be hopefully retrieved by using the TSVD for a fixed value of
the regularization parameter. It is important to note, that the spectral
content does not give any information on how the reconstruction capa-
bility changes as a function of the actual location of the target inside
the investigated region. However, this kind of information can be ob-
tained by means of the regularized PSF, defined as the reconstruction
of a point-like target achieved by the TSVD regularization scheme. Ac-
cordingly, the regularized PSF of an impulse located at (x0, z0) is given
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Fig. 7.4. Singular values behavior for a Vivaldi antennas (solid line) and a line source
ones (dotted line) for a lossless soil with εr = 3.2. Copyright © 2017, IEEE.

as a function of the spatial variables (x, z)

PSF(x, z, x0, z0) =
T

∑
n=1

v∗
n(x0, z0)vn(x, z). (7.3)

Even though both spectral content and PSF are general tools to assess
the reconstruction capabilities of the tomographic algorithm, the de-
pendency of the matrix L on the features of the investigated domain as
well as on the adopted measurement configuration makes necessary to
introduce some hypothesis on the specific case at hand. Let us assume
that a homogeneous lossless soil with relative permittivity εb = 3.2 is
probed by moving an antenna system in M = 25 measurement points
evenly spaced of 3 cm along a line close to the air-soil interface. The
investigated domain D is centered with respect to the measurement line
and has an extent equal to 0.6 m along the x-axis and 0.4 along the z-axis;
it is located just below the air-soil interface, that in first approximation
is assumed as flat. The systems is monostatic and for each position on
the surface data are collected at Nf = 21 frequencies evenly spaced
of 125 MHz in the range from 500 MHz to 3 GHz (that coincides with
the operative bandwidth of the Vivaldi antenna described in Section
3.5). In Fig. 7.4 the behavior of the singular values of the matrix L
corresponding to Vivaldi and filamentary antennas have been presented.
It is very interesting to note that the curve referred to the line source
exhibits a change of slope at −30 dB, whereas that one corresponding
to the Vivaldi decreases uniformly. As a consequence, in this second
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Fig. 7.5. Spectral content referred to filamentary antennas on a lossless soil with εr = 3.2:
a) singular values lower than -60 dB filtered out; b) singular values lower than -30 dB
filtered out. Copyright © 2017, IEEE.

case, it is much more involved to define the essential dimension of the
object space; it is expected that the choice of the SVD threshold affects
significantly the achievable spatial resolution. As a first example in
Fig. 7.5 the spectral contents, evaluated implementing equation (7.2),
have been shown. Specifically, in Figs. 7.5(a) and 7.5(b) the results
obtained by filtering out all the singular values lower than -60 dB and
-30 dB with respect to the maximum one are presented. Analogously
Figs. 7.6(a),(b) show the spectral content for the operator related to the
considered Vivaldi antenna. In both cases pictures are normalized to
their maximum value in dB scale and allows us to observe that, whatever
the antenna system, the matrix L acts as a low-pass spatial filtering in
the transversal direction (i.e., along the measurements axis) and as a
band-pass spatial filter in depth (i.e., along the z-axis). However, it is
very important to note that the use of Vivaldi antennas implies a sig-
nificant reduction of the spectral plane coverage, involving a loss of
the achievable spatial resolution, mainly along the transverse direction.
In addition, the spectral plane coverage decreases dramatically when
the SVD threshold goes from -60 dB to - 30 dB and a significant loss of
resolution is expected. This behavior can be understood looking at the
near- and far-field distributions for these two kinds of radiators, already
reported in Fig. 7.3. Indeed, the directional features of the Vivaldi an-
tenna does not allow us to illuminate and collect the scattered signal for
a wide angle of observation; on the contrary, the line source is capable
to provide wider range of observations. These properties for the consid-
ered antenna in connection with the synthetic aperture principle simply
explain the spatial filtering behavior of the discretized operators. To
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Fig. 7.6. Spectral content referred to a Vivaldi antennas on lossless soil with εr = 3.2: a)
singular values lower than -60 dB filtered out; b) singular values lower than -30 dB filtered
out. Copyright © 2017, IEEE.

Fig. 7.7. Point-like targets for the numerical evaluation of the spread point function.

better understand this issues in the following the point spread function
of a group of pixels shown in Fig. 7.7 will be presented and discussed.
They represent four point-like target placed at a distance equal to 10
cm along the x-direction and 8 cm along the z-direction. By suitably
analyzing the images obtained changing the threshold T of the TSVD
regularization scheme and the permittivity of the background medium
we are able to outline some interesting properties of the two operators.
In particular, in Figs. 7.8(a)-(d) the images of the considered pixels
when the line source antenna is illuminating a homogeneous medium
described by a dielectric constant εr = 3.2 (same value considered in
the previous chapter, representing a sandy dry material) for thresholds
T equal to −15,−20,−30,−60 dB, respectively, have been presented;
in pictures (e)-(h) the same reconstruction for a background medium
made by free space have been reported. Let us highlight that the range
resolution (i.e., along the z-direction) of the systems is related to the
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bandwidth of transmitted pulse as follow

δz =
c

2B
(7.4)

being B the bandwidth and c the velocity of the electromagnetic wave in
the medium. On this basis, better resolution are expected for increasing
values of the permittivity of the medium and for lower values of the
selected threshold. Indeed, the lower is the number of singular values
σ that are filtered out, the better will be the resolution of the systems.
However, the choice of the threshold T is strictly related to the noise
level and to the degree of regularization that one has to introduced on
real data. Here for modeling purposes we consider T = −15,−20,−30
and −60 dB; but we have to consider that in many real cases usually we
cannot go beyond -30 dB. As expected the better reconstruction has been
obtained in Fig. 7.8(d), i.e., for εr = 3.2 and for the lowest value of the
threshold T = −60 dB. It is interesting to note that for the case (a) (i.e.,
εr = 3.2 and T = −15 dB) not enough information is available in the
data to successfully reconstruct each of the four pixels; finally, for the
results (e)-(g) the resolution of the radiated pulse in conjunction with
the chosen threshold T are not capable to solve the proposed targets.
Anyway, by considering a higher number of singular values (N ≈ 450 for
T = −60dB in Fig. 7.4) according to the expected resolution provided by
the pulse (δz = 6 cm) for the case (h) the four pixels can be finally solved.
An overall good result has been obtained along the horizontal direction,
whose resolution is controlled by the synthetic aperture principle (i.e.,
better resolution for wider angles of observation is obtained). In Fig.
7.9 the same pictures illuminating point-like targets with the Vivaldi
antenna have been reported. According to the spectral coverage already
presented in Fig. 7.6 the results showworse resolution. In case (a) again
not enough information is available and in cases (e)-(f) only a single big
spot is clearly visible. This is due to a limited angle of observation offered
by the directional nature of the considered antenna. It is important to
note, finally, that pictures (d) and (h) show reconstruction capabilities
comparable with those obtained in the previous cases: indeed, the total
number of singular values considered by imposing T = −60 dB is
approximately the same for both the discretized operators (see Fig. 7.4).
To give further details about this issues Figs. 7.11(a)-(d) show two
cuts along x and z axis of the regularized PSF, computed in this case
for a point-like target centered in the investigated domain, again for
the two antenna systems and different SVD thresholds. The numerical
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Fig. 7.8. Image of the four pixels in Fig. 7.7 illuminated by a line source antenna: from (a)
to (d) εr = 3.2 and T = −15,−20,−30 and −60 dB, respectively. From (e) to (h) εr = 1,
but T assumes the same values.
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Fig. 7.9. Image of the four pixels in Fig. 7.7 illuminated by a Vivaldi antenna: from (a) to
(d) εr = 3.2 and T = −15,−20,−30 and = −60 dB, respectively. From (e) to (h) εr = 1,
and T has the same values.
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Fig. 7.10. Horizontal and vertical sections of the PSF of pixel centered in the investigation
domain for both antennas working in ground-coupled configuration and in free-space.
Copyright © 2017, IEEE.

Fig. 7.11. Spectral content referred to filamentary antennas - free space: a) singular values
lower than -60 dB are filtered out; b) singular values lower than -30 dB are filtered out.
Copyright © 2017, IEEE.
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Fig. 7.12. Spectral content referred to Vivaldi antennas - free space: a) singular values
lower than -60 dB are filtered out; b) singular values lower than -30 dB are filtered out.
Copyright © 2017, IEEE.

values of transversal and range resolution can be easily estimated by
computing, as an example, the width of the main lobe at 0.5 times its
normalized maximum. It is possible to observe that, if data are gathered
by means of filamentary antennas, the same values of range and depth
resolutions are achieved for the two considered SVD thresholds. Hence,
by filtering out all those singular values less than 30 dB with respect
to the maximum one, it is possible to obtain a stable solution without
affecting the resolution of the reconstruction. On the contrary, when a
Vivaldi antennas is used, one should consider as many singular values
as possible, and thus the need to assure a stable solution implies a
non-negligible loss of resolution, even if data are affected by a low
amount of noise. As already discussed, this behavior is related to the
directive nature of the Vivaldi radiation pattern and occurs whatever
is the permittivity of the probed medium. In Fig. 7.10 also sections of
the PSF function are presented for the same antenna radiating in free
space; as discussed previously a loss of resolution in any condition is
always manifested. To corroborate this results, in Fig. 7.11 the spectral
coverage for antennas radiating in free space has been presented. In
particular, one can observe that, for the two considered SVD thresholds,
the transversal resolution is the same while the range resolution changes
slightly if filamentary antennas are adopted. Conversely, in the case of
Vivaldi radiator, while a slight variation of the transverse resolution is
observed, the other one gets worse significantly.

7.4. Reconstruction of PEC scatterers
To assess the reconstruction capabilities when the real radiation pat-

tern of the antenna is considered in the implementation of the tomo-
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(a) (b)

Fig. 7.13. (a) Line source processing, depth 22 cm, T =-20 dB; (b) Vivaldi processing,
depth 22 cm, T = -20 dB. Copyright © 2017, IEEE.

(a) (b)

Fig. 7.14. (a) PEC cube with our advanced implementation: T = -20 dB (a), T = -25 dB
(b). Copyright © 2017, IEEE.

graphic algorithm and to extensively compare the results with those
provided by the standard implementation, several tests on metallic and
dielectric targets have been developed. In this section different canonical
shapes made of perfect electric conductor will be considered, all referred
to synthetic data gathered by means of a Vivaldi antennas moved along
a straight line in M = 25 measurement points spaced of 3 cm (for further
details about the numerical setup see Section 3.5 and 4.3). The antenna
works in the frequency range from 0.5 to 3 GHz, evenly sampled with
Nf = 21 frequencies (∆ f = 125 MHz). The backgroundmedium is loss-
less and homogeneous with εr = 3.2; the imaging procedure is based
on the Kirchhoff approximation, further detail can be found in Section
6.4.

A first example is presented in Fig. 7.13, where a PEC cube having
side l = 13 cm has been buried at 22 cm from the air/soil interface.
Specifically the tomographic images achieved by considering or not
the actual radiative behavior of the Vivaldi antenna are shown in Figs.
7.13(a) and (b), respectively. For all the examples outlined here and
in the following we will talk about ‘Line Source Processing’ (LSP) or
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(a) (b)

Fig. 7.15. (a) Shifted cube, line source processing, depth 12 cm, T = -20 dB (b) Shifted
cube, Vivaldi processing, depth 12 cm, T = -20 dB. Copyright © 2017, IEEE.

(a) (b)

Fig. 7.16. (a) PEC cylinder (diameter d = 13 cm, length l = 13 cm) T = −20 dB, conven-
tional algorithm (b) PEC cylinder (diameter d = 13 cm, length l = 13 cm) T = −20 dB.
Copyright © 2017, IEEE.

(a) (b)

Fig. 7.17. Same results as in Fig. 7.16 but for T = −30 dB.
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(a) (b)

Fig. 7.18. (a) Long PEC Cylinder (diameter d = 13 cm, length l = 30 cm) T = −25 dB (b)
Long PEC Cylinder (diameter d = 13 cm, length l = 30 cm) T = −25 dB.

‘standard approach’ meaning that synthetic data have been obtained
by solving the direct problem with the Vivaldi antenna and putting
inside the algorithm (extensively illustrated in Chapter 6) the field
radiated by a filamentary source radiating in a homogeneous space, and
about ‘Vivaldi Processing’ (VS) or ‘advanced approach’ to indicate that
the actual field radiated by the antenna is considered for the imaging
procedure (see Section 7.2). For the example at hand it is possible to state
that amuch better reconstruction of the upper side of the target (the only
one illuminated, since the object is not penetrable) has been obtained.
It is worth noting that longitudinal and transverse resolutions are the
same for both standard and advanced approach and are comparable
with the ideal resolution limit δz = 3.35 cm. This is in contrast with
what discussed in previous section, since a worse transverse resolution
should be found for the advanced approach. However, this loss has
been compensated by introducing an accurate model of the incident
field inside the scattering equation (7.1), allowing us to rigorously assess
the equality between the scattered field and the mathematical model
of investigated scenario. In Fig. 7.14 a further example is reported
for the same cube buried at 18 cm from the surface, again in the near-
field region of the considered antenna. The reconstruction for both
pictures (a) and (b) are obtained by means of the advanced approach
and are related to different choices of the SVD threshold. As expected
an higher value for T improves the achieved range resolution, becoming
closer to the ideal limit δz. To assess the capabilities of our code to
reconstruct also objects placed in the lateral region of the probed area,
in Fig. 7.15 reconstructions obtained for a cube buried 12 cm from the
interface is presented. Once again, by comparing Figs. 7.15(a) and
(b) one can state that the image achieved with the advanced approach
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(Fig. 7.15(b)) is manifestly better than those generated by the standard
implementation (Fig. 7.15(a)). It is interesting to note that this last
result is noticeable worse with respect to those obtained for centered
object; this is because the error introduced by filamentary current in the
lateral region is bigger than that in the center (just below the antenna);
consequently also the distribution of the singular values turn out to
be modified. To further analyze the reconstruction capabilities of the
proposed advanced approach ametallic cylinder having diameter d = 13
cm and a length l = 13 m is considered in the following. In Figs. 7.16(a)
and (b) the reconstruction generated with conventional and advanced
approaches have been shown. It is very interesting to note that even for
T = -20 dB the results obtained by accounting for the actual distribution
of the radiated field are significantly different; in addition by enforcing
T = −30 dB (Figs. 7.17(a) and (b)) a further improvement in the
reconstruction of the curved shape of the cylinder is clearly visible.

As a final results, in Fig. 7.18 the reconstruction obtained with the
advanced approach for a metallic cylinder having again diameter d = 13
cm but length l = 30 cm is presented with aim to analyzing if the three-
dimensional nature of the buried object is able to affect the performances
of the imaging procedure, that is inherently 2D. As is clearly visible, the
results are not affected by this approximation, being the curved section
of the cylinder rather well defined or not different from the shorter object
just presented.

7.5. Reconstruction of dielectric scatterers
In this section images of dielectric targets having the same canoni-

cal shapes adopted in the previous section will be presented. All the
examples provided are based on the assumption that the background
medium is exactly known (homogeneous lossless soil with εr = 3.2).
Once again we refer to the standard algorithm, already introduced and
applied to experimental as well as numerical data in Section 6.3, and to
an advanced approach. The images achieved for a basalt cube (εr = 6.7)
having side l = 13 cm and placed at 18 cm below the air-soil interface
by considering and not the actual field distribution of the antennas are
shown in Fig. 7.19. These results corroborate that, also for this new class
of objects, the use of an accurate model of the antenna allows for a more
defined localization of the upper side of the cube as well as of the lower
one, provided that the dielectric contrast between hosting medium and



186 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

(a) (b)

Fig. 7.19. (a) Basalt cube, conventional algorithm, depth 18cm, T = −22 dB (b) Basalt
cube, advanced approach, depth 18cm, T = −22 dB. Copyright © 2017, IEEE.

(a) (b)

Fig. 7.20. As in Fig. 7.19 but for T = −26 dB.

target are properly taken into account. As for the metallic objects this
result suggests that the capability to accurately model the incident field
and consequently to rigorously respect the integral scattering equation,
allows us to neglect loss of resolution and to better image themost impor-
tant features of the dielectric inclusions. A further example is reported
in Fig. 7.20 for the same basalt cube (same depth and dimension) but
modifying the SVD threshold T, equal to -26 dB in this case. In Fig. 7.21
a basalt cylinder having the same dimension to the one presented in
Fig. 7.16 is considered. Figs. (a) and (b) show reconstructions achieved
with standard and advanced approach, respectively. As expected, the
latter shows a more focused image and a better reconstruction of the
curved face of the cylinder. It is finally important to note that in all the
reconstructions presented in this section the lower face of the probed
object results always down-shifted with respect to its actual position;
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(a) (b)

Fig. 7.21. (a) Basalt cylinder, conventional algorithm, depth 18cm, T = −25 dB (b) Basalt
cylinder, advanced approach, depth 18cm, T = −25 dB.

this is because the algorithm ‘see’ a wave that propagates in a dielectric
medium having εr = 3.2, hence at a velocity vb = c/

√
(3.2) even when

it penetrates the basalt medium, where its actual velocity is lower, being
vt = c/

√
(6.7). This delay cannot be automatically compensated by the

algorithm and can be anyway dependent on the shape of the inclusion.

7.6. Contact less configuration
For a wide variety of applications the GPR instruments could not be

able to operate in ground-coupled configuration. Just to give a practical
example, in the framework of the Exomars mission it is likely that the
rover will land in an area with soil conditions similar to those already ex-
amined by other rovers like Pathfinder, Spirit, andOpportunity [99, 100],
and suitably modeled at the geophysics lab of the ‘Rome Tre’ University.
Consequently, as said, the most probable geological scenario will be a
dry loose material at surface which is partially covered by variable-sized
rocky blocks; in this condition the GPR system will presumably operate
with an antenna raised from the surface of about 20 cm [46]. However,
also for a number of civil and geophysical application such a configura-
tion could be desired, as an example when the system is placed on-board
mobile platforms. In this condition if the incident electric field is not
properly modeled, detection and localization of the buried object could
be not accurately performed. In the framework of the standard approach,
a spectral representation for the line source has been considered in the
past, resulting anyway inadequate to represent the directional behavior
of the Vivaldi antenna. For these reasons our advanced approach has



188 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

Fig. 7.22. Simulated scenario for a Vivaldi antenna raised of 20 cm form the air-soil
interface. A canonical shaped object is buried in the lower half-space.

(a) (b)

Fig. 7.23. (a) PEC cube, depth 9 cm, advanced implementation: (a) T = −20 dB, (b)
T = −25 dB.

(a) (b)

Fig. 7.24. (a) PEC cube, depth 18 cm, advanced implementation: (a) T = −20 dB, (b)
T = −25 dB.
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(a) (b)

Fig. 7.25. (a) Basalt cube, depth 18 cm, advanced implementation: (a) T = −18 dB, (b)
T = −25 dB.

been extended to this new configuration (see Fig. 7.22). In Figs. 7.23
and 7.24 images of the same metallic cube considered in the previous
section is presented for different depths, equal to 9 and 18 cm. In Fig.
7.25 the reconstruction for a basalt cube buried at 18 cm is reported. All
the objects have been well located and reconstructed, confirming the
accuracy of the proposed advanced algorithm.

7.7. Non-ideal effects
Since the assumption of exactly knowing the features of the probed

medium may be considered unrealistic, in this Section some examples
are provided when several uncertainties in the soil parameters are in-
troduced. Firstly, the effect on the reconstruction of an error of about
10% on the estimation of the dielectric constant of the hosting medium
is considered. Practically, the direct problem is solved choosing εr = 3.2,
whereas the error is implemented in the evaluation of the incident field.
Also a number of rough profiles for the air/soil interface, so far assumed
perfectly flat, are designed and implemented. Finally, the presence of one
or two buried interfaces to make the hosting medium non-homogeneous
(layered) will be investigated.

7.7.1. Error on the permittivity estimation
In Fig. 7.26 the image achieved by considering εrn = 3.2 (named

‘nominal’ permittivity) in the solution of the direct problem and εra = 2.8
(named ‘actual’ permittivity) for the evaluation of the incident field is
presented. As expected, both the reconstructions, case (a) for advanced
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(a) (b)

Fig. 7.26. (a) Basalt cube, Vivaldi processing. Nominal εrn = 3.2 and actual εra = 2.8. (b)
Line processing, nominal εrn = 3.2, actual εra = 2.8. Copyright © 2017, IEEE.

(a) (b)

Fig. 7.27. (a) Basalt cube, Vivaldi processing. Nominal εrn = 3.2 and actual εra = 3.6. (b)
Line processing, nominal εrn = 3.2, actual εra = 3.6.

implementation and (b) for conventional algorithm, show a loss of range
resolution, particularly evident for the first case. Anyway, once again
the advanced implementation allows us to obtain a quite satisfactory
reconstruction of both lower and upper faces.

In Fig. 7.27 the reconstruction achieved by imposing εrn = 3.2 and
εra = 3.6 is reported. Being εra > εrn non-appreciable loss of resolution
is visible but an important defocusing effect clearly affecting the lower
face of the basalt cube is present. It is important to note that for both
these results the reconstruction generated by means of the advanced
implementation is manifestly better with respect to those related to the
conventional algorithm.
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Fig. 7.28. Inhomogeneous background medium made by three interfaced flat layers.

