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AbstractAbstract

Deep learning is the leading paradigm in computer vision. However,
deep models heavily rely on large scale annotated datasets for training.
Unfortunately, labeling data is a costly and time-consuming process
and datasets cannot capture the infinite variability of the real world.
Therefore, deep neural networks are inherently limited by the restricted
visual and semantic information contained in their training set. In this
thesis, we argue that it is crucial to design deep neural architectures
that can operate in previously unseen visual domains and recognize
novel semantic concepts. In the first part of the thesis, we describe
different solutions to enable deep models to generalize to new visual
domains, by transferring knowledge from a labeled source domain(s) to
a domain (target) where no labeled data are available. We first address
the problem of unsupervised domain adaptation assuming that both
source and target datasets are available but asmixtures of multiple latent
domains. In this scenario, we propose to discover the multiple domains
by introducing in the deep architecture a domain prediction branch
and to perform adaptation by considering a weighted version of batch-
normalization (BN). We also show how variants of this approach can be
effectively applied to other scenarios such as domain generalization and
continuous domain adaptation, where we have no access to target data
but we can exploit either multiple sources or a stream of target images
at test time. Finally, we demonstrate that deep models equipped with
graph-based BN layers are effective in predictive domain adaptation,
where information about the target domain is available only in the form
of metadata. In the second part of the thesis, we show how to extend
the knowledge of a pre-trained deep model incorporating new semantic
concepts, without having access to the original training set. We first
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consider the problem of adding new tasks to a given network and we
show that using simple task-specific binary masks to modify the pre-
trained filters suffices to achieve performance comparable to those of
task-specific models. We then focus on the open-world recognition
scenario, where we are interested not only in learning new concepts
but also in detecting unseen ones, and we demonstrate that end-to-
end training and clustering are fundamental components to address
this task. Finally, we study the problem of incremental class learning
in semantic segmentation and we discover that the performances of
standard approaches are hampered by the fact that the semantic of
the background changes across different learning steps. We then show
that a simple modification of standard entropy-based losses can largely
mitigate this problem. In the final part of the thesis, we tackle a more
challenging problem: given images of multiple domains and semantic
categories (with their attributes), how to build a model that recognizes
images of unseen concepts in unseen domains? We also propose an
approach based on domain and semantic mixing of inputs and features,
which is a first, promising step towards solving this problem.

Keywords: deep learning, transfer learning, incremental learning
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1.	 Introduction1. Introduction

1.1. Overview
A long-standing goal of artificial intelligence and robotics is the imple-
mentation of agents that are able to interact in the real world. In order
to achieve this goal, a crucial step lays in making the agents understand
the current state of the surrounding environment, by providing them
with both powerful sensors and the ability to process the information
the sensors give them. To this extent, visual cameras are one of the most
powerful and information-rich sensors. Indeed, applications requiring
visual abilities are countless: from self-driving cars to detecting and
handling objects for service robots in homes, from kitting in industrial
workshops, to robots filling shelves and shopping baskets in supermar-
kets, etc., they all imply interacting with a wide variety of objects, which
requires a deep understanding of how these objects look like, their visual
properties and associated functionalities.

Due to the central role that vision has in the path towards devel-
oping agents with intelligent, autonomous behaviors, a lot of research
efforts have been spent on improving computer and robot vision systems.
Within this context, in recent years these fields have seen unprecedented
advancements thanks to deep learning architectures [87]. Deep mod-
els are very effective in learning discriminative representations from
input data, and their applications touch on many different fields, such
as natural language processing [180, 45, 55, 296], speech recognition
[101, 53, 54] and reinforcement learning [145, 182, 94]. In the context
of computer vision, Convolutional Neural Networks (CNNs) [131] are
the leading paradigm. These networks are particularly effective in pro-
cessing grid-like input data [87] a category to which images belong.



2 Towards Recognizing New Semantic Concepts in New Visual Domains

Semantic + Domain Shift
≠ domain, ≠ categories

Semantic Shift
  = domain, ≠ categories 

Initial Training Set 

horseelephant

giraffedog

giraffedog

horseelephant

Domain Shift
         ≠ domain, = categories

Fig. 1.1. Overview of our research problem. Suppose we are given an initial training set
composed of images of a set of classes (e.g. elephant, horse) acquired in a given domain
(e.g. real photos). Two main discrepancies can occur at test time: either images contain
the same semantics but in different domains (e.g. paintings, bottom-left) or they contain
images of the same domain but depicting different semantic concepts (e.g. dog and giraffe,
top-right). In the first case we talk about domain shift problem, while the second considers
the semantic shift problem. The goal of this thesis is to address the two problems together
(bottom-right), i.e. recognizing new semantic concepts (e.g. dog, giraffe) in new visual
domains (paintings).