7.7.2. Inhomogeneous ground medium
For many real application the background medium cannot be con-

sidered as homogeneous. The first step toward a more realistic model is
usually made by two or more interfaced dielectric media, whose permit-
tivity and thickness can be gradually varied. Even though this scenario
is rather common, the analytical model of the relevant incident field
can become much more involved. As a matter of fact, the problem is
further complicated by the necessity of accounting for the discontinuities
between different layers, which involve additional interactions between
the scatterers and all the interfaces, that are not present in the case of a
homogeneous background. In addition, the integral equations modeling
the problem involve the evaluation of Sommerfeld-like integrals so that
the computational burden increases significantly. However, full-wave so-
lutions are not affected by this kind of complication and one can account
for arbitrary discontinuities inside the hosting medium. In the following
two different cases will described to assess the overall soundness of the
proposed advanced approach when a certain degree of inhomogeneities
is considered. As an example in Fig. 7.28 a three-layers configuration
is presented, whose dielectric permittivity starting from the highest up
to the lowest are equal to 3.2, 2.2 and 4.5, respectively. The first inter-
face (air-soil) is placed at 0 cm, whereas the second and the third one
are at 12 and 18 cm, respectively. In Fig. 7.29 two images achieved by
considering twomedia having permittivity εr = 3.2 and εr = 2.2 are pre-
sented; the first interface as for the picture in Fig. 7.28 representing three
layers, is placed at 0 cm, the second one at 12 cm. Both the advanced
procedure, capable to account for the discontinuities, and the standard
implementation have been reported for the same basalt cube considered
so far (see Fig. 7.19). Even though the second interface is retrieved in
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(a) (b)

Fig. 7.29. (a) Basalt cube, Vivaldi Processing; (b) Basalt cube line processing. For both
results the threshold is T = −20 dB.

(a) (b)

Fig. 7.30. (a) Basalt cube, Vivaldi Processing; (b) Basalt cube line processing.For both the
results the threshold T = −20 dB.

the right position, as expected the overall results is rather deteriorated
and the lower face of the object is clearly defocused. Anyway thanks
to our advanced algorithm we are still able to localize and qualitatively
reconstruct the shape of the buried object. In Fig. 7.30 the reconstruction
of the scenario presented in Fig. 7.28 has been reported. The presence ot
three layers introduce a much more complex interaction among object
and hosting medium. By comparing Figs. 7.29(a) and (b) it is clearly
visible that by processing data with the actual incident field allows us
to better localize and qualitatively reconstruct the first interface and the
upper face of the object. In both cases the lower interface is no longer
retrieved but the advanced approach is able to localize even the second
interface.
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Fig. 7.31. GPR Numerical setup: roughness effects.

7.7.3. Surface roughness
To assess the capabilities of the proposed algorithm to locate and

reconstruct targets buried under an irregular surface in the following
a number of full-wave simulations accounting for a certain degree of
roughness will be discussed. In particular two classes of profiles have
been designed with a horizontal variation comparable with the probing
wavelength (λb ≈ 10 cm for the case at hand). Namely, a case ‘A’ having
a vertical peak-to-peak variation equal to 20 cm and a case ‘B’ whose
vertical peak-to-peak variation is equal to 10 cm have been selected. In-
side this class two different horizontal variations have been designed:
namely a case A1 and A2 having a horizontal faster and lower variation
with respect λb. More precisely, for the model A1 a variation of a half-
wave occurs in 10 cm, whereas for the A2 a full wave variation occurs
in the same interval. Analogously the class B can be split into the two
subclasses B1 and B2 associating at each of them the same horizontal
variations. To give a practical example in Fig. 7.31 the roughness profile
B1 has been applied to the air/soil interface of the numerical model.
Also the antenna and a buried basalt cube are clearly visible. In Fig
7.32 a first example is presented. Specifically, in Fig. 7.32(a) the recon-
struction of a basalt cube buried at 21 cm from the surface is reported
to compare the results shown in Fig. 7.32(b) obtained by applying a
rough profile A1 (peak-to-peak vertical variation equal to 20 cm, slow
horizontal variation). A loss of resolution is visible as well as defocusing
effects at the lower basalt/sand interface. However a rather good result
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(a) (b)

Fig. 7.32. (a) Basalt cube, Vivaldi processing: (a) no roughness, (b) rough profile A1 (T
= -20 dB).

(a) (b)

Fig. 7.33. Basalt cube, line source processing : (a) flat interface, (b) rough profile A1
(T = −20 dB).
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(a) (b)

Fig. 7.34. (a) Basalt cube Vivaldi processing, profile A2, T = −20 dB; (b) Basalt cube line
source processing, profile A2, T = −20 dB.

(a) (b)

Fig. 7.35. (a) Basalt cube, Vivaldi processing profile A2, T = −25 dB; (b) Basalt cube, line
source processing profile A2 T = −25 dB.

has been obtained, allowing us to assess an overall soundness for the
proposed algorithm. In Fig. 7.33 the same result are presented for a
conventional implementation, showing a manifestly worse results in
presence of the rough interface. Similar considerations can be done
for the reconstruction presented in Figs. 7.34, 7.35, 7.36 and 7.37 (see
captions for all the relevant details). As general comments it is possi-
ble to state that the advanced approach, being capable to account for
the actual field radiated by the numerical antenna, performs quite well
in presence of both light (B1) and heavy (A2) roughness profiles. In
addition, the achieved images are always manifestly better than those
produced through the conventional implementation.
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(a) (b)

Fig. 7.36. (a) Basalt cube, Vivaldi source processing B1, T = −20 dB; (b) Basalt cube, line
source processing, profile B1, T = −20 dB.

(a) (b)

Fig. 7.37. (a) Basalt cube Vivaldi source processing B2, T = −20 dB; (b) Basalt cube line
source processing profile B2, T = −20 dB.
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7.8. Multipath effects
As a further interesting application, let us suppose that two metallic

cubes like those ones considered so far are in the investigated domain at
a certain distance far one to the other along the measurement direction
(i.e., x-direction). Two different antennas have been used to solve the di-
rect problem, the Vivaldi antenna considered so far and a folded loaded
dipole (see Fig. 7.38), whose design is outlined in Section 3.3, having a
radiation pattern very similar to that one of a filamentary source (i.e.,
nearly omnidirectional). As shown in Fig. 7.38, when two targets are
placed at short distance, besides the direct scattered contribute from each
of the two objects, also a further signal produced by mutual-coupling
phenomena may occur. Since this multipath has an apparent length
greater than those of the direct signals, a further deeper fictitious ob-
ject may be visible inside the investigated domain. To corroborate this
hypothesis, in Fig. 7.39 the reconstruction obtained for two metallic
cubes having sides l = 13 cm, placed at 25 cm from the surface and
at a side-to-side distance equal to 10 cm, is presented. As expected,
two main spots in the right position but also a smaller contribution in
the central deeper region of the retrieved image are clearly visible. It
is due to multipaths that occur in the investigated scenario in conjunc-
tion with the omnidirectional nature of the considered antenna, that
is able to illuminate buried target for a wide angular region. To better
understand this mechanism in Figs. 7.40(a) and (b) two reconstructions
obtained for the same scenario but implementing two different side-
to-side distances for the buried metallic cubes, equal to 15 and 20 cm
respectively, have been presented. As expected, the central deeper spot
representing a so-called ‘ghost object’ becomes less strong and more

Fig. 7.38. Loaded folded dipole antenna, as those described in Sec. 3.3, placed at the
air/soil interface.
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(a) (b)

Fig. 7.39. (a) Reconstruction obtained with a conventional implementation of the tomo-
graphic algorithm applied to data generated through folded loaded dipole (T = −20 dB).
Two PEC cubes at a distance side-to-side of 10 cm at depth equal to 25 cm are considered;
(b) Same configuration but different threshold, T = −25 dB.

(a) (b)

Fig. 7.40. Reconstruction obtainedwith a conventional implementation of the tomographic
algorithm applied to data generated through folded loaded dipole (T = −20 dB). Two
PEC cubes at distances side-to-side of 15 cm (a) and 20 cm (b) are considered.
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(a) (b)

Fig. 7.41. Reconstruction obtained considering Vivaldi antenna (T = −20 dB). PEC
cubes are at distances side-to-side of 15 cm and at depth equal to 18 cm: (a) Standard
implementation, (b) Advanced approach. Copyright © 2017, IEEE.

(a) (b)

Fig. 7.42. Reconstruction obtained with standard implementation of the tomographic
algorithm applied to data generated through Vivaldi antenna (T = −20 dB). Two PEC
cubes at distances side-to-side of 10 cm (a) and 15 cm (b), as in Fig. 7.40, are considered.
Copyright © 2017, IEEE.

deep, confirming the genesis of the observed phenomenon. From a
theoretical viewpoint a ghost object may be related to the omnidirec-
tional features of the considered antenna. Indeed, during the scanning
procedure, when the transmitting antenna is placed just on the first of
the two buried targets it is able to illuminate and collect also the coupled
signal produced by the second one. Consequently, if a more directive
antenna is exploited, this phenomenon may be drastically reduced. To
confirm this assumption in Fig. 7.41(a) and (b) the images generated
illuminating with a Vivaldi antenna two cubes buried at 9 cm from the
air/soil interface and processing with both standard and advanced im-
plementations are presented. As expected, both the reconstructions do
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not show ghost objects; in addition the upper face of the metallic cube is
better reconstructed when the actual field radiated by the considered
directive antenna is implemented in the scattering equation. In Fig. 7.42,
finally, the same result for two cubes buried at 25 cm from the surface
is reported. By comparing this reconstruction with those in Fig. 7.40
one can see as an antenna having a rather directive pattern is able to
eliminate the contribution due to multipaths phenomena. It is worth
noting that these results show different range resolution because of the
operative bandwidth of the antennas; namely the folded loaded dipole
is matched inside an interval ranging from 0.5 to 1.5 GHz, whereas the
other one between 0.5 up to 3 GHz (see Chapter 3 for further details).

7.9. 3D numerical model of the incident field

Even though the scattering phenomenon is inherently three-dimensional,
as we have done so far, to make simpler the implementation of the algo-
rithm, in first approximation a two-dimensional procedure is developed.
In this section, by starting from the relevant 3D implementation outlined
in Sections 4.5 and 6.5, an advanced 3D microwave tomographic algo-
rithm will be further developed and tested. As extensively described
in Section 7.2 of this Chapter for the 2D case, also here the electric or
magnetic field radiated by a Vivaldi antenna is spatially and spectrally
sampled on a number of evenly spaced parallel plane, as shown in Fig.
7.43.

Thus an overall ‘big matrix’ representing both the frequency domain
incident field and the relevant Green function is suitably arranged to
be inserted in the discretized operator modeling the scenario. Further
detail about the standard implementation of the 3D microwave tomo-
graphic algorithm can be found in Section 6.5. However, as expected, the
problem at hand becomes sensibly more complex with respect to the 2D
approach; it can be anyway managed by means of a MatLab routine. All
details about the numerical implementation on the 3D surveys can be
found in Section 4.5, where a printed monopole antenna is considered.
As transmitting system we use here a linear polarized Vivaldi antenna,
that radiates and collects Gaussian pulses at each point of the 2D grid
place just above the air/soil interface, already presented in Fig. 4.24.
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y
x

z

Fig. 7.43. 3D numerical domain investigated by the Vivaldi antenna. A discretization is
introduced also along the third dimension. The incident field is sampled on each 2D plane
both in frequency and spatial domains.

7.9.1. Metallic cube
In this subsection 3D tomographic reconstructions achieved with

standard and advanced implementations of the algorithm for a metal-
lic cube having side l = 13 cm buried at 18 from the air/soil interface
will be presented. In Figs. 7.44 and 7.45 a 3D image and a number of
evenly spaced deep slices (section plane along the z axis) are respec-
tively reported. They have been post-processed by implementing the
field produced by an ideal short dipole, that gives only an approximate
representation of the field radiated by the actual Vivaldi antenna. In-
deed, our advanced implementation give rises to the image presented in
Figs. 7.46 and 7.47: as is clearly visible, the upper face (the only one illu-
minated by the impinging wave) is quite well reconstructed, whereas in
the previous case it was just detected and localized. Besides, an analysis
of the depth slices allow us to retrieve also some useful information
about the internal nature of the probed scatterer, whose rectangular
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Fig. 7.44. 3D reconstruction of a PEC cube having side 13 cm placed at 18 cm with
conventional tomographic algorithm.

Fig. 7.45. Deep slices (along variable z) of a PEC cube having side 13 cm placed at 18 cm
with conventional tomographic algorithm.

Fig. 7.46. 3D reconstruction of a PEC cube having side 13 cm placed at 18 cm obtained
with the advanced implementation of the considered tomographic algorithm.
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Fig. 7.47. Deep slices (along z) of a PEC cube having side 13 cm placed at 18 cm obtained
with the advanced implementation of the considered tomographic algorithm.

section in this case is manifest.

7.9.2. Dielectric cube
Also a penetrable dielectric target has been investigated. 3D recon-

structions achieved with the conventional algorithm for a basalt cube
having side l = 13 cm placed at depth equal to 18 cm are presented in
Figs. 7.48 and 7.49.

The images generated by accounting for the actual incident field are
reported in Figs. 7.50 and 7.51. As for the previous case our advanced
approach produces a manifestly better result; indeed both upper and
lower sides of the penetrable target are well localized and reconstructed
and the cuts along the z-direction show much more defined sections.
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Fig. 7.48. 3D reconstruction of a basalt cube having side 13 cm placed at 18 cm with the
conventional tomographic algorithm.

Fig. 7.49. Deep slices (along z) of a basalt cube having side 13 cm placed at of 18 cm with
the conventional tomographic algorithm.
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Fig. 7.50. Three-dimensional reconstruction of a basalt cube having side 13 cm placed at 18
cm obtained with the advanced implementation of the considered tomographic algorithm.

Fig. 7.51. Deep slices (along z) of a basalt cube having side 13 cm placed at 18 cm obtained
with the advanced implementation of the considered tomographic algorithm.





Part IV

Reconfigurable Leaky-Wave Antennas





Introduction

In the last years an increasing demand of efficient and reliable mobil-
ity connections has led the scientific community to investigate new an-
tenna solutions. Indeed, performances of satellite tracking applications,
advanced radars, and telecommunication systems are closely related
to the antenna features and performance. Just to give a practical exam-
ple, one of the most extincting challenges of the last decade is to give
wide diffusion of high-quality wide band connections through mobile
platforms (trains and airplanes). This challenging goal entails design of
communication systems based on cutting-edge technology, most of all
concerning the radiation elements, since low-cost and compact antennas
capable to perform electronic scanning on both the azimuthal and eleva-
tion plan have become indispensable. In this scenario, typical solutions
represented by reflector antennas are too bulky and involve problems of
mechanical movement, whereas phased array need sophisticated elec-
tronic hardware, leading to expensive devices. Additionally, the feeding
network can become very lossy at high frequencies, up to reduce the
overall gain introduced by the array. For these reasons, Reflectarray
and Transmittarray antennas, Metalenses and Reconfigurable Partially
Reflecting Surfaces (PRS) for Fabry-Perot cavity antennas are becoming
very attractive solutions.

Alternative promising technology are also represented by Micro-
Electro-Mechanical Systems (MEMS) and MEMS varactors, since they
may represent key components for reconfigurable radiatingmeta-surfaces.
In particular, the latter can be used as tunable elements to obtain contin-
uously tunable capacitance per unit area so as to reconfigure and scan
the radiated beam.
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It is very interesting to note that diagnosis, modeling and synthesis
of reconfigurable antennas are one of the field not yet addressed in a
systematic way in the specialized literature. Talking about reconfig-
urable antenna systems one must think to all kinds of project solutions
that provide beam scanning capability with highly directive patterns,
capable to keep good performance inside the desired operational band-
width. A number of different approaches can be exploited to design
highly directive antennas; as highlighted previously, the most known
and technologically well assessed are reflector antennas. However, as
originally shown in [101], high-directional systems can be also obtained
by embedding simple sources inside a parallel-plane cavity whose upper
wall is made by a Partially Reflecting Surface. This results in Fabry-Perot
cavity antennas (FPCAs), a planar class of radiator that has received
considerable attention in recent years. In fact, they shows a number of
very attractive features, such as feeding simplicity, low profile, low cost
and high directivity. Simple printed dipole or a slot etched in the ground
plane can be considered as feeding systems, whose role essentially con-
sists in launching a leaky modes responsible for the radiation. Typically,
FPCAs are capable to produce pencil beams at broadside, which can be
transformed into conical beamswith variable scan angle by changing the
operating frequency. An open problem in their design is the possibility
of scanning the beam at a fixed frequency, or more generally to shape or
reconfigure the pattern features. In this thesis a planar structure capable
to excite a pair of azimuthally symmetric TE and TM leaky waves with
equal values of the phase attenuation constants and of its complex am-
plitude has been designed, with the aim of obtaining a reconfigurable
circularly polarized omni-directional conical beam pointing at a desired
angle. We consider a FPCAmade by a parallel-plate waveguide in which
the upper plate is perturbed by a series of concentric annular rings hav-
ing slots along both the azimuthal and radial direction. A vertical probe
may be used to excite the TM part of the field, whereas a planar current
loop can be used to excite the TE: The resulting pair of operating leaky
modes would be the perturbed versions of the degenerate TM1/TE1

modes of a parallel-plate waveguide (PPW).
Since no modal theory is available for the annular geometry (due to

the lack of translational invariance), the antenna design must be based
on the analysis of a linearized version of the structure, consisting of a
PPW with periodic infinite slots on the upper plate, whose configura-
tions can be suitable chosen to design and equalize the leaky modes
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responsible for the radiation. Furthermore, if the period of the PRS
is much smaller than the shortest wavelength, the upper plate can be
homogenized and represented by an equivalent susceptance. It is worth
noting that an ad-hoc Method od Moments has been also developed to
efficiently characterize this structure; in particular, an integral-equation
formulation for the problem in the presence of a infinite number of slots
has been developed, capable to efficiently derive the radiation pattern
of the antenna excited by idealized sources. Further details and the
mathematical developments can be found in [102]. In the next chap-
ters both modal and radiative properties of the proposed antenna will
be presented; specifically, an ad-hoc novel equivalent-network formal-
ism will be introduced to model a PPW partially loaded with a Wire
Medium (WM) slab, that has been suitable sized to perturb the propa-
gation of the TEM mode leaving unchanged those of the TE1 and TM1

degenerating modes, which is of interest for the realization of FPCA
with configurable (in term of polarization features) conical patterns
and wide angular scanning ranges. The peculiar anisotropic and spa-
tially dispersive nature of the WM requires a suitable generalization
of the standard network approaches in order to take into account the
existence of an additional wave inside the WM layers. The proposed
transmission-line formulation allows for a convenient determination
of the dispersion features, radiation effects, and other characteristics
that are not rapidly obtained by other methods based on a standard
procedure. All the presented numerical results have been validated by
means of a full-wave approach implemented on a commercial CAD tool
as well as through a conventional field-matching approach.





8. Modal Analysis of a Wire-Medium Loaded
Structure

8.1. Introduction
It is well known that a parallel plate waveguide (PPW) supports a

TEM mode, which always propagates inside the structure. If a Fabry-
Perot cavity antennas is derived introducing a High Impedance Surface
(HIS) in place of the upper metallic plate, a perturbed version of the
TEMmode can become leaky and, whenever properly excited, it radiates
in the angular region close to endfire. Hence, if two independent trans-
verse electric andmagnetic leaky modes related to the perturbed version
of the TE/TM degenerated mode of the relevant PPW are exploited to
produce a dual-pol conical beam, undesired radiation of the TEM mode
has to be suppressed, at least inside the operational frequency band.
An interesting strategy consists in placing a wire medium (WM) slab
with vertically aligned wires at the center of the considered structure
with the aim of heavily perturbing the transverse field configuration of
the TEM mode, leaving almost unchanged those of the TE1 and TM1.
Theoretically, as shown in Fig. 8.1, this is possible thanks to the peculiar
transverse field configuration of the modes at hand; indeed, being the
TEM vertically oriented and constant along the section, it may be effec-
tively perturbed by the presence of a wire medium slab centered instead
in the null of the TM1 modes. In addition, it results uncoupled with the
TE1 mode, whose electric field is normal to the extension of wires.

The class of structures addressed in this thesis are constituted by an
air-filled PPW which includes one or more WM layers with vertically
aligned wires (see Fig. 8.2). Time-harmonic fields are considered, as-
suming any relevantwavelength bemuch larger than thewire periodicity
inside the WM layers, hence the resulting model can be homogenized.
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(a) (b)

(c)

Fig. 8.1. Tranverse configuration of the electric field of an air-filled parallel platewaveguide:
configuration of the TEM (a), TM1 (b), and TM2 (c) modes.

Fig. 8.2. Parallel-plate waveguide having height h symmetrically loaded with a wire
medium slab having thickness t.
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The modal properties of such structures are studied, whilst the re-
lated radiative properties will be extensively analyzed in the next chap-
ter by considering excitation by elementary sources. To this aim, the
electromagnetic problem related to the structure at hand is solved by
considering a full-wave approach, namely by directly enforcing the
boundary condition on the Maxwell’s equations (applying a so-called
field matching technique) as well as by introducing a novel efficient net-
work formalism, representing each air/wire medium interface by means
of a three-port equivalent network. In fact, the peculiar anisotropic and
spatially dispersive nature of the WM requires a suitable generalization
of the standard approaches used for the analysis of multilayered media,
in order to take into account the existence of an additional wave inside
the WM layers [103]. In this context, the possibility of suppressing
TEM mode propagation through WM loading will be addressed. As
said, this allows to recast the unimodal regime for obtaining wideband
leaky-wave radiation from the TM1 mode in open configurations. In
addition, with reference to an azimuthal symmetric configuration hav-
ing both radial and annular slots (transversal and longitudinal for the
associated linearized structure), the possibility of equalizing the phase
constant of the involved TE and TM leaky modes is shown. This is of in-
terest for the realization of FPCA antennas with conical pattern showing
reconfigurable polarization features [106].

It is interesting to note that planar structures including wire-medium
slabs have received considerable attention in the last decade (see, e.g.,
[107]-[115]). As first shown in [116], in the largenwavelength regime
the WM can be considered as a homogeneous anisotropic medium that
exhibits unique nonlocal (i.e., spatially dispersive) features. These are
in turn responsible for many interesting effects in the interaction of
electromagnetic waves with WM slabs, both for propagation across the
slab (e.g., canalization regimes of transmission with sub-wavelength
imaging applications [107], [108]) and for modal propagation along the
slab [109]-[115]. As concerns modal propagation, WM-loaded planar
waveguides with different wire orientations have been considered in
the literature. Grounded slabs with horizontal wires have been studied,
e.g., in [110] and [111], where unexpected omnidirectional propagation
features were shown to allow for cylindrical leaky-wave radiation in
the form of highly polarized and azimuthally symmetric conical beams.
On the other hand, WM slabs with vertical wires find application as
constituents of artificial high-impedance surfaces; as such, their modal
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properties in both surface-wave and leaky-wave regimes have been stud-
ied in [104]. Leaky-wave excitation and radiation in grounded WM
slabs with vertically aligned wires has been studied in [113] and [115]
for antenna applications.

8.2. Field matching technique
To find the dispersion equation of the structure presented in Fig. 8.2

the boundary conditions related to the presence of two air/wire-medium
interfaces must enforced on Maxwell’s equations. Since we are dealing
with a symmetric structure, as shown in Fig. 8.3, we can simplify the
analytical development by bisecting the PPW with a perfect electric or
magnetic wall for the TEM and the TM case respectively.

The WM, constituted by perfectly conducting wires aligned in the
vertical (x) direction and embedded in a host medium with relative
permittivity εrh, is assumed to be homogenizable and is thus represented
as an anisotropic, spatially dispersive medium with dyadic permittivity
[105].

ε = ε0

[
ε⊥

(
uxux + uyuy

)
+ ε‖uzuz

]

= ε0εh

[
uxux + uyuy +

(
1 −

k2
p

εhk2
0 − k2

z

)
uzuz

] (8.1)

where kp = 2π fp/c and an approximate expression for fp as a function
of the wire radius a and the wire spacing d is [116]

fp =
c
d

1√
2π

(
ln d

2πa + 0.5275
) (8.2)

valid for a � d � λ0.

Fig. 8.3. Bisected parallel plate waveguide having height h symmetrically loaded with a
wire medium slab having thickness t.
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8.2.1. TM modes
In this case only Hy, Ex, Ez components are present and the closed

structure is symmetric; thus, as already shown in Fig. 8.3, the TMmodes
can be isolated introducing a bisectionwith a PMCwall. By enforcing the
boundary conditions at the upper metallic plate and on the symmetric
wall bisecting the structure, for the y component of the magnetic field
inside the waveguide one can write

Hy(x, z) =




A cosh (γ0x) e−jkzz in air
BTEM sin

(
kTEM(x + h

2 )
)

e−jkzz+

BTM sinh
(

γTM(x + h
2 )
)

e−jkzz in WM

(8.3)

where

kTEM = k0
√

εr

γTM =
√

k2
z + k2

p − k2
TEM

γ0 =
√

k2
z − k2

0

(8.4)

are wave numbers of the TM and TEM waves (both with respect to
the wires alignment) in the wire medium and the wave number in
air, respectively. Moreover, kz is the longitudinal wavenumber and
represents the unknown of the problem at hand. Again the following
quantity

k2
p =

2π/s2

ln s
2πr0

+ 0.5275
(8.5)

is the squared plasma wave number characterizing the wire medium
and is of course related to equation (8.2).

The remaining boundary conditions, to be enforced at the air/WM
interface, are the continuity of Eτ

∂Hy

∂x

∣∣∣∣
x=−( h−t

2 )
+
=

1
εr

∂Hy

∂x

∣∣∣∣
x=−( h−t

2 )
−

(8.6)

the continuity of Hτ

Hy
∣∣
x=−( h−t

2 )
+ = Hy

∣∣
x=−( h−t

2 )
− (8.7)
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and finally the Additional Boundary Condition (ABC) for the wire
medium [103]

∂2Hy

∂x2

∣∣∣∣∣
x=−( h−t

2 )
+

−
∂2Hy

∂x2

∣∣∣∣∣
x=−( h−t

2 )
−
= (εr − 1)k2

0Hy

∣∣∣
x=−( h−t

2 )
− .

(8.8)

In the previous equations εr represents a dielectric medium in which
the wire medium slab can be possibly located, h is the height of the
parallel plate waveguide and t is the thickness of the WM slab (see Fig.
8.3). After some algebra, an homogeneous 3 × 3 linear system in the
unknowns A, BTEM and BTM is obtained. The determinant of the matrix
of the coefficient, reported in the following, equated to zero gives the
sought dispersion equation




−εrγ0 sinh
(

γ0
h−t

2

)
−kTEM cos

(
kTEM

t
2
)

−γTM cosh
(
γTM

t
2
)

cosh
(

γ0
h−t

2

)
− sin

(
kTEM

t
2
)

− sinh
(
γTM

t
2
)

(k2
0 − εrk2

0 + γ2
0) cosh

(
γ0

h−t
2

)
k2

TEM sin
(
kTEM

t
2
)

−γ2
TM sinh

(
γTM

t
2
)




To plot the dispersion diagram of the modes propagating inside the
considered closed structure one has to implement a numerical solution of
the dispersion equation. Hence, also their transverse field configurations
can be analyzed by simply placing values found for kzTM in the systems
and solving for two of the three unknown coefficients.

8.2.2. TEMmode
In this case only Hy and Ex components are present. Once again the

closed structure is symmetric, thus the TEM mode can be isolated intro-
ducing a bisection with a PEC wall (see Fig. 8.3). For the y component
of the magnetic field inside the waveguide we can write

Hy(x, z) =





A cosh (γ0x) e−jkzz in air
BTEM cos

(
kTEM(x + h

2 )
)

e−jkzz+

BTM cosh
(

γTM(x + h
2 )
)

e−jkzz in WM

(8.9)
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where γTM, kTEM, γ0 are defined as in the previous subsection and A,
BTM and BTEM are unknown coefficients, related to the unknown eigen-
values kz of the considered structure. Thus, by enforcing the boundary
conditions at the upper metallic plate and on the symmetric wall bisect-
ing the structure, once again a 3 × 3 matrix, reported in the following, is
obtained




−εrγ0 sinh
(

γ0
h−t

2

)
kTEM sin

(
kTEM

t
2
)

−γTM sinh
(
γTM

t
2
)

cosh
(

γ0
h−t

2

)
− cos

(
kTEM

t
2
)

− cosh
(
γTM

t
2
)

(γ2
0 − εrk2

0 + k2
0) cosh

(
γ0

h−t
2

)
k2

TEM cos
(
kTEM

t
2
)

−γ2
TM cosh

(
γTM

t
2
)




Numerically solving the dispersion equation achieved by equating to
zero its determinant, it is possible to plot the dispersion diagram for
the TEM mode propagating inside the structure at hand. Again, also its
transverse field configuration can be obtained by placing the value found
for kzTEM in the systems and solving for two of the three coefficients; in
this way all the unknown characterizing equation (8.9) have been found
and the behavior of the relevant transverse fields can straightforward
be achieved.

8.2.3. Generalized structure
If a partially reflecting surface (PRS) is designed on the top of our

PPW, as shown in Fig. 8.4, the structure may be able to support a leaky-
wave mode. However, it loses its geometrical symmetry with respect to
the yz plane and the problem cannot be simplified by any bisections. The
geometry of the upper wall is usually made by periodic longitudinal and
traversal slots that can be represented through a frequency-dependent
surface transition impedance Zg, as described for instance in [119]. A
new boundary condition involving this impedance has to be enforced at
the x = 0 plane in conjunction with the continuity of the electric field
through the partially reflecting surface. In addition, also the second air-
WM interface must be considered, and the relevant boundary condition
have to be enforced. The picture in Fig. 8.4 allows us to identify four
different regions, thus the y-component of the magnetic field can be
written as follows
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Fig. 8.4. Open parallel plate waveguide loaded with a wire medium slab. The structure is
no longer symmetric and the boundary condition must be enforced at both the air/WM
medium interfaces.

Hy(x, z) =




Ae−γ0xe−jkzz, if x > 0(
B+e−γ0x + B−eγ0x

)
e−jkzz, if − h−t

2 < x < 0
(

C+
TEMe−jkTEMx + C−

TEMejkTEMx+

C+
TMe−γTMx + C−

TMeγTMx
)

e−jkzz, if − h+t
2 < x < − h−t

2

D cosh (γ0(x + h)) e−jkzz if −h < x < − h+t
2
(8.10)

It is important to note that the choice of the hyperbolic cosine in the
lower air region allows us to directly satisfy the boundary condition for
the magnetic field on the ground. In addition, the continuity of Eτ and
the impedance boundary condition have to be enforced at x = 0. The
continuity of Eτ and of Hτ as well as the additional boundary condition
have to be also enforced at the two air/wire medium interfaces. All that
gives rise to a system of 8 equations in 8 unknowns, namely A, B+, B−,
C+

TEM, C−
TEM, C+

TM, C−
TM and D. In the following, all the conditions are

explicitly presented and listed one by one:

1. Continuity of Eτ |x=0

∂Hy

∂x

∣∣∣∣
x=0+

=
∂Hy

∂x

∣∣∣∣
x=0−

(8.11)
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2. Impedance boundary condition at x = 0

1
jωε0

∂Hy

∂x

∣∣∣∣
x=0+

= Zg

(
Hy|x=0+ − Hy|x=0−

)
(8.12)

3. Continuity of Eτ at the first air/WM interface

∂Hy

∂x

∣∣∣∣
x=−( h−t

2 )
+
=

1
εr

∂Hy

∂x

∣∣∣∣
x=−( h−t

2 )
−

(8.13)

4. Continuity of Eτ at the second air/WM interface

∂Hy

∂x

∣∣∣∣
x=−( h+t

2 )
−
=

1
εr

∂Hy

∂x

∣∣∣∣
x=−( h+t

2 )
+

(8.14)

5. Continuity of Hτ at the first air/WM interface

Hy|x=−( h−t
2 )

+ = Hy|x=−( h−t
2 )

− (8.15)

6. Continuity of Hτ at the second air/WM interface

Hy|x=−( h+t
2 )

+ = Hy|x=−( h+t
2 )

− (8.16)

7. ABC at the first air/WM interface
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x=−( h−t
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∂2Hy

∂x2
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−

(8.17)

8. ABC at the second air/WM interface

∂2Hy

∂x2

∣∣∣∣∣
x=−( h+t

2 )
+

−
∂2Hy

∂x2

∣∣∣∣∣
x=−( h+t

2 )
−
= (εr − 1)k2
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x=−( h+t

2 )
− .

(8.18)
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After some algebra, a 8 × 8 linear system is obtained, whose related
matrix coefficient is entirely shown in the previous page; by equating to
zero the relevant determinant it is possible towrite the sought dispersion
equation, not reported here for space limitation. As in the previous cases,
a numerical solution of the equation provides values of the longitudinal
wave number for all the modes propagating inside the structure. Since
the considered waveguide is open, a complex kz is expected, whose real
and imaginary parts represent, respectively, the phase and attenuation
constant of the involved leaky modes. It is worth noting that in this
case the same equation describes the propagation of TM as well as TEM
modes: one can plot the wanted solution by referring to a suitable initial
point by starting from the cutoff value associated to the unperturbed
solution. To write more compactly the 8 × 8 matrix some positions
have been suitably introduced. In particular hm = (h − t/2) and hp =

(h + t/2), being t the slab thickness and h the waveguide height. In
addition the explicit value of the remaining three elements are reported
in the following

a72 = γ2
0ehmγ0 − (εr − 1)k2

0ehmγ0)

a73 = γ2
0e−hmγ0 − (εr − 1)k2

0e−hmγ0)

a88 = −γ2
0 cosh(hmγ0)− (εr − 1)k2

0 cosh(hmγ0).

(8.20)

The values of γ0, γTM and kTEM are those already presented for the TM
and TEM cases related to the symmetric closed structure.

8.2.4. Multi-modal Bloch analysis
In order to validate the homogenized representation of the WM

slab, full-wave simulations of the actual periodic structure have been
performed with CST Microwave Studio, both for closed and open struc-
tures. In particular, a Bloch analysis has been performed on a finite
length of a WM-loaded PPW constituted by an integer number of the
WM unit cell (i.e., on a macrocell), bounded by two waveguide ports
that allow for obtaining the scattering parameters for each mode prop-
agating inside the structure. Considering a sufficiently high number
of unit cells inside the macrocell allows for accurately evaluating the
mutual coupling effects among unit cells; however, it also introduces
spurious solutions related to the non-uniqueness of root-extraction op-
erations in the complex plane (see, e.g., [124]). To eliminate such an
ambiguity and to extract the transfer matrix of the unit cell (Tu) from
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Fig. 8.5. Virtual model of a parallel-plate waveguide whose upper plate is made by a
partially reflecting surface. This class of structures are also named Fabry-Perot cavity
antennas due to its similarity to the Fabry-Perot interferometer.

that obtained through a full-wave solution of the considered macrocell,
a simple approach outlined in [125] has been adopted, which basically
allows for evaluating Tu from the knowledge of two matrices TN and
TM, representing the transfer matrix of macrocells constituted by N and
M = N + 1 unit cells, respectively. Typically, the choice of N and M
depends on the complexity of the structure; for the case at hand good
results have been obtained with N = 15. It is important to note that two
different simulations must be performed, whose structures are made
by N and M unit cells. The thicker is the WM slab placed inside the
waveguide the heavier will be the computational load. Just to give an
example, a configuration having a thick t = 4 mm requires about 400.000
tetrahedrons to accurately discretized the overall structure, while for
larger value of t, for instance 9 mm, this number may exceed 106 tetrahe-
drons. With regards to the simulation time, it ranges from few hours for
thinner slabs up to more than one day for larger value of t; computers
are equipped with i7 CPU of fourth/fifth generation (8/12 cores), at
least 20 Gb of memory is requested. In Figs. 8.5 and 8.6 an example of
the simulated structures both loaded and unloaded with a wire medium
slab (whose wires for simplicity are suspended in air, but can be easily
supported by a foam layer), are presented.

The top plate of the open waveguide is a PRS made by a periodic
lattice of square patches: transversal slots (with respect to the direction
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Fig. 8.6. Virtual model of a Fabry-Perot cavity antenna loaded with a wire medium slab to
suppress spurious radiation related to the TEM leaky mode.

of propagation) allow for radiation of TMmodes, while the longitudinal
that of TEmodes. It is important to note that if only TMmodes are excited
by suitably considering symmetric PMC wall, the longitudinal slots do
not affect its radiation since they are not able to sensibly perturb the
TM currents distribution. Since we are considering a configuration that
supports both TM and TEMmodes, namely amulti-modal configuration,
a suitable generalization of the proposed approach has been developed
recasting the general procedure outlined in [126]. This entails that the
dimension of the considered transfer matrix be equal to 2K × 2K, with
K the total number of propagating modes, that in turn must be suitably
arranged inside the matrix. It is finally important to note that the larger
is the value of K, the longer will be the full-wave simulation of the
structure at hand, since the solution must be carried out exciting one
mode at a time. In the following dispersion curves achieved by means
of our full wave multi-modal Bloch analysis will be labeled in the legend
as ‘CST’.

8.3. Results for a closed structure
We consider first a WM-loaded PPW, whose lower and upper plates

are assumed to be perfect conductors. The waveguide has thickness h,
is filled with air and is loaded by a WM slab having thickness t placed
symmetrically, i.e., at equal distances from the metal plates.
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Fig. 8.7. Dispersion curves for the TEM, TM1 modes supported by an air-filled PPW
partially filled with a WM slab (closed configuration). Parameters: PPW thickness h =
14.27 mm; WM slab thickness t = 10 mm; wire radius a = 0.14 mm; wire spacing d = 1
mm; relative permittivity of the wire host medium εrh = 1.06. Legend: FMT = Field-
Matching Technique; CST = CST Microwave Studio. Copyright © 2015, IEEE.

In Fig. 8.7 dispersion curves are reported for the TEM, and TM1

modes supported by a structure with h = 14.27 mm and t = 10 mm,
in the frequency range from 4 to 20 GHz (the cutoff frequency of the
unperturbed TM1 mode is 10.51 GHz). The WM is constituted by wires
with radius a = 0.14 mm arranged in a lattice with period d = 1 mm
(d = λ/10 at f = 30 GHz), embedded in a medium with εrh = 1.06
(foam); the resulting plasma frequency is then, from (8.2), fp = 150
GHz. The results obtained with the field matching technique are in
good agreement with those produced with full-wave results obtained
through the multimodal Bloch analysis, confirming the accuracy of the
homogenized model of the wire medium slab. It can be noted that the
presence of the WM strongly perturbs the TEM mode, whose electric
field is purely vertical and is thus short-circuited by the metal wires. In
particular, the perturbed TEMmode has a normalized phase constant
larger than one and thus has become a slow wave. Furthermore, its
normalized phase constant has a vertical asymptote, beyond which the
mode is suppressed; it has been verified that its existence is due to the
transverse resonance of the additional TEM wave inside the WM slab,
which occurs when f = c/(2t

√
εrh) ( f = 14.6 GHz for the structure

considered in Fig. 8.7). In Fig. 8.8 a parametric analysis for different
values of the thickness t of the wire medium slab is presented, allowing
us to confirm the expected position of the asymptote. Indeedwe have the
following values for the resonant frequencies: f1 = 14.6 GHz, f2 = 30
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Fig. 8.8. Dispersion curves for the TEMmode supported by the same structure considered
in Fig. 8.7 for different values of the slab’s thickness t (see legend).

GHz, f3 = 37.5 GHz and f4 = 50 GHz, that are related, respectively, to
these values of the thickness t1 = 10 mm, t2 = 5 mm, t3 = 4 mm and
t4 = 3 mm. In Fig. 8.9 a dispersion curves are reported for the TEM,
TM1 and the TM2 modes supported by the same PPW as in Fig. 8.7, now
loaded with a thinner WM slab having t = 4 mm, constituted by wires
with radius a = 0.19 mm arranged in a lattice with period d = 1.5 mm
(d = λ/10 at f = 20 GHz), embedded in a medium with εrh = 1.06
(foam); the resulting plasma frequency is then, from (8.2), fp = 90
GHz. Again, the results obtained by numerically solving the dispersion
equation are in very good agreement with the full-wave solution. It can
be noted that the TM1 mode is minimally affected by the presence of
the WM layer; in fact, the WM interacts with the vertical component
of the electric field, which has a null in the middle of the PPW for this
mode (see Fig. 8.1). On the other hand, having reduced the thickness of
the WM slab, the vertical asymptote of the TEM mode has been shifted
to higher frequencies, beyond the WM homogenization regime (not
visible in Fig. 8.9); however, the slow-wave nature of the perturbed TEM
mode still has remarkable consequences on the radiation properties
of open PPW configurations, as discussed in the next sections. As a
final example, in Fig. 8.10 dispersion curve obtained again for the same
structure considered in Fig. 8.9 (see its label for the relevant details)
for the TE1 mode is presented. The results achieved with a numerical
solution of the dispersion equation is reported and validated by means
of the presented multimodal full-wave approach. Even though the TM1

and TE1 are degenerates in the associated unperturbed waveguide, here
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Fig. 8.9. Dispersion curves for the TEM, TM1 and TM2 modes supported by a loaded
PPW (closed configuration). Parameters: PPW thickness h = 14.27 mm; WM slab thickness
t = 3 mm; wire radius a = 0.19 mm; wire spacing d = 1.5 mm; relative permittivity of
the wire host medium εrh = 1.06. Legend: FMT = Field-Matching Technique; CST = CST
Microwave Studio, TLM = Transmission-Line Model. Copyright © 2015, IEEE.

Fig. 8.10. Dispersion equation for the TE1 mode propagating in the same structure pre-
sented in Fig. 8.7. It is not sensibly affected by the wire medium slab due to the E-field
orientation; again a full validation has been reported. Copyright © 2015, IEEE.
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they show a quite dissimilar behavior due to a different interaction
with the wire medium slab filling the structure. Indeed, the TM mode
undergoes anyway a small perturbation, while the TE mode is slightly
affected by the radial extension of the wires, that strictly speaking cannot
be considered null. As will been shown in the following, it is possible to
change the dielectric permittivity filling the slab in conjunction with the
geometry of the associated open structure to achieve an equalization of
the dispersion diagram in a small range of frequencies.

8.3.1. Transverse field configuration
As we have seen in the first section of this chapter, by enforcing the

boundary condition determined by the nature of the considered struc-
ture, it is possible to achieve a N × N matrix modeling the problem; its
eigenvalues represent the propagation constant of the modes allowed in
the guide. When a specific solution is selected, one can straightforwardly
evaluate the transverse field configuration by determining N − 1 of the
N total unknowns describing the problem. In this way one can plot e.g.,
the magnetic field by introducing the relevant frequency and propaga-
tion constant. According to the modal results, the field distribution of
the TEM mode, that is normally a constant, is expected to be heavily
perturbed for increasing value of the thickness t. In Fig. 8.11 field config-
urations for the y component of the magnetic field are reported for the
TEM, TM1 and TM2 modes supported by the same structure considered
so far, loaded with a wire medium having thickness t equal to 4 mm
and 9 mm, at two different frequencies ( f = 12 GHz and f = 18 GHz
for TEM, TM1 and f = 24 GHz for TM2 ). The field configurations of
the same modes in the absence of WM loading are also reported for
comparison; these are of course independent of frequency. It can be
noted that the WM slab has a dramatic effect on the TEM mode, whose
unperturbed field configuration is a constant; this is due to the strong in-
teraction between the TEM electric field, which is vertical, and the metal
wires of the WM. In particular, the perturbed TEM mode is transversely
evanescent in air outside the WM slab. On the other hand, it has a small
impact on the TM1 and TM2 modes, particularly for the first, whose
vertical component of the electric field (the one that interacts with the
WM) has a null in the middle of the PPW.

In this section an equivalent transmission-line model will be derived
for the electromagnetic fields inside aWM slab assuming an exponential
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Fig. 8.11. Field configurations at different frequencies for the y component of the magnetic
field of the TEM, TM1 and TM2 modes supported by a WM-loaded PPW. Parameters:
PPW thickness h = 14.27 mm; wire radius a = 0.19 mm; wire spacing d = 1.5 mm. The
frequency-independent field configurations of the same modes in the absence of WM
loading are also reported for comparison. Copyright © 2015, IEEE.
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dependence on the x and y coordinates: exp(−j(kxx + kyy)); without
loss of generality, we may also let kx = 0. It is important to note that in
this section, as usual, the vertical axis is represented by the z coordinate,
being x the direction normal to the sheet plane (see Fig. 8.12(a)). Un-
der these assumptions, as known, Maxwell’s equations split into two
separate sets (we adopt here different axis with respect to Section 8.2),
one for TEz fields:

dEx

dz
= −jωµ0Hy (8.21)

jkyEx = −jωµ0Hx (8.22)

− jkyHz −
dHy

dz
= jωε0ε⊥Ex (8.23)

and one for TMz fields:

− jkyEz −
dEy

dz
= −jωµ0Hx (8.24)

dHx

dz
= jωε0ε⊥Ey (8.25)

jkyHx = jωε0ε‖Ez. (8.26)

The permittivity dyadic for the wire medium has been introduced in
Section 8.2 and is recalled here for convenience

ε = ε0

[
ε⊥

(
uxux + uyuy

)
+ ε‖uzuz

]
(8.27)

where (see [103, 105])

ε⊥ = εh (8.28)

ε‖ = εh(1 −
k2
p

εhβ2 − k2
z
), (8.29)

k2
p is given by (8.5) and β2 = ω2µ0ε0.
In the TE case the electric field is orthogonal to the wires, hence

the wave does not interact with them and Maxwell’s equations (8.21),
(8.22) and (8.23) are the same as in an ordinary isotropic medium hav-
ing relative permittivity ε⊥ = εrh. By eliminating Hz the standard TE
transmission-line equations are then recovered:

dVTE

dz
= −jkTEz ZTE

c ITE

dITE

dz
= −jkTEz YTE

c VTE
(8.30)
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where VTE = Ex, ITE = Hy, kTEz =
√

εrhk2
0 − k2

y and ZTE
c = 1/YTE

c =

ωµ0/kz. In the TM case, assuming first k2
z �= εrhk2

0 and eliminating Ez,
from (8.26) we have

dVTM

dz
= −jkTMz ZTM

c ITM

dITM

dz
= −jkTMz YTM

c VTM
(8.31)

where VTM = Ey, ITM = −Hx, and

kTMz =
√

εrhk2
0 − k2

p − k2
y

ZTM
c =

1
YTM
c

=
1

ωε0εrhky

√
(εrhk2

0 − k2
y)(k2

p + k2
y).

(8.32)

When k2
z = εrhk2

0 it results ε‖ → ∞, hence Ez → 0; the wave is then
TEMz (it is the additional wave that exists in the WM due to its spatially
dispersive nature [116]) and from (8.24),(8.25) and (8.26) we have

dVTEM

dz
= −jkTEMz ZTEM

c ITEM

dITEM

dz
= −jkTEMz YTEM

c VTEM
(8.33)

where VTEM = Ey, ITEM = −Hx, and

kTEMz = k0
√

εrh

ZTEM
c =

1
YTEM
c

=

√
µ0

ε0εrh

(8.34)

8.4. Equivalent network for an air/WM interface
Let us now consider the planar interface z = 0 between the half

space z > 0 filled with an ordinary dielectric medium having relative
permittivity εr and the half-space z < 0filledwithWM(see Fig. 8.12(a)).
In the TE case, the standard boundary conditions that hold at z = 0 (i.e.,
the continuity of the tangential components of the electric and magnetic
fields) require voltages and currents to be continuous at the interface.
This results in a two-port representation of the interface consisting in
the usual direct connection of the two equivalent transmission lines
associated with the TE waves in the two half-spaces.
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Fig. 8.12. (a) Planar interface between a dielectric half space with relative permittivity εr
and a WM half space with relative permittivity dyadic ε (see (8.1)),
(b) Relevant transverse equivalent network for TM-polarized waves independent of x and
with an exp (−jkyy) dependence on y. Copyright © 2015, IEEE.

In the TM case instead, the presence of an additional wave in theWM
requires the interface to be represented by a three-port network. Basically,
whenever a TM plane wave is impinging on the interface not only a TM
but also TEMwave (again with respect to wire extension) is transmitted
in the wire medium. The standard boundary conditions require that the
total voltages and currents be continuous at the interface, thus we can
write:

1. Continuity of Eτ = Eyy0 at the air/WM interface

Ey|z=0+ = Ey|z=0− (8.35)

2. Continuity of Eτ = Hxx0 at the second air/WM interface

Hx|z=0+ = Hx|z=0− (8.36)

3. ABC at the air/WM interface [103]

Ez|z=0+ = εhEz|z=0− (8.37)

It is interesting to note that this last condition, introduced for the first
time in [103], must be enforced for the longitudinal component of the
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electric field. Using the first of Maxwell’s equations, the ABC condition
can be rewritten as

(
dEy

dz
− jωµ0Hx

)

z=0+
= εh

(
dEy

dz
− jωµ0Hx

)

z=0−
(8.38)

Now, using the transmission-line equation previously introduced, we
have

Ey|z=0+ = VTM
+ Ey|z=0− = VTM

− + VTEM
− (8.39)

−Hx|z=0+ = ITM
+ −Hx|z=0− = ITM

− + ITEM
− (8.40)

hence the first two boundary conditions can be re-written as

VTM
+ = VTM

− + VTEM
− (8.41)

ITM
+ = ITM

− + ITEM
− (8.42)

while for the last we have

dVTM
+

dz
+ jωµ0 ITM

+ = εh

(
dVTM

−
dz

+
dVTEM

−
dz

+ jωµ0 ITM
− + jωµ0 ITEM

−

)

(8.43)
By exploiting the TM and TEM transmission-line equations (see (8.31)
and (8.33)), it is possible to express dVTM/TEM

+ / dz in terms of ITM/TEM
+

so that after some algebra (8.43) becomes

ITM
− =

ε‖
ε⊥

ITM
+ = ξ ITM

+ (8.44)

where

ξ =
ε‖
ε⊥

= 1 −
k2
p

β2εh − k2
z

(8.45)

but considering equation (8.32) it is finally possible to write

ξ =
k2

y

k2
p + k2

y
. (8.46)

Now we can re-write (8.42) as

ITEM
− = ITM

+ − ITM
− = (1 − ξ)ITM

+ (8.47)

thus, the air/wire medium interface can be represented by a 3-port
network, as shown in Fig. 8.12(a). In particular, referring to Fig. 8.13
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Fig. 8.13. (a) Transmission-line equivalent network for an air/wire medium interface, (b)
3-port equivalent network for the considered transmission line. Copyright © 2015, IEEE.

we finally have

I1 = ITM
+ I2 = −ITM

− I3 = −ITEM
− (8.48)

V1 = VTM
+ V2 = VTM

− V3 = VTEM
− (8.49)

Therefore the 3-port network is described by the following equations
(where I1, V2 and V3 have been selected as independent variables)




V1 = V2 + V3

I2 = −ξ I1

I3 = (ξ − 1)I1

(8.50)

8.4.1. Input impedance for the equivalent 3-port network
In this section the input impedance of the 3-port network presented in

Fig. 8.13 when it is closed on a given load will be evaluated. Specifically,
as shown in Fig. 8.14, here ports 2 and 3 are closed on a 2-port load
having impedance [ZL] and represented by a 2 × 2 matrix, hence the
relation between voltage and current can be written as follow

(
V2

V3

)
= −

[
ZL

] (I2

I3

)
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Fig. 8.14. Equivalent 3-port network close on a load impedance.

by exploiting the boundary condition and equations (8.50) we get

V1 =
(

1 1
)(

V2

V3

)
= −

(
1 1

) [
ZL

] (I2

I3

)

= −
(

1 1
) [

ZL

] ( −ξ

ξ − 1

)
I1

(8.51)

hence, we finally have

ZIN =
V1

I1
= −

(
1 1

) [
ZL

] ( ξ

ξ − 1

)
. (8.52)

If a closed structure is analyzed, a bisection with a perfect electric or
magnetic conductor can be exploited and the overall waveguide is rep-
resented by an air/wire medium interface whose 3-port model is loaded
with two TM/TEM transmission lines having length t/2 and closed on
a short/open circuit. In this condition the evaluation of the matrix ZL is
straightforward and leads to the following 2 × 2 matrix

ZL =

(
jZTM tan kTM

z t/2 0
0 jZTEM tan kTM

z t/2

)
(8.53)
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Having available the input impedance of the equivalent network for a bi-
sected parallel plate waveguide loadedwith awiremedium, bymeans of
the transverse resonance method we can easily write the sought disper-
sion equation. Consequently, a numerical solution gives the dispersion
diagram of the relevant TEM and TM modes. In the next subsection
the same structure already solved through the field matching technique
will be considered and a number of comparisons will be provided. It
is important to note that these two alternative methods must lead to
exactly the same solution, even though we consider the equivalent net-
work model as more attractive and easier to implement, in particular
when stratified structures possibly made by one or more wire medium
slabs are designed.

8.4.2. Model validation of the closed structure
In this section the equivalent network model designed for closed

and symmetric structures is validated by solving the same waveguide
considered in the previous section, whose dispersion results have been
presented in Fig. 8.7 (see captions for more details). As shown in Fig.

Fig. 8.15. Dispersion curves for the TEM, TM1 and TM2 modes for the same structure
presented in Fig. 8.7. Parameters: PPW thickness h = 14.27 mm; WM slab thickness
t = 10 mm; wire radius a = 0.14 mm; wire spacing d = 1 mm; relative permittivity of
the wire host medium εrh = 1.06. Legend: FMT = Field-Matching Technique; TLM =
Transmission Line Model; CST = CST Microwave Studio. Copyright © 2015, IEEE.

8.15 the dispersion curves obtained with the field matching technique
and the transmission line are practically superimposed. As a matter of
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fact they should give exactly the same values of the propagation con-
stant since, if properly managed, they must lead to the same dispersion
equation. In addition, the numerical result is in perfect agreement with
the full-wave solution developed bymeans of multimodal Bloch analysis
(see Section 8.2.4 for the relevant details). To better understand the role
of the plasma frequency of the wire medium slab, whose dependency
on its parameters is outlined by equation (8.2), in Fig. 8.16 dispersion
curves produced by three different configurations of the wire medium
are presented. The first one, labeled as ‘c1’, is characterized by the fol-

Fig. 8.16. Dispersion curves for the TEM, TM1 and TM2 modes for three different configu-
rations of a wire medium slab having thickness t = 10 mm. Parameters of c1 configuration:
wire radius a = 0.14 mm; wire spacing d = 1 mm, plasma frequency fp = 150 GHz; c2
configuration: a = 0.19 mm; d = 1.5 mm, fp = 150 GHz; c3 configuration: a = 0.23 mm;
d = 1 mm, fp = 337 GHz.

low parameters: wire radius a = 0.14 mm; wire spacing d = 1 mm,
thus plasma frequency fp = 150 GHz. For the second and the third
one, labeled as ‘c2’ and ‘c3’ it is: a = 0.19 mm, d = 1.5 mm, fp = 90
GHz and a = 0.23 mm, d = 1 mm, fp = 337 GHz. As expected, the
phase constant of the TM1 and TM2 modes do not show appreciable
differences in the region of frequency where they are fast waves. On the
contrary, being the TEMmode always strongly perturbed it is slightly
influenced by the plasma frequency of the wire medium; namely, higher
values of fp correspond to smaller value of the resonant frequency. This
means that the formula proposed in the previous sections, that relates
the asymptote position to the resonant thickness of the slab must be
considered as a first-order approximation, anyway suitable for modeling
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purposes. In Fig. 8.17 a series of diagrams have been reported aiming at
fully characterizing the behavior of the propagating modes with respect
to a selected range of thickness t. In particular Figs 8.17(a)-(f) present
dispersion curves for TEM, TM1 and TM2 modes for six different values
t, namely equal to 4, 5, 6, 7, 8 and 9mm, obtainedwith the fieldmatching
technique as well as the proposed transmission line model. As expected,
for growing values of the thickness, the asymptote characterizing the
TEM behavior is shifted to lower frequencies; an analogue trend is ob-
served for the TM1 when t is larger than 6 mm: indeed for this values
of t an asymptote is shifting towards frequency closer and closer to the
considered range. It is important to note that when the curve of the TM1

becomes slow (i.e., β/k0 > 1) the leaky wave mode associated to open
structure, whose modal curves will be a perturbed version of these pre-
sented, ends its scansion towards endfire. This means that the thickness
t of the wire medium slab determine the slope of the phase constant of
the considered mode and consequently the rate of the scansion with re-
spect to frequency. In particular the configuration of Fig. 8.17(f) shows
an asymptote at about 16.6 GHz, thus allowing for a unimodal TM1

regime between 16.6 GHz and 20 GHz. With regard to the TM2 mode,
it results practically unperturbed in the considered range of frequency.
Since the accuracy of the proposed approach has been already validated
in the previous section in these picture, only the results for t = 4 mm,
namely Fig. 8.17(a), has been validated by means of a multimodal Bloch
analysis. A result validating structures having larger values of t has
been already reported in Fig. 8.15.
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Fig. 8.17. Dispersion curves of TEM, TM1 and TM2 modes propagating inside a closed
PPW loaded with a wire-medium slab for six different thicknesses; all the relevant details
have been reported in each sub-figure. Parameters: a = 0.19 mm; d = 1.5 mm, fp = 150
GHz.
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8.5. Input impedance of a wire medium slab
If the structure is no longer symmetric, for instance when it is opened

to support leaky waves, two air/wire medium interfaces have to be
considered. They can be represented by a series of two 3-port network,
one mirrored with respect to the other, as shown in Fig. 8.18.

We call Z↓ the input impedance seen looking downwards at the
section z = 0+ and Z↑′ the input impedance at z = −t− looking upwards
at the section t = 0−. Of course they are coincident for symmetric
structures but can differ if multilayer configuration are considered. They
coincide if the overall structure is symmetric, namely if above and below
the wire medium slab there is the same material. The conditions of
transverse resonance reads

Z↑ + Z↓ = 0 (8.54)

in the following, the expression for Z↓ as a function of ZL and the pa-
rameters of the wire-medium slab (i.e., its thickness and its permittivity
dyadic reported by (8.1))will be presented. This is the essential quantity
for the application of the transverse resonance technique [127, 128]. Fur-
thermore, as shown below, it allows for directly calculating the ABCD of
the WM slab; this is needed in the reciprocity-based approach to the cal-
culation of the far-field pattern of sources radiating in the presence of the
WM-loaded multilayer [121] (see next chapter). The constitutive rela-
tions for the three-port network associated with the lower dielectric-WM
interface at z = −h are (see equation (8.50))

V′
1 = V′

2 + V′
3

I′2 = −ξ I′1
I′3 = (ξ − 1)I′1

(8.55)

where ξ = k2
y/(k2

y + k2
p). By letting I′1 = −Y′

LV′
1 in (8.55) it results

I′2 = Y′
Lξ(V′

1 + V′
3) (8.56)

I′3 = (1 − ξ)Y′
Lξ(V′

2 + V′
3). (8.57)

Let now the TM and TEM transmission lines inside the WM slab be
represented through their ABCD matrices:

(
V2

−I2

)
=

(
ATM BTM

CTM DTM

)(
V′

2
I′2

)
(8.58)
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Fig. 8.18. Equivalent network of a WM slab placed inside a PPW when the structure is
open, hence no longer symmetric. Copyright © 2015, IEEE.

(
V3

−I3

)
=

(
ATEM BTEM

CTEM DTEM

)(
V′

3
I′3

)
(8.59)

where ATM = DTM = cos(kTMz h), BTM = jZTM
c sin(kTMz h), CTM =

jYTM
c sin(kTMz h) (and similar expressions for the TEM ABCD param-

eters). By eliminating I′2 and I′3 from (8.58), (8.59) using (8.56), we
find (

−I2

−I3

)
= [Y] ·

(
V′

2
V′

3

)
(8.60)

(
V2

V3

)
= [T] ·

(
V′

2
V′

3

)
(8.61)

where

[Y] =

[
CTM + Y′

LξDTM Y′
LξDTM

Y′
L(1 − ξ)DTEM CTEM + Y′

L(1 − ξ)DTEM

]
(8.62)

[T] =

[
ATM + Y′

LξBTM Y′
LξBTM

Y′
L(1 − ξ)BTEM ATEM + Y′

L(1 − ξ)BTEM

]
(8.63)
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Let now [Z′′
L ] be the impedance matrix at z = 0− looking downwards

(see Fig. 8.18), defined by
(

V2

V3

)
=

[
Z′′
L
]
·
(

−I2

−I3

)
(8.64)

From (8.60), (8.61), it results

[
Z′′
L
]
= [T] · [Y]−1 (8.65)

On the other hand, from (8.50) and (8.64) we have

V1 = V2 + V3 =
(

1 1
)(

V2

V3

)

=
(

1 1
) [

Z′′
L
]
·
(

ξ

1 − ξ

)
I1

(8.66)

where ξ = k2
y/(k2

y + k2
p) and ε l is the relative permittivity of the dielectric

layer adjacent to the WM interface at z = 0. Finally, from (8.66) and
(8.65), the sought impedance Z↓ is obtained as

Z↓ =
(

1 1
)
· [T] · [Y]−1 ·

(
ξ

1 − ξ

)
(8.67)

fromwhich, performing explicitly the matrix multiplications, the sought
quantity is obtained. By enforcing the transverse resonance condition
the dispersion equation of a parallel-plate waveguide loaded with a
wire medium slab having thickness t can be straightforwardly achieved,
resulting more compact and easy to implement with respect to the de-
terminant of the matrix generated by the more general field matching
technique. It is finally important to note that the input impedance just de-
rived is essential for the evaluation the radiated field through reciprocity,
as will be illustrated in the next chapter.
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Fig. 8.19. Dispersion and attenuation curves for the TEM, TM1 and TM2 modes for an
open PPW loaded with a wire medium slab. Parameters: PPW thickness h = 14.27 mm;
WM slab thickness t = 3 mm; wire radius a = 0.19 mm; wire spacing d = 1.5 mm;
relative permittivity of the wire host medium εrh = 1.06. Legend: FMT = Field-Matching
Technique; TLM = Transmission Line Model; CST = CST Microwave Studio. The upper
plate of the PPW is made by square patches whose unit cell has a slot width w = 0.01 mm.
Copyright © 2015, IEEE.

8.6. Open structure
Let us now consider aWM-loaded structure in an open configuration,

obtained replacing the PPW upper plate with a PRS constituted by an
infinitesimally thin metal patterned screen. Since radiation may escape
from the waveguiding region, leaky-wave regimes are now expected to
occur in the modal spectrum [117, 118]. In Fig. 8.19 the same structure
as in Fig. 8.9 is considered, being the PRS modeled as a simple shunt
admittance in the relevant equivalent network, whose expression is
[119]

YPRS =
2jγ
ηeff

(8.68)

where

γ =
pkeff

π
ln csc

(
πw
2p

)
(8.69)

and ηeff = η0/
√

εeff, keff = k0
√

εeff, with εeff = (εr + 1)/2.
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Fig. 8.20. Dispersion curves of TEM, TM1 and TM2 modes propagating inside an open
PPW whose upper plate is made by a homogenized PRS and loaded with a wire-medium
slab having six different thicknesses; all the relevant details have been reported in each
sub-figure. Parameters: a = 0.19 mm; d = 1.5 mm, fp = 150 GHz. The PRS is the same
presented in Fig. 8.19.
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Fig. 8.21. Dispersion and attenuation curves for the TEM, TM1 and TM2 modes supported
by a structure as in Fig. 8.15, where now the upper PPW plate is a PRS constituted by an
array of rectangular metal patches (open configuration). Parameters: Patch dimensions 2.95
mm (along x), 2.99 mm (along y); spatial periods (along x and y) 3 mm.

The results for the TEM and TM1 modes obtained with the proposed
transmission-line model are again superimposed with those achieved
with the field matching technique; note that now the TM1 mode is leaky,
with a complex propagation constant ky = β − jα, where α is the longi-
tudinal attenuation constant. Comparisons with the results obtained
through a full-wave solution carried out on CST Microwave Studio (de-
veloped simulating a WM-loaded PPW with finite length made by 15
cells of the periodic PRS) and with the standard field-matching tech-
nique are in excellent agreement, confirming the validity of the proposed
approach and the advantages in terms of pre-processing and comput-
ing time. In Fig. 8.20(a)-(f) dispersion curves (β/k0 vs. f ) for TEM,
TM1 and TM2 modes and for increasing values of the wire-medium
thicknesses have been reported. For larger values of t the TEM mode
becomes strongly perturbed: in particular when t = 9 mm an asymptote
is clearly visible at about 16.6 GHz, allowing us to obtain a unimodal
regime in the range of frequencies between 11 GHz up to about 20 GHz.
It is also clearly visible that by changing the value of t it is possible to
modulate the slope of the dispersion curve associated to the TM1; conse-
quently the range of frequency that determines the angular scansion of
the relevant beam can be suitably controlled. However, as will be shown
in the next chapter, larger thicknesses of the wire medium slab allow a
better suppression of the unwanted TEM mode, whose constraint on
the side-lobe level is anyway application-dependent.

In Fig. 8.21 also the modal curves for a wire-medium slab having



8. Modal Analysis of a Wire-Medium Loaded Structure 247

t = 10 mm have been shown. The phase constant does not exhibit
appreciable differences with respect to those presented in Fig. 8.15,
while, as expected, the attenuation constant of the TM1 is present at low
frequencies and vanishes at about 19.5 GHz, in correspondence to the
transition region between leaky and surface waves [120].

In Fig. 8.22(a)-(f) finally, the field configuration for the TEM, TM1

and TM2 leaky modes have been shown. As expected, the former is
transversely evanescent in air outside the WM slab. On the other hand,
the WM slab has a small impact on the TM1 mode, whose vertical com-
ponent of the electric field (the one that interacts with the WM) has a
null in the middle of the PPW. By suitably exciting the proposed struc-
ture with a vertical electric dipole placed on the ground plane, only
the radiation of the TM1 mode will be observed, allowing to obtain a
well-defined beam inside the designed unimodal bandwidth.
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Fig. 8.22. Field configurations at different frequencies for the x component of the magnetic
field of the TEM, TM1 and TM2 modes supported by a WM-loaded PPW. Parameters:
PPW thickness h = 14.27 mm; wire radius a = 0.19 mm; wire spacing d = 1.5 mm. The
frequency-independent field configurations of the same modes in the absence of WM
loading are also reported for comparison. Copyright © 2015, IEEE.
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8.7. Leaky-mode equalization

As discussed in the previous sections, the presence of a wire-medium
slab with vertically aligned wires is able to perturb the propagation of
the TEM mode leaving almost unchanged those of the TE1 and TM1.
Even though these two modes are degenerated inside a simple parallel-
plate waveguide (they have the same cutoff and the same dispersion
curves but, of course, a different field distribution), by introducing a
load, i.e., a wire-medium slab, and by opening the structure to generate a
leaky mode, as shown in Fig. 8.10, they result perturbed and not longer
coincident. To recast the equalization, at least in a relatively narrow
range of frequency, one can think to act on the dielectric filling the wire
medium slab and most of all on the geometry of the partially reflecting
surface constituting the Fabry-Perot cavity antenna. To give an example
in Fig. 8.23 dispersion curves for the TE1 and TM1 modes supported by
a homogenized PRS made by square patch having period p = 3 mm and
slot width on both longitudinal and transverse directions equal to 0.05
mm. The structure is symmetrically loaded with a wire-medium slab
having thickness t = 10 mm aiming at designing two leaky modes in
the region of frequency where the TEM cannot radiate, namely just after
the asymptote. This condition is verified in Fig. 8.23 but the phase and
attenuation constant of the twomodes are not equalized; this means that
the achieved dual-pol beam is made by two independent conical beam
pointing in two different directions and having different beamwidth. To
overcome this problem and obtain two dispersion curves able to cross
each others in the neighborhood of a selected frequency, the geometry
of the PRS constituting the upper wall of the structure at hand has
been suitable designed. In particular, a rectangular unit cell having two
different dimensions for the slots has been introduced, being wy = 0.01
mm (i.e., wTM) and wx = 0.05 mm (i.e., wTE) the dimensions along
the transversal and longitudinal directions, respectively; in addition
the permittivity of the medium filling the WM is fixed to εr = 1.25. In
Fig. 8.24 the phase and attenuation constants of the two modes have
been reported: both the curves cross each other, allowing to obtain
the desired equalized pattern. To better highlight the peculiar features
of the designed beam, in Fig. 8.25 and 8.26 both the scanning and
the beamwidth behaviors of the proposed antenna with respect to the
operating frequency have been reported. It is clearly visible that the
equalization has been obtained at about 11.8 GHz, where the TE and
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Fig. 8.23. Dispersion equation for the modes propagating inside a wire medium loaded
PPW whose upper plate is made by square patch having w = 0.05 mm. The structure is
the same considered in Fig. 8.15.

Fig. 8.24. Dispersion equation for the equalized modes: two slots of different width have
been considered. Specifically wTM = 0.01 mm and wTE = 0.05 mm.
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Fig. 8.25. Dispersion equation for the equalized modes: two slots of different width have
been considered. Specifically wTM = 0.01 mm and wTE = 0.05 mm.

Fig. 8.26. Dispersion equation for the equalized modes: two slots of different width have
been considered. Specifically wTM = 0.01 mm and wTE = 0.05 mm.

TM polarized conical beams point in the same direction and present
a similar beamwidth. The results outlined in this section assess the
possibility of obtaining two independent leaky modes to design a dual-
pol leaky-wave antenna capable to reconfigure the polarization. The
presented solution should be suitably recast to make more realistic
the material filling the guide and to satisfy performances enforced by
specific applications. It is important to note, finally, that this class of
antennas and their peculiar features represent one of the possible starting
point to design fully reconfigurable systems, that should be capable to
electronically scan the beam on both elevation and azimuthal planes.





9. RadiativeAnalysis ofWire-MediumLoaded
Antennas

9.1. Introduction
The radiation pattern produced by elementary sources in the pres-

ence of the considered WM-loaded structure can be obtained by using
a well-known approach based on the reciprocity theorem [121]. As
we will discuss in the following, this method in based on the remark-
able properties of the modal solution for guiding structure showing
cylindrical symmetry, where for each TM or TE wave the longitudinal
dependence of the transverse field can be studied introducing a trans-
mission line. We will start evaluating the far-field pattern of simple
planar structure excited by line currents. Hence, a vertical electric dipole
will be considered and the capability of a wire-medium slab to suppress
spurious radiation will be assessed for both the cases.

9.2. Far field via reciprocity
Let us considering a planar antenna obtained introducing periodic

perturbations on the upper metallic plate of a parallel-plate wave guide.
We can analyze the radiative properties of this kind of structure by
exploiting the reciprocity theorem and setting up an equivalent net-
work, whose voltages and currents can be associated to the longitudinal
dependences of the transverse components of the impinging electric
and magnetic fields. The simplest excitation is represented by an ideal
current line, electric to radiate a TE field and magnetic for a TM one.
Also vertical or horizontal dipoles, reproducing a more realistic three-
dimensional radiation pattern, can be considered. Let us assume that
within a linear and isotropic medium there are two sets of source J, M
and Jtest, Mtest (or more simply J1, M1 and J2, M2), that can radiate si-
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Fig. 9.1. (a) Planar structure made by a parallel plate waveguide whose upper plate is
periodically perturbed. An incident plane wave radiated by a remote line source is also
represented. (b) Equivalent transverse network for the considered planar antenna. Two
reference sections for the evaluation of the input admittance have been highlighted.

multaneously or individually at a fixed frequency f . They produce fields
E, H and Etest, Htest, respectively. By starting from Maxwell’s equation,
under these hypotheses, it is possible to demonstrate under general con-
ditions [123] the following integral relation among fields and currents

∫

V
(E1 · J2 − H1 · M2) dv′ =

∫

V
(E2 · J1 − H2 · M1) dv′. (9.1)

Each integral in (9.1) can be interpreted as a coupling between a set of
fields and a set of sources, which produce another set of fields. Typically,
these relation, are defined reactions and can be denoted in the following
way

〈1, 2〉 =
∫

V
(E1 · J2 − H1 · M2) dv′

〈2, 1〉 =
∫

V
(E2 · J1 − H2 · M1) dv′

(9.2)

consequently, from reciprocity we have that

〈1, 2〉 = 〈2, 1〉 (9.3)

which states that the reaction (or coupling) of the sources with the
corresponding fields must be equal. This interesting results can be
suitably exploited to calculate the radiation pattern of the structure
investigated e.g. in this thesis. The procedure has been demonstrated
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for other kind of antennas for the first time in [121]. In particular, as
shown in Fig. 9.1(a), it is convenient to consider a test field (i.e, a
plane wave radiated by a source Jtest placed in a remote point from the
antenna) and evaluating the field produced in (xs, ys), where the actual
line source supporting a current Jy is located. From equations (9.1) and
(9.3), considering that in this simple case M1 = M2 = 0 and E1 = Etest

y ,
J2 = Jyy0, E2 = E f f

y , J1 = Jtest
y y0, we can write

〈Etest
y , Jy〉 = 〈E f f

y , Jtest
y 〉. (9.4)

where E f f
y and Etest

y are the electric field produced by the Jy and Jtest
y

source currents, respectively. Since Jtest
y is a known quantity expressed

as a Dirac pulse (one for each direction of propagation) we can write

E f f
y (ρ, θ) = JyEtest

y (xs, zs) (9.5)

Consequently, the field radiated by the considered antenna can be ob-
tained finding the field Etest

y (xs, zs), namely the field produced by the
remote source in the spatial point where the actual source Jy is located.
It is worth to note that when we consider a magnetic line source, by
associating the longitudinal dependence of the transverse component
of the incident magnetic field to the current of the transmission line, we
have to suitable modify the reaction shown by equation (9.1) and (9.4)
as follows

〈Htest
y , My〉 = 〈H f f

y , Mtest
y 〉 (9.6)

that is again a specific case of that more general represented by equations
(9.1).

9.2.1. Line source excitation
9.2.1.1. TE case

If we consider J = Jyy0, that is a y-oriented electric line current, a TE
field having Ey, Hx, Hz components is radiated. Therefore, the incident
electric field on the planar structure is given by [35]

Etest
y,inc(x, z) =

−k0η0

4
H(2)

0 (k0ρ), (9.7)

as we can consider k0ρ � 1, it is possible to exploit the asymptotic
expression of the Hankel function. This means that the cylindrical wave
produced by the line current can be locally written as follows

Etest
y,inc(x, z) = Etest

0 ejk0(x cos θ+z sin θ) (9.8)
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where Etest
0 is the complex amplitude of the impingingwave that depends

on the initial phase value of the wave excited by the source

Etest
0 = −η0

√
jk0

8π

e−jk0ρ

√
ρ

. (9.9)

It is very interesting to note that, as for the case of guided propagation
in cylindrical structure (where potentials and fields can be decomposed
in a longitudinal and a transverse part), also for the problem at hand we
can consider the electric field as made by a transverse and a longitudinal
component, as expressed in the following

E(z, x) = Et(z, x) + Ez(z, x)z0. (9.10)

Even though we are considering free-space propagation, such a decom-
position is still possible; let us think, as an example, that plane waves
can be seen as modal solution of a particular guided structure (i.e., the
free space). Additionally, by separating also transverse and longitudinal
dependence of the transverse component of the incident electric field,
we have

Et(z, x) = V(z)e(x) (9.11)

and we can finally associate the longitudinal component V(z) to an
equivalent network, whose progressive wave voltage is associated to
the longitudinal dependence of the transverse components of the im-
pinging electric field. Specifically, as shown in Fig. 9.1(b), the model is
made by two transmission line, one of infinite length (representing the
free space) and one closed on a short circuit (representing the ground
plane of the structure). These two lines must have a parallel connection
with the frequency-dependent equivalent susceptance, that represents a
homogenized model of the geometry of the periodic structure; formu-
las for simple configuration are available in literature [119], as already
highlighted in the previous chapter. By starting from equation (9.8)
and (9.11), the voltage characterizing the upper transmission line can
be written as follows

Vinc(z) = Etest
0 ejkz0 z (9.12)

where the propagation constants of the two lines are

kz1 =
√

µrεr − sin2 θ

kz0 = k0 cos θ
(9.13)
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and the admittance looking just down the susceptance YB (see lower
dotted line in Fig. 9.1) is Ystub = −jY1 tan(kx1 h). By writing the value
of Vinc(z) in z = zs it is possible to obtain the field Etest

y (xs, zs), hence
thanks to equation (9.5) the sought expression of E f f

y (ρ, θ) in the far-
field region is obtained. It is worth noting that the θ-dependence of the
equivalent network is visible in the propagation constant and conse-
quently in the characteristic impedance of the line. This means, actually,
that each elevation angle of the impinging wave is associated to an
equivalent transverse network. By starting from the transmission-line
equation we can write

V(z) = V−(z) + V+(z) = V−
0 ejkz1 z + V+

0 e−jkz1 z (9.14)

since the progressive wave is propagating in the opposite direction of
the positive value of the z-axis, for the reflection coefficient we have

Sv(z) =
V+(z)
V−(z)

=
V+

0 e−jkz1 z

V−
0 ejkz1 z = Sv(0)e−j2kz1 z. (9.15)

The voltage propagating in the line can be written in function of the
progressive wave and of reflection coefficient as follow

V(z) = V−
0 ejkz1 z

(
1 +

V+
0

V−
0

e−j2kz1 z

)
= V−(z)(1 + Sv(z)) (9.16)

where V−(z) = Vinc(z). By considering the previous equation, for the
voltage in z = 0 we have

V(0) = V(0+) = V(0−) = Vinc(0)(1 + Sv(0)). (9.17)

Recalling that

Sv(z) =
Z(z)− Z0

Z(z) + Z0
(9.18)

Sv(0) =
ZL − Z0

ZL + Z0
(9.19)

and that Yin = YB + Ystub = YB − jY1 cot(kz1h), for the reflection coeffi-
cient seen looking inside the transmission line at the upper reference
section we can finally write

Sv(0+) =
Zin − Z0

Zin + Z0
=

Y0 − Yin
Y0 + Yin

. (9.20)
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Consequently, equation (9.17) can be rewritten in its final form as

V(0) = Vinc(0)
(

1 +
Y0 − Yin
Y0 + Yin

)
= Vinc(0)

(
2Y0

Y0 + Yin

)
(9.21)

where Ystub is the input impedance of the line under the considered
section and Vinc(0) = Vinc

0 = Etest
0 is the complex amplitude of the

impinging wave. By considering once again Fig. 9.1(b), for the current
on the considered section (i.e., z = 0−, just below the susceptance) we
have

I(0−) = Is + I(0+) = −V(0)Ystub = −Vinc(0)
(

2Y0Ystub
Y0 + Yin

)
; (9.22)

it can be associated to the transverse component of the impinging mag-
netic field, namely Hx. To accomplish our initial goal, we need now
to evaluate the value of the voltage in z = zs, where the actual source
is located. Since the value of the reflection coefficient in z = −h is
Sv(−h) = −1 we get

V(z − h) =V−
0 ejkz1 (z−h) + V+

0 e−jkz1 (z−h)

=V−
0 e−jkz1 h

[
ejkz1 z +

V+
0

V−
0

ej2kz1 he−jkz1 z

]
(9.23)

thus, remembering that Sv(−h) = Sv(0)e−2jkz1 h = −1, for the voltage
in z = −h we can finally write

V(z − h) = V−
0 e−jkz1 h

(
ejkz1 h − e−jkz1 z

)
= −2jV−

0 e−jkz1 h sin(kz1 z)
(9.24)

In conclusion, by considering the value of V(z− h) in z = h and z = h/2
we can write the sought value of the voltage in z = zs

V(zs) = V(0)
sin(kz1(h + zs))

sin(kz1 h)
. (9.25)

Recalling equation (9.8) the field radiated by the remote line source in
(xs, zs) can be written as

Etest
y (xs, zs) = V(zs)ejk0xs sin θ (9.26)

thus, by considering equation (9.25), (9.21) and (9.9), recalling that
E f f

y (ρ, θ) = JyEtest
y (xs, zs), the electric field radiated by the structure
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Fig. 9.2. Normalized radiation patterns in an arbitrary elevation plane for a Fabry-Perot
cavity antenna with a PRS constituted by concentric annular slots represented by its
linearized version, excited by a horizontal electric line source placed in the middle of
the structure. The patterns are obtained through a homogenized model of the HIS. The
linearized structure has the following parameters p = 3 mm, w = 0.05 and h = 14.27 mm.
(a) Cartesian plot in dB. (b) Polar plot in linear scale for different values of the frequency
(see labels).

at hand, excited by a line source placed in (xs, zs), is reported in that
follows

E f f
y (ρ, θ) = −Jyη0

√
jk0

8π

e−jk0ρ

√
ρ

(
2Y0

Y0 + Yin

)
sin(kz1(h + xs))

sin(kz1 h)
ejk0zs sin θ .

(9.27)
Since the electric field produced by the structure far from the source can
be written as

Ey(ρ, θ) � e−jk0ρ

√
ρ

F(θ) (9.28)

for the far-field pattern we finally have

F(θ) = −Jyη0

√
jk0

8π

(
2Y0

Y0 + Yin

)
sin(kz1(h + xs))

sin(kz1 h)
ejk0zs sin θ . (9.29)

In Fig. (9.2) results have been reported, considering a parallel plate
waveguide whose height is equal to h = 14.37 mm. The PRS is made by
square patches (period p = 3 mm) where the width of the transverse
slot (with respect to the direction of propagation) inside the unit cell
is equal to 0.05 mm. The width of the longitudinal slots is equal to
0.01 mm, but it is not able to perturb the currents associated to the TM
mode; indeed, as shown in [119], HIS made by a periodic arrangement
of strips and patches in this condition are represented by the same
susceptance. In Fig. 9.2(a) a Cartesian plot of the far-field pattern for
different frequencies has been reported, showing the typical scanning
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Fig. 9.3. Fabry-Perot cavity antenna excited by an electric line source and symmetrically
loaded with a dielectric slab.

Fig. 9.4. Transmission-line model and relative ABCD matrix for a PPW loaded with a
dielectric slab, terminated by a homogenized PRS.

behavior of the leaky mode. Additionally, in 9.2(b) a polar plot showing
a section of the related conical beam is presented.

Since our analysis aims at introducing a wire-medium slab inside
the proposed structure, whose wires are possibly inserted in a dielectric
medium having permittivity εr, (as shown in Fig. 9.3), a symmetric slab
(centered with respect to the median plane) has been considered. In this
way the effect on the radiation pattern of the TE1 can be straightforwardly
evaluated. To find the voltage inside and/or below the proposed slab
we need to consider the transfer matrix of the structure lying under the
shunt susceptance representing the PRS, as shown in Fig. 9.4. The input
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admittance Yin1 seen looking inside the highlighted section is given by

Yin1 = Y1
Yin2 cos(kx1

h−t
2 ) + jY1 sin(kx1

h−t
2 )

Y1 cos(kx1
h−t

2 ) + jYin2 sin(kx1
h−t

2 )
(9.30)

whereas the transfer matrix of each line segment is written as (see [122])
(

cos(kxl) jZ0 sin(kxl)
j

Z0
sin(kxl) cos(kxl)

)
(9.31)

thus, recalling that voltage and current of the involved 2-port network
can be written in matrix form as

(
V1

I1

)
=

(
A B
C D

)(
V2

I2

)
(9.32)

and that V2 = V(0), I2 = I(0−), we finally have the voltage in (xs, zs),
where the actual source is located




V(zs) = V1 = AV2 + BI2 = AV(0) + BI(0−)

I(zs) = I1 = CV2 + DI2 = CV(0) + DI(0−).
(9.33)

In Fig. 9.5 some results for the structure presented in Fig. 9.3 having
the same HIS of the previous example have been reported, introducing
a dielectric slab with εr = 1.5 and εr = 2, respectively. It is interesting
note that for larger value of the permittivity we are able to modulate the
tracking angle and the width of the conical beam, giving the possibility
to obtain a further degree of freedom to equalize phase and propagation
constant of the TE and TM modes responsible for the radiation.

9.2.1.2. TM case
Following the same procedure outlined in the previous section, we

can straightforwardly evaluate also the far-field pattern generated by
a magnetic line source. Two different possibilities are available, since
inside the transmission line we can consider the wave voltage associated
to the transverse component of the incident electric field, but also the
wave current, that in turns must be connected to the magnetic field. As
is known, in this case the non-null components of the impinging field
generated by the source are Hy, Ex, Ez, but the equivalent transverse
network is the same shown in Fig. 9.1, where a wave voltage Vinc

z has
been chosen to link the incident field with the voltage in the section
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Fig. 9.5. Normalized radiation patterns in an arbitrary elevation plane for a dielectric
loaded structure. Patterns are obtained with a homogenized model. The linearized
structure has the following parameters p = 3 mm, w = 0.05 and h = 14.27 mm. (a) Polar
plot in linear scale for εr = 1.5. (b) Polar plot in linear scale εr = 2 for two values of the
frequency (see labels).

Fig. 9.6. (a) Planar structure made by a parallel-plate waveguide whose upper plate is
periodically perturbed by slots. Also an incident planewave radiated by a remotemagnetic
line source is represented. (b) Associated reciprocal planar structure. In (xs, zs) the actual
magnetic source is considered and also the plane wave radiated in far field is reported.

where the actual source is located. However in this case, as shown in
Fig. 9.6, the electric field radiated by a magnetic filamentary current in
Cartesian coordinates can be written as

E = Exx0 + Ezz0 (9.34)

where E = E0e0. Consequently, the transverse component of the electric
field is Ex = E0 cos θ and the progressive wave voltage inside the line,
as already reported by equation (9.12), reduces to

Vinc
z = Etest

0 ejkz0 z cos θ. (9.35)

Recalling equation (9.22), reported in the following for convenience

I(0−) = Is + I(0+) = −V(0)Ystub = −Vinc(0)
(

2Y0Ystub
Y0 + Yin

)
(9.36)
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we have that
Vinc(0) = Etest

0 cos θ (9.37)

with

Etest
0 = η0

√
jk0

8π
. (9.38)

It is worth noting that equation (9.22) provides a link between the im-
pingingmagnetic field and the current of the transmission line, although
in the starting model we have considered a wave voltage. Following
the same procedure outlined in the previous section we can write the
expression for the current in (xs, zs), where the actual source is located

I(zs) = I(0−)
cos(kz1(zs + h))

cos(kz1 h)
(9.39)

thus thanks to equation (9.6), for the far-field distribution we have

H f f
y (ρ, θ) = −Myη0

√
jk0

8π

e−jk0ρ

√
ρ

(
2Y0Ystub
Y0 + Yin

)
cos(kz1(h + xs))

cos(kz1 h)
cos θejk0zs cos θ

(9.40)
and recalling that Y0 = ωε0/kx1 = 1/(η0 cos θ) we can finally write

H f f
y (ρ, θ) = −My

√
jk0

8π

e−jk0ρ

√
ρ

(
2Ystub

Y0 + Yin

)
cos(kz1(h + xs))

cos(kz1 h)
ejk0zs cos θ .

(9.41)
Of course, when a transmission line is associated to the impinging field,
we can consider also the incident wave current, giving rise to this ex-
pression

Iinc
z = Htest

0 ejkz0 z. (9.42)

with

Htest
0 =

√
jk0

8π
. (9.43)

Following such a dual procedure, a new expression of the current inside
the line has to be written, which depends on the impinging magnetic
field

I(0−) = Iinc(0)
(

2Ystub
Y0 + Yin

)
. (9.44)

However, as expected, this formula give rises to the same expression
reported in equation (9.41). To give some examples we consider here
the same structure described for the TE case, whose PRS has transversal
slots have a width equal to wTM = 0.01 mm and longitudinal slots of
wTE = 0.05 mm. As shown in Fig. 9.7, the far-field pattern shows two
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Fig. 9.7. Far-field pattern for the considered structure. Radiation of both TEM and TM1,
in Cartesian and polar plots, for different frequency values in an arbitrary elevation plane.

main lobes: one generated by the TEM leaky mode propagating inside
the structure and having a perturbed transverse field distribution with
respect to that of the associated PPW, and the other one produced by
relevant TM1 leaky mode. This simple result confirms the necessity to
suppress the unwanted lobe: it can be eliminated by perturbing the field
distribution inside the guide but keeping unchanged those of the TM1

and TE1 leaky modes. In particular, as shown in the previous chapter,
an interesting strategy consists in symmetrically loading the structure
by means of a wire-medium slab, just where a null of the transverse field
distribution of the TM1 field is presents. Even though a magnetic line
source should be placed only on the ground plane, where it is able to
model a magnetic current flowing on an etched slot, to test the accuracy
of the proposed approach, in Fig. 9.8 the radiation pattern obtained
by placing the source in zs = 0.55h has been reported. Since field
distribution of the TM1 field shows a null in this section (not properly in
zs = 0.5h as it represents a perturbed version of the mode propagating
inside a PPW), as expected, at the angular direction where a lobe should
be present, we clearly see now a null. It is also worth noting that the
TEM mode is always well excited (and it will be so for any position
along the section) since its distribution is constant along the transverse
plane of the guide.

9.2.2. Vertical electric dipole
9.2.2.1. TM case

A more realistic excitation for the structure at hand is represented
by a vertical electric dipole (VED). The equivalent transverse network
shown in Fig. 9.9 and the voltage wave propagating inside the network



9. Radiative Analysis of Wire-Medium Loaded Antennas 265

Fig. 9.8. Far-field pattern for two particular positions of the excitation, in Cartesian and
polar plots. The TEM mode is clearly visible, while in direction where the TM1 modes
should be present a null is clearly visible, since the position of the source coincides with a
null of the transverse field configuration.

are the same as introduced in the previous section for an ideal line
source; we only need to develop a suitable modification related to the
implementation of the reciprocity theorem. Let us consider the following
source

J = I0l0z0δ(x)δ(y)δ(z − zs) (9.45)

that represents a VED placed in z = zs. To evaluate the far field E f f by
means of the reciprocity theorem, we introduce a test dipole placed at
(r, θ, φ = 0), directed along θ0, with

Jtest = Itestltestθ0δ(r − rtest). (9.46)

The field incident upon the PRS, produced by Jtest, can be approximated
at the origin and in the far field as

Einc = −jk0η0
Itestltest

4πr
e−jkrθ0 = Einc

0 θ0 (9.47)

hence, recalling that θ0 · x0 = cos θ, the transverse incident field is x-
directed and is given by

Einc
t = Einc

0 cos θejkzzejkx xx0 (9.48)

where kz = k0 cos θ and kx = k0 sin θ. Consequently, we may write

Einc
t = Vinc(z)et(x) (9.49)

with

Vinc(z) = Vinc
0 ejkzz (9.50)

et(x) = x0ejkx x (9.51)
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and Vinc
0 = Einc

0 cos θ. In Fig. 9.9 the transverse equivalent network for
this problem is reported, equal to that just introduced for the ideal line
source, giving rise to the same formula for voltage and current upon the
reference section, reported in the following




V(0) = Vinc(0) 2Y0
Y0+Yin

I(0−) = −Vinc(0) 2Y0Ystub
Y0+Yin

.
(9.52)

By exploiting the same considerations outlined in the previous section,
the current in z = zs can be written as

I(zs) = I(0−)
cos(kz1(zs + h))

cos(kz1 h)
(9.53)

consequently, if the VED is placed on the ground plane, as shown in Fig.
9.9(a), we finally have

Fig. 9.9. Planar structure made by a parallel-plate waveguide whose upper plate is substi-
tuted by a HIS, excited by a VED placed on the ground plane. An incident plane wave
radiated by a remote dipole is also represented. (b) Equivalent transverse network for
the considered planar antenna. Two reference sections for the evaluation of the input
admittance have been highlighted.

I(−h) =
I(0−)

cos(kz1 h)
=

Vinc(0)
cos(kz1 h)

2Y0Ystub
Y0 + Yin

. (9.54)

To find the electric field received by the considered vertical dipole (i.e.,
the z-component), starting from Maxwell’s equations we can write

Ez =
1

jωε
∇t · (Ht × z0) (9.55)
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where
Ht(x, z) = I(z)ht(x) (9.56)

and
ht(x) = z0 × et(x) = y0ejkx x (9.57)

Thus, the z-component of the electric field can be rewritten as follows

Ez =
1

jωε
I(z)∇t · (ht × z0) =

1
jωε

I(z)∇t · (et) =

1
jωε

I(z)∇t ·
(

ejkx xx0

)
=

kx

ωε
I(z)ejkx x

(9.58)

and on the VED we have

Ez =
kx

ωε
I(−h); (9.59)

since kx = k0 sin θ and ωε = k0εr/η0, recalling equation (9.54) for the
test field on the dipole we finally have

Etest
z = −η0

εr
sin θ

Vinc(0)
cos(kz1 h)

2Y0Ystub
Y0 + Yin

. (9.60)

By considering reciprocity we can write

〈Ji, Etest〉 = 〈Jtest, E f f 〉 (9.61)

hence

I0l0Etest
z (0, 0, z = −h) = E f f

θ (r, θ, φ = 0)Itestltest (9.62)

introducing (9.60) in the previous equation, we get

−I0l0
η0

εr
sin θ

Vinc(0)
cos(kz1 h)

2Y0Ystub
Y0 + Yin

= E f f
θ Itestltest (9.63)

thus, recalling equation (9.47) we can finally write the far-field radiated
by the considered structure

E f f
θ = jk0η0

I0l0
4πr

e−jkr η0

εr
sin θ cos θ

1
cos(kz1 h)

2Y0Ystub
Y0 + Yin

. (9.64)

In Fig. 9.10 some results for the TM modes have been reported; the
structure is the same considered previously (h = 14.37 mm, p = 3
mm, w = 0.01 mm). Besides the lobe produced by the radiation of
the TM1 leaky mode, also a secondary lobe having nearly the same
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amplitude is clearly visible; it represents the unwanted radiation of the
TEM leaky mode. As said, this mode is always propagating inside a
PPW and can be excited for arbitrary position of the considered vertical
electric dipole. On the contrary, since the TM1 field configuration is
represented by a sinusoidal wavewith a null along themedian plane and
a maximum both on the upper and lower metallic planes, its excitation
will be maximized by means of a VED placed just on the ground plane.
As already demonstrated exciting the structure at hand by means of a
line source, by placing the VED at zs ≈ h/2 only the TEM mode will be
visible, being the transverse field of the TM modes null in that section
of the guide.

Fig. 9.10. Far-field pattern for the considered structure in arbitrary elevation plane. Radi-
ation of both TEM and TM1, in Cartesian and polar plots, (a) and (b) respectively, are
visible for different frequency values. Copyright © 2015, IEEE.

9.3. Wire-medium slab
Starting from the equivalent network model outlined in section ??

and exploiting one again the reciprocity, we can analyze the radiation
of the planar structure considered in previous sections loaded with a
wire-medium slab, whose wires are vertically aligned inside the guide.
Basically, general features of the structure extensively analyzed in section
8.6 will be discussed, and capability of a WM slab to suppress spurious
radiationwill be comprehensively outlined. As already shown in Fig. 9.4,
following similar procedures, we can design here a transverse network
by suitable introducing a transmission matrix for any line segment, and
evaluating the input impedance ZIN of the overall structure. It is worth
noting that the input impedance Z↓ of the equivalent network describing
the wire-medium slab has already been carried (see equations (9.65)),
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Fig. 9.11. (a) Transmission line model of a FPCA loaded with a symmetric wire medium
slab. (b) Equivalent transverse network with emphasis on the ABCD matrix representing
the wires and the two air/WM interfaces.

and is reported in the following for convenience

Z↓ =
(

1 1
) [

Z
′
L

] ( ξ

ξ − 1

)
(9.65)

To evaluate the input admittance seen looking downward the reference
section, highlighted in Fig. 9.11, by exploiting canonical transmission
line theory, we can write

YIN = Y1
Y↓ cos(kx1

h−t
2 ) + jY1 sin(kx1

h−t
2 )

Y1 cos(kx1
h−t

2 ) + jY↓ sin(kx1
h−t

2 )
(9.66)

whereY↓ = 1/Z↓ andY1 is the characteristic admittance of the transmission-
line, representing the air layer between theWM slab and the PRS, having
length l = (h − t)/2 (see Fig. 9.4). As shown in the previous section,
to find the radiated field we need to calculate the value of the voltage
or the current in the point z = zs of the equivalent transverse network.
Consequently, we can represent the structure under the reference section
by means of an overall transfer matrix, that allows to connect voltage
and current as follows

(
VF1

IF1

)
=

(
A B
C D

)(
VF2

IF2

)
. (9.67)

In particular, this ABCD matrix can be simply obtained by respectively
introducing the transfer matrices of the line segments constituting the
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Fig. 9.12. Transmission line model of the ABCD matrix representing the wire medium
slab. Each region inside the structure must be represented by a suitable transmission line
and the relevant transfer matrix. Copyright © 2015, IEEE.

overall network, as shown in Fig. 9.12 and 9.13, where Z′
L and ZL contain

information on the structure up and below the considered slab (PRS and
ground plane, respectively). Recalling that a series of transfer matrices
is the product of the each of them, the ABCD matrix for the structure at
hand can be written as follows

(
A B
C D

)
=

(
A1 B1

C1 D1

)(
AWM BWM

CWM DWM

)(
A3 B3

C3 D3

)
, (9.68)

while, for the voltage in (xs, zs), where the actual source is located, we
have





V(zs) = VF1 = AVF2 + BIF2 = AV(0) + BI(0−)

I(zs) = IF1 = CVF2 + DIF2 = CV(0) + DI(0−).
(9.69)

It is important to note that the first and the last matrix of the right-hand
term of equation (9.68) are already known, since they represent a simple
transmission line segment (see equation (9.31)). We need, instead, to
evaluate the central transfer matrix, that is specifically associated to the
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Fig. 9.13. Detailed representation of the equivalent network representing the ABCDmatrix
of the wire medium slab.

wire medium slab. With reference to Fig. 9.12 it is defined as follow

(
VWM1

IWM1

)
=

(
AWM BWM

CWM DWM

)(
VWM2

−IWM2

)
. (9.70)

From standard network analysis (see [122]), with reference to Fig. 9.70
we can write

Z↓ =
AWMZL + BWM
CWMZL + DWM

Z↑ =
AWMZ′

L + BWM

CWMZ′
L + DWM

(9.71)

in particular, considering the short- and open-circuit terminations Z′
L =

0, ∞ and ZL = 0, ∞ we have from (9.71)

Z↓
0 =

BWM
DWM

Z↓
∞ =

AWMBWM
AWMDWM − 1

Z↑
0 =

BWM
AWM

Z↓
∞ =

DWMBWM
AWMDWM − 1

(9.72)

where the input impedances Z↓
0/∞ and Z↑

0,∞ must be calculated by ex-
plicitly evaluating equation (9.65) and calculating the two limits. For
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the sake of brevity in the following we report only the final results

Z↓
0 = − jZTEM2

(ξ − 1)2 sin(kTEM
z t) sin(kzTMt)

(ξ − 1)ZTEM cos(kTEM
z t) sin(kTM

z t)− ξZTM cos(kTM
z t) sin(kTEM

z t)

+
2jZTEM(cos(kzTEMt) cos(kTM

z )− 1)(ξ − 1)ξZTM

(ξ − 1)ZTEM cos(kTEM
z t) sin(kTM

z t)− ξZTM cos(kTM
z t) sin(kTEM

z t)

+
jξ2 sin(kTEM

z t) sin(kTM
z t)ZTM2

(ξ − 1)ZTEM cos(kTEM
z t) sin(kTM

z t)− ξZTM cos(kTM
z t) sin(kTEM

z t)

Z↓
∞ = j(ZTEM cot(kTEM

z t)(ξ − 1)− cot(kTM
z )ξZTM).

(9.73)

Thus, (9.72) can be inverted (using also the reciprocity constraint AWMDWM−
BWMCWM = 1) to obtain the sought WM ABCD parameters:

AWM =

√√√√ Z↓
0

Z′↑
0

√√√√ Z↓
∞

Z↓
∞ − Z↓

0

BWM =

√
Z↓

0 Z′↑
0

√√√√ Z↓
∞

Z↓
∞ − Z↓

0

CWM =

√√√√ Z↓
0

Z′↑
0

1√
Z↓

∞(Z↓
∞ − Z↓

0 )

DWM =

√√√√Z′↑
0

Z↓
0

√√√√ Z↓
∞

Z↓
∞ − Z↓

0

(9.74)

If the structure is symmetric, as in our case, equation (9.74) simplify to
the final expression

AWM = DWM =

√√√√ Z↓
∞

Z↓
∞ − Z↓

0

BWM = Z↓
0

√√√√ Z↓
∞

Z↓
∞ − Z↓

0

CWM =
1√

Z↓
∞(Z↓

∞ − Z↓
0 )

(9.75)
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Having available the expression of the transfer matrix for the overall
structure shown in Fig. 9.12, we can go back to equation (9.69) to obtain
to sought values of the voltage and current in the section where the
actual source is located.

9.3.1. TEM suppression
As widely discussed in the previous sections, by starting from the

value of the voltage in a specific point of the equivalent transverse model
we can plot the far field of the considered structure. Considering once
again equations (9.52)-(9.61) and (9.69) and recalling that

E f f
θ = jk0η0

I0l0
4πr

e−jkr η0

εr
sin θ cos θ

1
cos(kz1 h)

2Y0Ystub
Y0 + Yin

(9.76)

we can finally investigate the capability of the designed structure to
suppress the unwanted contribution generated by the TEMmode. We
consider here the same structure as in Fig. 9.10, with longitudinal and
transversal slots having dimension wTM = 0.01 and wTE = 0.05 mm.
The period of the PRS lattice is p = 3 mm. In Fig. 9.14 the radiation
pattern generated by symmetrically loading the open PPW with a wire
medium slab having thickness t = 4 mm is presented. Different frequen-
cies have been considered to cover all the expected unimodal bandwidth,
ranging from 13 GHz up to 21 GHz (the cut-off frequency of the TM2

mode is fc = 21.5 GHz). The characteristics of these diagrams fully
corroborate the modal curves reported in Fig. 8.20(a) and the relevant
transverse field configuration presented in Fig. 8.22(a). As expected, a
residue radiation (see [130, 131] for further details) is still visible in Fig.
9.14. It is less and less visible for higher frequency, also in agreement
with the relevant transverse field distribution of the TEM mode, whose
value on the lower metal plate, where the VED is placed, decreases for
increasing frequency values.

In Fig. 9.15 and 9.16 radiation pattern for t = 6 mm and t = 8
mm have been presented. As expected the residual radiation around
80◦ is less visible and a well defined beam associated to the TM1 leaky
wave mode has been obtained. It is finally interesting to note that the
behavior of the radiation patterns presented in Figs. 9.14-9.16 confirm
the prediction of the relevant dispersion curves shown in Fig. 8.20:
indeed, the slope of the phase constant of the associated structure is in
agreement with the width of angular region swept by the beam. Larger
values of t determine larger values of the this slope, consequently the
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Fig. 9.14. Far-field pattern for the structure excited with a VED in presence of a wire
medium slab in arbitrary elevation plane for different frequencies. By suitable dimension-
ing the thickness we are able to suppress radiation of the TEMmode. WM parameters:
wire radius a = 0.19 mm; wire spacing d = 1.5 mm, plasma frequency fp = 90 GHz.
Patch dimensions 2.95 mm (along x), 2.99 mm (along y); spatial periods (along x and y)
3 mm. Copyright © 2015, IEEE.

Fig. 9.15. Far-field pattern for the same structure presented in Fig. 9.14 excited with a VED
in presence of a wire-medium slab having thickness t = 6 mm in an arbitrary elevation
plane for different frequencies. Copyright © 2015, IEEE.
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Fig. 9.16. Far-field pattern for the same structure presented in Fig. 9.14 excited with a
VED in presence of a wire medium slab having thickness t = 8 mm in arbitrary elevation
plane for different frequencies. Copyright © 2015, IEEE.

radiation pattern is able to cover wide angles in the same frequency
range. The behavior of the attenuation constant is also influenced by the
presence of thicker wire medium slab; in fact, as expected, the far-field
patterns presented in Fig. 9.16 show larger values of the beamwidth
with respect to those presented in Fig. 9.14 and 9.15.

9.4. Conclusion
An efficient network formalism has been presented for the analysis

of planar (possibly layered) structures loaded with a vertically aligned
wire-medium slab. The equivalent network allows for a rapid determi-
nation of the modal dispersion equation and of radiative properties in
the presence of elementary sources if compared with the more cum-
bersome direct approach based on matching the electromagnetic fields
at the structure interfaces. Modal and radiative properties of parallel-
plate waveguides loaded with symmetrically placed wire-medium slab
have been obtained with the proposed method for both closed and
open configurations. The modal curves have been validated through
a full-wave CAD tool; a multimodal Bloch analysis has been suitable
developed to process the scattering parameters provided by the full
wave solution. With reference to partially open structures, highly desir-
able effects on radiative properties due to a line source and to a simple
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dipole feed have been observed, related to the strong perturbation of
the TEM mode whose radiative spurious contributions is significantly
suppressed. These features allow for wideband leaky-wave radiation
from the TM1 mode, which is minimally affected by the presence of the
wire medium, in the form of linearly polarized, omnidirectional conical
patterns with rather wide angular scanning ranges. The possibility of
equalizing the TE1 and TM1 leaky mode supported by a Fabry-Perot
cavity antenna inside the bandwidth where the radiation of the TEM
mode is suppressed has been also discussed. This is of interest for the
realization of a dual-pol conical beam. The novel results outlined in this
and previous chapters represent a first contribution toward the design
of planar radiators having unique reconfigurable features.



Part V

Non-Diffracting Beams





Introduction

The capability of focusing electromagnetic radiation in the near-field
region of an antenna is a very attractive feature for a wide variety of
applications such as imaging, diagnostic and wireless power transfer.
Generally speaking, in optics, solutions of the scalar wave equation that
remain confined and do not undergo diffracting spreading are named
Bessel beam; they were first proposed in [133] and, as for plane waves,
they have a finite energy density but are not square integrable. Hav-
ing determined free-space and radial propagation constants, namely
k0 and kρ, it is possible to demonstrate that Bessel beams are made by
superposition of planes waves whose propagation constants lay on a
cone; consequently, they can be either propagating or evanescent. In the
last three decades, several generalization have been proposed to design
zero-order Bessel beams (see [133, 134] and their bibliographies) all
based on a scalar wave theory, that as is known, is applicable only when
the size of the generating aperture is much larger than the operative
wavelength, and the cone of the wave vectors describing the Bessel beam
(i.e., kρ) is narrow with respect to that of the free space. It is important
to note that Bessel’s beams can be realistic generated through a finite
aperture, hence they do not undergo diffraction over a limited range
within the Fresnel zone of the structure [135]. In fact, an infinite amount
of energy would be required to generate an ideal beam over an entire
plane with an infinite non-diffracting range. Even tough the capability
to generate Bessel beams with narrow beamwidths is particularly impor-
tant for several applications, a fully vectorial wave analysis is needed,
since paraxial approximations cannot be applied. In the last years, the
generation of non-diffractive beams using a leaky radial waveguide has
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been presented [136, 137] and, more recently, thanks to a customized op-
timization algorithm [138] the capability of a Radial Line Slotted Array
(RLSA) antenna to focus energy in a limited region of space has been
also exploited: in [140] slot positions and dimensions required to gen-
erate a zero-th order Bessel beam over a certain plane in the near-field
region have been evaluated. Specifically, a shaped Bessel beam of zero-th
order has been designed, adopting a novel procedure capable to control
the normal component of the electric field radiated by the antenna. It is
interesting to note that this kind of antenna is centrally fed by a coaxial
probe, thus avoiding lossy and cumbersome feeding networks. Follow-
ing the interesting results achieved so far, in this thesis the possibility
of designing and focusing a higher-order Bessel beam is investigated.
This kind of beam is very attractive because can be properly designed to
obtain also an azimuthal phase variation, that basically allows to pro-
duce an ‘orbital angular momentum’ (OAM) beam, recently receiving a
great interest at radio frequencies. Indeed, OAMmay be capable, among
other application, of an increased capacity of communication channels
[141]-[143], and enhanced remote sensing [144].



10. Higher Order Bessel Beams

10.1. Non-diffracting beams

Diffraction is a physical phenomenon that occurs whenever a wave
impacts an obstacle or a slit, whose dimensions are comparable with
the probing wavelengths. First references to diffraction phenomena
appear in the work of Leonardo da Vinci (1452 - 1519), but the term was
originally introduced by the Italian scientist Francesco Maria Grimaldi
[132] starting from the latin word diffringere, that basically means to
break in several parts. He was the first who accurately described such a
phenomenon in a book published in 1665, even though the possibility
of explaining diffraction effects on the basis of the wave theory was
introduced at the beginning of the 19th century, when Fresnel showed
that diffraction can be explained by the application of Huygens’ and
interference principles. Diffraction affects all classical fields; even though
is one of the physics phenomenon best understood, it is considered as
one of the most difficult encountered in optics. Diffraction effects are
generally most pronounced for waves with wavelength comparable
to the dimensions of the involved object. In addition, its formalism
is often considered also to describe the propagation in free space of
waves of finite extent. As matter of fact, the expanding profile of a
laser beam or the beam shape of a microwave antenna related to an
operative wavelength λ, is initially confined to a finite area, but will be
subject to diffractive spreading as they propagate outward the transverse
plane in the free space; thus also this phenomenon can be studied using
diffraction equations.

As is widely known, Helmholtz equation, reported in the following,
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governs diffractive phenomena in every area of physics

∇2Φ(r, k) + κ2Φ(r, k) = 0. (10.1)

In optics the scalar function Φ is very often named disturbance (it rep-
resents an electromagnetic radiation intensity) and in the majority of
problems encountered in optics an approximate description in terms
of a single complex scalar wave function is considered adequate [88];
it is indeed analytically not convenient to consider all the components
of the electromagnetic field. Nevertheless, a complete description of
the radiation phenomena require the specification of the magnitude
of the field vectors as well as their direction (polarization), both as a
function of position and time. However, due to the very high frequency
values of the optical field, one cannot measure the instantaneous value
of these quantities but only time averages over intervals that are large
compared to the optical period. Usually for optic phenomena one refers
to natural light, that as is known does not show a preferential direction
of polarization. Namely, light can be considered as made by a number
of elementary monochromatic waves, each having casual direction of
propagation and different initial phase, giving rise to a radiation that is
called for this reason not polarized and incoherent.

Plane waves are the most known diffraction-free solution of the
Helmholtz equations, but a source of infinite extent should be designed
to synthesize this ideal waves. Even though plane waves do not has
physical meaning, they can be very useful to represent the field radiated
by more complex and realistic sources. However in [133], it has been
demonstrated for the first time that Helmholtz equation has got another
class of diffraction-free solutions, namely a monochromatic wave propa-
gating in the z direction with constant field amplitude reported in the
following

Φ(x, y, z; k) = exp(−jkzz)J0(kρρ) (10.2)

where k2
ρ + k2

z = k2
0, denoting with k2

0 the square of free-space propaga-
tion constant. Moreover, (ρ, z) are coordinates in a cylindrical system
and J0 is the zeroth-order Bessel function of the first kind. As a matter of
fact, equation (10.2) represents a non-diffracting beam because it shows
a constant amplitude distribution in every plane normal to the z axis.
Indeed, the amplitude distribution of the scalar variable (i.e., the electric
field for an electromagnetic wave) does not change with the longitudinal
coordinate.
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10.2. Generalized field with invariant section
To achieve the excitation of a nth order Hankel function and thus

of a focused orbital angular momentum (OAM) beam by means of a
RLSA antenna, the synthesis of a properly phased aperture field on
its slotted plane along the azimuthal angle is requested. Specifically,
in the following the attention will be focused on the analysis of an
aperture field capable to radiate a beam whose phase could show such
a rotational variation. As demonstrated in [88, 145], the most general
field with invariant section can be expressed as a linear combination of
the following functions

Jn(ktρ) ejnφ e−jkzz (10.3)

thus for the z component of the electric field we can write

Ez(ρ, φ, z) = 2π
∞

∑
n=−∞

Anjn Jn(ktρ)ejnφe−jkzz (10.4)

consequently, on the z = 0 plane of an aperture antenna it holds

Ez(ρ, φ) = 2π
∞

∑
n=−∞

Anjn Jn(ktρ)ejnφ. (10.5)

If n = 0 an azimuthally symmetric field can be obtained, then z compo-
nents of the electric field becomes

Ez(ρ, φ, z) = 2π jA0 J0(ktρ) (10.6)

since the wave is TM polarized such a field can be used to derive the
remaining components of the electromagnetic field [98, 136, 137].

It is important to note that if in equation (10.5) n = 1 the field is no
longer azimuthally symmetric, an angular dependency for the phase
can be observed and we can write

Ez(ρ, φ, z) = 2πA1 jJ1(ktρ)ejφejkzz (10.7)

that is themore general relation of an aperture field having an azimuthal
variation of order n = 1; it represents the starting point of our future de-
velopments. As an example, in Fig. 10.1 (a) and (b) a two-dimensional
representation of an azimuthal phase variation of order n = −1 and
n = −2 have been shown.
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Fig. 10.1. Azimuthal phase variation of a Bessel beam as in equation (10.7) of order
n = −1 (a) and n = −2 (b).

10.3. Far-field evaluation
In the previous section an aperture field having an invariant section

and an azimuthal phase dependency as ejnφ has been introduced. Before
to design the RLSA slots layout capable to synthesize such a field it is very
interesting to evaluate the far field generated by suitably propagating
this aperture field. Starting from the procedure outlined in [146], where
a closed-form expression for the radiation pattern of cylindrical leaky
waves propagating on a planar structure have been derived, here a novel
expressions accounting for also an azimuthal variation of the phase
of order n = 1, will be presented. As the structure is invariant in the
transverse plane with respect to the z direction, only the z component of
a magnetic vector potential A is exploited to derive the electromagnetic
field, considering as specific case an amplitude distribution represented
by a Hankel function, as reported in the following

Az(ρ, φ, z) =
j
2

H(2)
1 (ktρ)ejφe−jkzz (10.8)

where the factor 1/2 is added for convenience. Besides, considering that

Az(ρ, φ, z) =
j
2

H(2)
1 (ktρ)(cosφ + j sin φ)e−jkzz (10.9)

the calculation can be split in two independent part, the former has been
already carried out in [146] but will be briefly synthesized here for the
sake of clarity, whereas the latter will be outlined by suitable modifying
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the known solution. By starting from equation (10.9) we can write

Az(ρ, φ, z) = Az1(ρ, φ, z) + Az2(ρ, φ, z)

=
j
2

[
H(2)

1 (ktρ)cosφ + jH(2)
1 (ktρ) sin φ)

]
e−jkzz

(10.10)

thus in the following subsection the first and second potential, namely
Az1(ρ, φ, z) and Az2(ρ, φ, z) will be separately evaluated.

10.3.1. Derivation of the first term
All the Hankel function reported in this section, if not explicitly

indicated, are of the second kind. In the TM case the components of the
magnetic field H in cylindrical coordinates can written as follows (see
[98] for further details)

Hρ1 =
1
ρ

∂Az1

∂φ
(10.11)

Hφ1 = −∂Az1

∂ρ
(10.12)

Hz1 = 0 (10.13)

hence, by considering the equivalence principle, the radiated field may
be found from an equivalent current distribution (see [39], Chapter 12)
J = z0 × H on the z = 0 plane, assuming zero fields in z < 0. Replacing
the finite aperture plane (a ≤ ρ ≤ b) with a perfect magnetic conductor
and exploiting the image theory we can write

J = 2z0 × H = 2z0 × (Hρρ0 + Hφφ0). (10.14)

By exploiting elementary radiation theory [123], whose main results
are reported in the following for convenience, the radiation pattern of
an arbitrary distribution of surface currents is given by the expression

Eθ(r, θ, φ) = R(r)Nθ(θ, φ)

Eφ(r, θ, φ) = R(r)Nφ(θ, φ)
(10.15)

where in particular

Nθ(θ, φ) =
∫∫

S

[
Jx cos θ cos φ + Jy cos θ sin φ − Jz sin θ

]
ejkr′ cos(ψ) ds′

Nφ(θ, φ) =
∫∫

S

[
−Jx sin φ + Jy cos φ

]
ejkr′ cos(ψ) ds′

(10.16)



286 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

thus, considering the following Cartesian to cylindrical coordinate trans-
formation

Jx = Jρ cos φ′ − Jφ sin φ′

Jy = Jρ sin φ′ − Jφ sin φ′ (10.17)

and recalling that (see [39], pag. 302)

kr′ cos ψ = kρ′ cos(φ − φ′) = ξρ′ cos(φ − φ′) (10.18)

with ξ = k sin θ (being k the free-space wave number), we can finally
write

Nθ(θ, φ) =
∫∫

S

[
(Jρ cos φ′ − Jφ sin φ′) cos θ cos φ

]
ejξρ′ cos(φ−φ′)ds′

+
∫∫

S
[(Jρ sin φ′ + Jφ cos φ′) cos θ sin φ]ejξρ′ cos(φ−φ′)ds′

Nφ(θ, φ) =
∫∫

S

[
−(Jρ cos φ′ − Jφ sin φ′) sin φ

]
ejξρ′ cos(φ−φ′)ds′

+
∫∫

S

[
(Jρ sin φ′ + Jφ cos φ′) cos φ

]
ejξρ′ cos(φ−φ′)ds′ .

(10.19)

By recalling equations (10.11) and (10.10) for the H field on the z = 0
plane we have

Hρ1 = − 1
2ρ

H1(kρρ) sin φ (10.20)

Hφ1 = −
kρ

2
H′

1(kρρ) cos φ (10.21)

Hz1 = 0 (10.22)

hence, being φ0 = z0 × ρ0 and −ρ0 = z0 × φ0, equation (10.14) be-
comes

Jρ1 = kρ H′
1(kρρ′) cos φ′

Jφ1 = −1
ρ

H1(kρρ′) sin φ′ (10.23)

finally, the first of the two integrals in (10.19) representing the far-field
radiated by a given equivalent current distribution is reported in the
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following

Nθ(θ, φ) =
∫∫

S

[(
kρ H′

1(kρρ′) cos φ′ cos φ′

+
1
ρ

H1(kρρ′) sin φ′ sin φ′) cos θ cos φ
]
ejξρ′ cos(φ−φ′)ds′

+
∫∫

S

[(
kρ H′

1(kρρ′) cos φ′ sin φ′

− 1
ρ

H1(kρρ′) sin φ′ cos φ′) cos θ sin φ
]
ejξρ′ cos(φ−φ′)ds′ .

(10.24)

By recalling elementary trigonometry (sum identities), after some alge-
bra we can write

Nθ(θ, φ) = cos θ
∫ b

a
kρ H′(kρρ′)

∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)ds′dφ′ρ′dρ′

+ cos θ
∫ b

a
−

H(kρρ′)

ρ′

∫ 2π

0
− sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)ds′dφ′ρ′dρ′

(10.25)

now, having the two inner integral a period of 2π we can write
∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)ds′dφ′

=
∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)ds′d(φ − φ′)

∫ 2π

0
sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)ds′dφ′

=
∫ 2π

0
− sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)ds′d(φ − φ′)

introducing a new variable the computation of these integrals can be
simplified, namely by placing x = φ − φ′ and φ′ = x − φ we have that
cos φ′ = cos(x − φ) = cos x cos φ + sin φ sin x, therefore the previous
integrals reduce to

∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)ds′d(φ − φ′)

= 2 cos φ
∫ π

0
cos2 xejξρ′ cos x +

sin φ

2

∫ 2π

0
sin(2x)ejξρ′ cos xdx.

(10.26)



288 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

−
∫ 2π

0
sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)ds′d(φ − φ′)

= −2 cos φ
∫ π

0
sin2 xejξρ′ cos x +

sin φ

2

∫ 2π

0
sin(2x)ejξρ′ cos xdx

(10.27)

It is important to note that the second integral on the right side of both
(10.26) and (10.27) equation is null; moreover thanks to the periodicity,
the limits of the first one have been changed.

The solution of the remaining integral of equation (10.26) can be
carried out by considering the integral representation of the Bessel func-
tions and its derivative for n = 1 [147, 148], reported in the following

Jn(z) =
j−n

π

∫ π

0
cos(nx)ejz cos xdx

J′1(z) =
1
π

∫ π

0
cos2 xejz cos xdx

(10.28)

thus the integral (10.26) can be rewritten as

2 cos φ
∫ π

0
cos2 xejξρ′ cos xdx = 2π cos φJ′1(ξρ′). (10.29)

Regarding to the remaining integral in (10.27), considering that [148]

J1(z) =
(z/2)ν

Γ(ν + 1
2 ) + Γ( 1

2 )

∫ π

0
sin2ν xejz cos xdx (10.30)

and exploiting some remarkable properties of the Gamma function, we
can write

2 cos φ
∫ π

0
sin2 xejξρ′ cos xdx = − 2π

ξρ′
cos φJ1(ξρ′). (10.31)

Rearranging these results, the final integral can be solved as pointed out
in [146, 147], leading to the following final result

Nθ1(θ, φ) = 2π cos θ cos φ
∫ b

a

[
kρ H′

1(kρρ′)J′1(ξρ′)ρ′ +
H1(kρρ′)

ξρ′
J1(ξρ′)

]
dρ′

= cos θ cos φP1(θ)

(10.32)

where P1(θ) is a combination of Bessel and Hankel functions that does
not depend on the azimuthal angle. Following an analogue procedure
and considering the same integral identity, a similar result for the φ

component of the radiation integral can be obtained

Nφ1(θ, φ) = − sin φ
2π

ξ
[H1(kρρ′)J1(ξρ′)]

ρ′=a
ρ′=b (10.33)
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Equations (10.32) and (10.33) represent the sought solution of the radi-
ation integrals associated to the first magnetic potential introduced by
equation (10.10).

10.3.2. Derivation of the second term
In this case the components of the magnetic field H in cylindrical

coordinates are reported in the following

Hρ2 =
1

2ρ
H1(kρρ) cos φ (10.34)

Hφ2 = −
kρ

2
H′

1(kρρ) sin φ (10.35)

Hz2 = 0 (10.36)

thus for the currents we have
Jρ = kρ H′

1(kρρ′) sin φ′

Jφ =
1
ρ

H1(kρρ′) cos φ′.
(10.37)

Considering again the radiation formulas and applying the same proce-
dure outlined in the previous section, the following expressions for the
radiation integral can be obtained

Nθ(θ, φ) = cos θ
∫ b

a
kρ H′(kρρ′)

∫ 2π

0
sin φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

+ cos θ
∫ b

a

H1(kρρ′)

ρ′

∫ 2π

0
cos φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

Nθ(θ, φ) = cos θ
∫ b

a
−kρH′(kρρ′)

∫ 2π

0
sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

+ cos θ
∫ b

a

H1(kρρ′)

ρ′

∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

(10.38)

that in turn lead to these final results
Nθ2(θ, φ) = cos θ sin φP(1)(θ)

Nφ2(θ, φ) = cos θC(θ).
(10.39)

where once again P1(θ) and C(θ) are combinations of Bessel and Hankel
functions that do not depend on the azimuthal angle. Equations (10.39)
represent the sought solution of the radiation integrals associated to the
second magnetic potential introduced by equation (10.10).
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10.3.3. Radiation formula for the case n = 1
By suitably combining the previous results and recalling equation

(10.15), the electric field radiated by an azimuthal-dependent current
distribution can be finally written. Specifically, for the electric field
produced by the first term of equation (10.10), as outlined in section
10.3.1, we can write

Eθ1(θ, φ) = R(r) cos θ cos φP(1)(θ)

Eφ1(θ, φ) = −R(r) sin φC(θ)
(10.40)

while for the second one (see section 10.3.2) we have

Eθ2(θ, φ) = R(r) cos θ sin φP(1)(θ)

Eφ2(θ, φ) = R(r) cos φC(θ).
(10.41)

Developing the complex sum among these terms, we can finally write

Etotθ
(θ, φ) = Eθ1 + jEθ2 = R(r) cos θP(1)(θ)ejφ

Etotφ(θ, φ) = Eφ1 + jEφ2 = jR(r)C(θ)ejφ (10.42)

which states that phase rotation (azimuthal dependence for the phase)
is still visible in the far field zone.

10.4. Radiation formula for a nth-order Hankel function
It may be very useful to make available also a closed-form solution

for a generic order n of the Hankel function and therefore for the phase
dependency. This entails that the integrals considered so far should be
not carried out introducing a fixed value for n.

Specifically, for the z-directed magnetic potential we should write

Az(ρ, φ, z) =Az1(ρ, φ, z) + Az2(ρ, φ, z)

=
j
2
[H(2)

1 ktρ) cos(nφ) + jH(2)
1 ktρ) sin(nφ))]e−jkzz

(10.43)

analogously for the components of magnetic field and current distribu-
tion, as reported in the following

Hρ = − 1
2ρ

H1(kρρ)n sin(nφ)

Hφ = −
kρ

2
H′

1(kρρ)n cos(nφ)

Hz = 0

(10.44)
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Jρ = kρH′
1(kρρ′) cos(nφ′)

Jφ = −n
ρ

H1(kρρ′) sin(nφ′).
(10.45)

By exploiting again the same procedure outlined in the previous section,
the following expression for the radiation formula can be obtained

Nθ(θ, φ) = cos θ
∫ b

a
kρ H′

1(kρρ′)
∫ 2π

0

[
cos(nφ′) cos(φ′)

+ cos(nφ′) sin(φ′)
]

cos(φ)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

= cos θ
∫ b

a
kρ H′

1(kρρ′)
∫ 2π

0
cos(nφ′) cos(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

(10.46)

thus by changing the variable of the inner integral (x = φ − φ′) and
considering periodicity we should write

2 cos(nφ)
∫ b

a
cos(nx) cos xejξρ′ cos xdx+ sin(nφ)

∫ 2π

0
sin(nx) cos xejξρ′ cos xdx

(10.47)
now, considering again a spectral representation of the Bessel function
[148]

Jn(z) =
j−n

π

∫ π

0
cos(nx)ejz cos xdx

J′n(z) =
j−n+1

π

∫ π

0
cos(nx) cos xejz cos xdx

(10.48)

we can easily develop the first integral. However, the evaluation of the
following integral is not straightforward

sin(nφ)
∫ 2π

0
sin(nx) cos(x)ejξρ′ cos xdx. (10.49)

10.5. Radiation formula for a Bessel function
By following the same procedure outlined in the previous sections, it

is possible to evaluate also the far-field pattern when the aperture field
is represented by a z-directed magnetic potential described through a
Bessel function of first kind and n = 1 order. Consequently, the aperture
field that is generated has an amplitude distribution defined by a Bessel
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function. Namely, we have

Az(ρ, φ, z) = Az1(ρ, φ, z) + Az2(ρ, φ, z)

=
j
2

J1(ktρ)ejφe−jkzz

=
j
2

J1(ktρ)(cos φ + j sin φ)e−jkzz

(10.50)

consequently, the components of the magnetic field and of the current
associated to the first magnetic potential are reported in the following

Hρ = − 1
2ρ

J1(kρρ) sin(φ)

Hφ = −
kρ

2
J′1(kρρ) cos(φ)

Hz = 0

(10.51)

Jρ = kρ J′1(kρρ′) cos(φ′)

Jφ = −1
ρ

J1(kρρ′) sin(φ′).
(10.52)

It is important to note that for the integrals considered until now the
angular and radial dependency in the magnetic potential have always
been separated. This allows us to state that by changing in the magnetic
potential the Hankel with a Bessel function does not introduce any
different terms in the radiation formula and consequently in the final
expression of the radiated electric field.

As an example, for the φ component of the radiation integral we can
write

Nθ(θ, φ) = cos θ
∫ b

a
kρ J′1(kρρ′)

∫ 2π

0
cos φ′ cos(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ′

+ cos θ
∫ b

a
−

J′1(kρρ′)

ρ′

∫ 2π

0
− sin φ′ sin(φ − φ′)ejξρ′ cos(φ−φ′)dφ′ρ′dρ

(10.53)

it is clear that, even if we would not be able to solve the external integral,
the solution could be anyway represented by this expression

Nθ(θ, φ) = cos θ sin φQ(1)(θ)

Nφ(θ, φ) = cos θQ(2)(θ)
(10.54)
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where, once again, Q(1)(θ) and Q(2)(θ) represent the radial and elevation
angle dependency for the field. It is interesting to note, finally, that
if we consider the most general z-directed magnetic potential (i.e., a
combination of Hankel functions of first and second kind) we obtain

Atot(ρ, φ, z) =
1
2
[H(2)

1 (ktρ) cos φ + H(1)
1 (ktρ) cos φ] (10.55)

and consequently we can write

Atot(ρ, φ, z) =
1
2
[(J1(ktρ)− jY1(ktρ)) cos φ + (J1(ktρ) + jY1(ktρ)) cos φ]

(10.56)
for the second term of the this equation we have

H(2)
1 (ktρ) = (J1(ktρ) + jY1(ktρ)) = (J1(k∗t )ρ)− jY1(ktρ))

∗ (10.57)

and finally

H(1)
1 (ktρ) = [H(2)

1 (k∗t ρ)]∗. (10.58)

By starting from these results it is possible to suitably modify the in-
volved integral to demonstrate once again that the angular dependency
remains unchanged. In particular, no complex quantities are involved
other than the exponential, which can easily be taken into account by
considering k0 = −k0. All these properties allow us to write

Atot(ρ, φ, z) =
1
2

[
H(2)

1 (ktρ) cos φ + H(2)
1 (k∗t ρ) cos φ

]
(10.59)

which finally states that no variation is expected for the azimuthal vari-
able.

10.6. Aperture field
By starting from the results outlined in the previous sections, it is

finally possible to write an aperture field capable to radiate a Bessel
beam with an azimuthal phase rotation, whose far-field behavior can
be evaluated in closed form. From equations (10.20) and (10.34), rep-
resenting the magnetic field related to the initial decomposition of the
magnetic potential (see (10.10)), the total field Htot can be defined as
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follows

Htot = Hρρ0 + Hφφ0 = (Hρ1 + Hρ2)ρ0 + (Hφ1 + Hφ2)φ0 =

=

[
− 1

2ρ
H1(kρρ)(cos φ + j sin φ)

]
ρ0 +

[
kρ

2
H′

1(kρρ)(−j cos φ + sin φ)

]
φ0

= − 1
2ρ

H1(kρρ)ejφρ0 − j
kρ

2
H′

1(kρρ)(cos φ + j sin φ)φ0

(10.60)

therefore, we finally have

Htot = − 1
2ρ

H1(kρρ)ejφρ0 − j
kρ

2
H′

1(kρρ)ejφφ0. (10.61)

In the next chapter to synthesize this aperture field, following a similar
procedure outlined in [138, 140], an RLSA antenna will be designed
and optimized. In particular, an outward cylindrical wave is launched
inside the structure, thus exploiting the holographic principle in con-
junction with an iterative procedure, the slots position and dimension
capable to sampling the incident field propagating inside the radial open
waveguide will be determined.

10.7. RLSA antenna design
To design a higher-order collimated Bessel beam with an azimuthal

phase variation, we may exploit the aperture field carried out in the
previous chapter and the overall method outlined in [140]. Basically, in
that paper, a RLSA antenna has been shown to be capable to produce a
shaped and a focused Bessel beam, azimuthally symmetric and without
particular requirement on the phase distribution. The procedure is
based on the holographic principle and on ad-hoc optimization scheme,
developed for the first time in [138]: specifically, in this paper, a RLSA
prototype has been designed showing good performance in term of
efficiency and directivity.

To synthesize the wanted focused beam the method is based on a
procedure that for a given field aperture automatically generates the
relevant slot layout. Accordingly to the so-called Bethe theory [139], the
radiation from a slot cut into a metallic plane can be modeled by an
equivalent magnetic dipole sitting on a ground plane, whose dipole
moment must be proportional to the magnetic field generated by the
feeding wave in the considering structure (a parallel-plate waveguide
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in our case) through a dyadic polarizability. These properties allow us
to write

M = αm · Hinc. (10.62)

It is important to note that Bethe theory also introduces an equivalent
electric dipole, but its radiation effect is negligible with respect to that
of the magnetic dipole for slots whose length is much greater than their
width (as will be for the considered structure). For a single slot oriented
along u0, the dyadic polarizability is given by αm = αmu0u0, where the
amplitude of αm grows with the slot length up to the resonant length
[138].

Sincewewant to synthesize a specif aperture field, the designmethod-
ology of the RLSA antenna can be developed by means of a holographic
technique, that allows to obtain the size and position of the slots com-
posing the array. Basically, holography predicts that a certain antenna
aperture, represented by an equivalent current distribution, can be gen-
erated by interference between an input feeding wave and a hologram,
which in the case at hand is given by the slotted surface of the RLSA
structure. By suitably sampling the incident field launched inside the
radial parallel plate waveguide by a coaxial probe, it is possible to syn-
thesize the holographic interference pattern, this entails that position
and length of each slot must satisfy the following equations

∣∣αm(ρi) · Hinc(ρi)| = C|A(ρi)
∣∣ (10.63)

and
∠
{
(M)∗0(ρi)αm(ρi) · Hinc(ρi)

}
= γ (10.64)

where αm is the dyadic polarizability of the considered slot, Hinc(ρi) is
the incident field inside the structure and M0(ρi) = A(ρi)u0 is ideal-
target aperture magnetic current, namely the holographic image, di-
rected along the generic direction u0. C and γ are arbitrary real con-
stants.

It is worth noting that enforcing such condition assures that, for each
slot, the equivalent magnetic dipole M is parallel to the ideal target aper-
ture. Specifically, (10.63) is the key equation that controls the correct slot
positioning, which ensures the target aperture phase distribution, whilst
(10.64) imposes the amplitude distribution on the radiating aperture
which can be achieved by properly choosing the slot length. Conse-
quently, thanks to a quasi-orthogonality properties between slot lengths
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and positions, it is allowed to set up independent actions on the two
different variables. Basically it is assumed here, as suggested in [138],
that a variation in slot length mainly affect the associated equivalent
magnetic moment amplitude, allowing us to consider variation of the
phase as an higher-order effect; in a similar way, variations of slot posi-
tions mainly affects the phase of the associate moment, while magnitude
remains almost unchanged.

Since we are considering a radial PPW excited by a TMz
0,0 cylindrical

mode (see [123] Chapter 9), it holds

Hinc(ρ) = HincH(2)
1 (kdρ)φ0 (10.65)

where H(2)
1 denotes, as usual, the first-order Hankel function of second

kind, and kd = 2π/λd the wavenumber inside the guide. It remains to
evaluate the amplitude of the polarizability, that starting from (10.64)
and considering (10.65) reduces to

∣∣∣αm(ρ)
∣∣∣ =

C
∣∣∣A(ρ)

∣∣∣
∣∣∣H(2)

1 (kdρ)
∣∣∣
. (10.66)

This expression is exploited to evaluate the slot length profile taking care
to consider that, even if the constant C does not affect the shape of the
amplitude aperture, it has to be chosen to keep the slot length within a
proper range. Namely, if the value of the constant is too large, the power
of the feeding wave is entirely radiated by the slots close to the antenna
center; on the other hand, when is too small, the desired aperture shape
is easily achieved but a considerable amount of power is not radiated
and remains trapped in the PPW, resulting in a low radiation efficiency.

If we consider a linear polarized RLSA antenna, whose slots are
always orthogonal to the considered radius, it holds

αm = αmu0u0 = αmφ0φ0 (10.67)

thus, recalling the magnetic field produced by a vertical probe inside
a radial PPW and considering the ideal target distribution carried out
in previous sections, highlighted in (10.65) and (10.61) respectively, by
starting from (10.64) we can finally write

∠
{(

− 1
2ρ

H(2)
1 (kρρ)ejφρ0 − j

kρ

2
H(2)

′

1 (kρρ)ejφφ0

)
·

αmφ0φ0 · HincH(2)
1 (kdρ)φ0

}
= γ

(10.68)
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exploiting relevant properties of the dyadic product, equation (10.68)
can be simplified as follows

∠
{
− j

kρ

2
H(2)

′

1 (kρρ)ejφαm Hinc H(2)
1 (kdρ)

}
= γ. (10.69)

considering that [123]

H(2)
′

1 (kρρ) =
1
2

(
H(2)

0 (kρρ)− H(2)
2 (kρρ)

)
(10.70)

equation (10.68) becomes

∠
{
− j

kρ

2
H′

1(kρρ)ejφαmHinc H(2)
1 (kdρ)

}
= γ (10.71)

thus, by exploiting the asymptotic large argument expansion of the
Hankel function [123], reported in the following

H(2)
p (x) ≈

√
2

πx
e−j[x−p(π/2)−π/4] (10.72)

equation (10.69) results in a spiral slot arrangement, whose relation
between radius and angle is governed by the simply equation

ρ =
cost

kρ − kd
φ (10.73)

Therefore, as for any RLSA antenna design, the equations governing the
slot length profile l(ρ) and the position of the slot pair centers have been
defined. Specifically, the curve is defined by equation (10.73), where
the slot centers are distributed uniformly. It is important to note that the
sampling step ∆s along the curve is arbitrary, and its value is a design
parameter constrained between a minimum and a maximum value. This
result is different with respect to those obtained in [140], where no
azimuthal variation of the phase were considered and consequently the
slots were arranged along concentric circumferences. To give a practical
example, in Fig. 10.2 the holographic pattern for a linear and circular
polarized RLSA antenna, obtained by modulating the incident field
generated by the coaxial probe inside the radial waveguide with the
desired aperture field having an azimuthal phase variation of order
n = −1, has been presented. In both cases, the spiral arrangement of
the slot constituting the RLSA profile are clearly visible. Theoretically
the proposed layout is able to radiate a focused Bessel beam with an
azimuthal phase variation, whose non-diffracting range is determined



298 Analysis and Design of Antennas and Algorithms for Near-Field Sensing

Fig. 10.2. Phase pattern of the holographic principle: the resulting spiral curve determines
the particular slots arrangement. Copyright © 2017, IEEE.

by the size of the aperture. However, to maximize the efficiency of the
antenna one has to make as bigger as possible the dimension of each
slots: this results in a strong mutual coupling between adjacent slots.
To contrast this phenomenon an iterative optimization procedure that
suitably changes at each step the slot dimension and position must be
accurately designed. In Fig. 10.3 aCADmodel of a linear polarizedRLSA

Fig. 10.3. Virtual prototype of a RLSA antenna, slots are arranged along an Archimedes
spiral. Copyright © 2017, IEEE.

has been reported. Indeed, at the end of the optimization procedure
the final slot layout has been designed on a commercial CAD tool to
validate the result and optimize the feeding systems of the proposed
antenna. As usual, it will be considered matched where the reflection
coefficient at the input port is under -10 dB.
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Fig. 10.4. Layout of the designed RLSA antenna: (a) configuration having a single slot
along the spiral profile, (b) configuration for the double-slot profile.

10.7.1. Optimization procedure
The design of the optimization procedure follows the same steps

outlined in [138] and [140]. As said, the derived aperture field dis-
tribution corresponds to an equivalent magnetic current distribution
oriented along φ0 that must be synthesized by using the slots of the
RLSA antenna: each of them is equivalent to a magnetic dipole ori-
ented along the slot length. In turn, the dipole moment is proportional
to the feeding mode within the parallel-plate waveguide of the RLSA
structure and is function of the position and size of the correspond-
ing slot. The dielectric permittivity filling the guide is εr = 1; at the
first step of the optimization procedure the slot have same length (li)
and are uniformly spaced. Their width remain constant throughout all
the process. For each slot of the RLSA the equivalent magnetic dipole
moment M(ρi) = M(ρi)φ0 is derived with an in-house MoM [149],
[150]. Two different slots layouts have been considered, one made by
a single slot sampling the spiral curve and another made by two slots
shifted of a distance equal to λ/4 from its center. This is of interest as
the relevant scattering mechanism, occurring when the cylindrical wave
propagating inside the radial waveguide impinges on the slots, can be ex-
ploited to suppress spurious radiation of unwanted higher-order modes
[138]. In particular, if a double-slot configuration is exploited (see Figs.
10.4(a),(b), where a comparison between the involved configuration
has been presented) M1(æi) and M2(æi) are the magnetic dipole mo-
ments of the inner and outer slot in the pair, respectively. Consequently,
M(æi) = M1(æi) + M2(æi) is dipole moment of the i-th slot pair of
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center æi; for each of them a complex fitness function Fi is introduced
as follows

Fi =
φ0 · M(æi)Ā

A(ρi)M̄
(10.74)

where

Ā =
Np

∑
i=1

|A(ρi)|
Np

M̄ =
Np

∑
i=1

|φ0 · M(ρi)|
Np

(10.75)

are the target and the achieved average copolar dipole moment amplitude,
respectively, with Np denoting the total number of slot pairs. It is impor-
tant to note that ∠Fi and | Fi| indicate the phase and amplitude errors
between the target and the actual dipole moment distribution, that have
to be compensated by adjusting slot pair position and length. To make
the solution more stable, one representative slot for a complete round of
spiral is adjusted; this is possible thanks to an interpolation procedure
of the spiral curve, further details can found in [138]. The RLSA layout
is parameterized by defining the parameters P(s)

n and L(s)
n , hence at each

step s of the optimization procedure a full-wave analysis of the entire
antennas is performed and the equivalent magnetic dipole moments
M(æi) are calculated. Consequently, the values control parameters P(s)

n

and L(s)
n are updated according to the following empirical formulas

P(s+1)
n = P(s)

n − χp∠Fi/kd

L(s+1)
n = [1 + χl(1 − | Fi|

√
η)] L(s)

n

(10.76)

where η is the antenna efficiency, that has to be considered in the opti-
mization process to achieve slots large enough to radiate all the energy
injected inside the radial waveguide, and χp,l are two damping factors
that can be suitable tuned to prevent oscillation and make more stable
the optimization process. The first of equations (10.76) corrects the slot
position minimize the local average phase error, whereas the second one
corrects the slot length to minimizing the local amplitude error. The
optimization loop is repeated until the efficiency is greater than a fixed
threshold (typically η > 90 %) and the average aperture distribution
error

ε∆ =
1

Np

Np

∑
i=1

∣∣∣∣
φ0 · M(æi)

M̄
− A(ρi)

Ā

∣∣∣∣ =
1

Np

Np

∑
i=1

∣∣∣∣
A(ρi)

Ā

∣∣∣∣ |Fi − 1| (10.77)
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is sufficiently small (e.g., ε∆ < 0.05).

10.8. Numerical results
In this section some results achieved by optimizing an RLSA antenna

made by a double-slots layout will be presented and discussed. The
main features of the proposed antenna are synthesized in Table 10.1.

frequency 12.5 GHz
antenna diameter 300 mm
waveguide thickness 3.125 mm
slots number 1558
slots width 0.6 mm
slots length 8.8 – 11.3 mm

Tab. 10.1. Antenna’s optimized parameters.

In Fig. 10.5 and 10.6 the 2D amplitude and phase distributions of
the near-field focused beam achieved by means of the optimization pro-
cedure have been reported; the choice of the focused plane has been
made by considering the criteria outlined in [151]. In particular Figs.
10.5(a) and 10.6(a) show a rather well-defined focused beam, having the
typical 2D distribution of a Bessel beam [136, 140], whereas the expected
azimuthal phase variation is visible in Figs. 10.5(b) and 10.6(b). In Figs.
10.7(a),(b) the amplitude and phase behavior of the fitness function
defined by equation (10.74) have been presented. In particular, in Fig.
10.7(a) the phase distribution is significantly different from zero, but at
the end of the optimization procedure, whose relevant plot is reported
in Fig. 10.7(b), an average convergence has been obtained. This over-
all behavior is corroborated by the results reported in Fig. 10.8(a),(b)
where a comparison between the target aperture field (solid blue line)
and the dipole moments of each slot constituting the RLSA profile (black
dots) is shown. It is clearly visible that the phase distribution is rather
mismatched in the first plot and well superimposed at the end of the
optimization procedure. On the contrary, the amplitude profile perform
quite well from the begin: when the algorithm runs size and position of
slots are gradually modified, thus efficiency increases and the mutual
coupling among adjacent slots has to be neutralize. It is finally important
to note that the near-field distribution presented in Figs. 10.5 and 10.6
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Fig. 10.5. 2D Normalized Ez components of the electric field in dB at the focusing plane
(distance d = 35 cm from the RLSA aperture) evaluated with the in-house MoM code. (a)
Amplitude, (b) phase of the synthesized Bessel beam. Copyright © 2017, IEEE.

Fig. 10.6. As in Fig. 10.5 on the plane d = 45 cm. Copyright © 2017, IEEE.
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Fig. 10.7. Behavior of the amplitude and phase of the fitness function along the optimiza-
tion process. (a) Initial step, (b) final step of the procedure.

Fig. 10.8. Evolution of amplitude (above) and phase (below) of the dipole moment of
each slot pair during the optimization procedure. Black dots represent the value of the
synthesized dipole moments, solid curve the wanted aperture field. (a) Initial design, (b)
final design of the slots layout.
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Fig. 10.9. (a) Virtual prototype of the optimized feeding system for the designed antenna,
(b) Return loss for the realized prototype inside the operational bandwidth. Copyright
© 2017, IEEE.

can be improved, most of all for what concerns the side-lobe level; it has
been demonstrated, indeed, that due to the spiral slots arrangement in
conjunction with the peculiar scattering mechanism generated when the
cylindrical wave impinges on the slots etched on the metallic plane, a
series of unwanted higher-order modes are excited. However, by operat-
ing a second-order optimization procedure, based on an ad-hoc fitness
function, it could be theoretically possible to prevent the generation of
this spurious radiation.

10.8.1. Feeding design
In order to validate the optimized prototype and to design the feeding

system for the considered antenna, a full-wave implementation on a
commercial CAD tool (CSTmicrowave studio [56]) has been introduced.
Due to the very large amount of slots, all with different size and position,
an automatic design procedure was suitably developed. Specifically, an
ad-hoc macro capable to read a ‘txt’ file and to automatically plot the
slots layout constituting the upper plate of the RLSA antenna has been
implemented. The designed feeding system is shown in Fig. 10.9(a),
whilst the obtained return loss for the final prototype is highlighted in
Fig. 10.9(b), showing an excellent impedance matching.
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