The successes of CNNs in computer vision are countless: they have
achieved outstanding results in many visual tasks, ranging from object
classification [124, 98] and detection [83, 220], to more complex ones
such as image captioning [113, 295], visual question answering [8, 284]
and motion transfer [242, 33].

Despite their effectiveness, CNNs have some drawbacks. First, they
are data-hungry, i.e. very large labeled datasets are usually required
for training them [225]. This is a major issue since it is hard to obtain
a large amount of labeled data for any possible application scenario.
For instance, this often happens in robotics, where data acquisition and
annotation are especially time-consuming and often infeasible.

Another major limitation of deep architectures is that their effec-
tiveness is limited to the particular set of knowledge present in their
training set, relying on the closed world assumption (CWA) [254]. This
assumption rarely holds in practice and, due to the large variability of
the real world, training and test images may differ significantly in terms
of visual appearance, or may even contain different semantic categories.
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As a simple example, let us consider the scenario represented in Figure
1.1. If we train a system to recognize animals (e.g. elephant and horses)
in a given visual domain (e.g. real photos) it will inherently assume
that (i) those animals are the only animals we want to recognize and
(ii) that they will always appear under the distribution of real images.
What will eventually come as no surprise is that the model will struggle
in distinguishing the same animals in a different visual domain (e.g.
paintings) and it will never be able to recognize animals (e.g. dog and
giraffe) not present in its initial training set. This was a toy example but,
in reality, applications where we would like to adapt a model to new
input distributions and/or semantics, are countless. For example, given
a robot manipulation task we cannot forecast a priori all the possible
conditions (e.g. environments, lighting) it will be employed in. More-
over, we might have data only for a subset of objects we would like to
recognize, at least initially. Similar reasoning applies to autonomous
driving, where it is nearly impossible to collect data for every possible
driving condition (e.g. weather, road), and the semantic categories we
want to recognize might change with the location (e.g. region-specific
animals) or purpose of the vehicle (e.g. garbage collector).

The goal of this thesis is to address these two problems together. In
particular, we want to extend the effectiveness of deep architectures to
visual domains and semantic concepts not included in the initial training
set, with the long-term goal of building visual recognition systems
capable of recognizing new semantic concepts in new visual domains.

1.1.1. Domain shift: generalizing to new visual domains
To recognize new semantic concepts in new visual domains, the first

problem we must face is generalizing to new visual domains, by over-
coming the domain shift problem. To this extent, Domain Adaptation
(DA) methods [48, 270] are specifically designed to transfer knowledge
from a source domain, where a large amount of labeled data are available,
to a domain of interest, i.e. the target domain where few or no labeled
data are available. While standard approaches usually focus on a single-
source and single-target scenario [77, 156], a large variety of settings
exist depending on the information we have about our source and target
domains. For instance, we might have multiple sources and/or multi-
ple target domains, as in multi-source DA [286, 308], and multi-target
DA [43, 81]. In these cases, a naive application of single- source/target
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domain adaptation algorithms would not suffice, consequently leading
to poor results. Moreover, the domains might be either explicitly di-
vided or unified in a mixed dataset. Thus, we must discover the various
domains required for effectively addressing the domain shift problem
[85, 283, 104]. While standard DA assumes that data of the target do-
main are available during the initial training phase, a more realistic
scenario is that, initially, we do not have any image of the target do-
main at all. This problem arises in practice every time our systems are
employed in unseen environments such as novel viewpoints, illumina-
tion, or weather conditions. There are three possible ways to tackle this
problem, depending on the information we have on our target domain.

In case we have no information about our target but we have mul-
tiple source domains, we can address this problem by disentangling
domain-specific and domain-agnostic components, thereby building a
model robust to any possible target domain shift. This is the goal of
domain generalization (DG) that has recently raised a lot of interest in
the community [133, 135, 27]. Differently, if we have no information
about our target and a single source domain, we cannot disentangle
domain and semantic specific components. In this scenario, the only
feasible strategy is to dynamically adapt our model as we receive target
domain data at test time, in a continuous fashion. This setting is called
Continuous DA and multiple works tried to address it before the deep
learning breakthrough by e.g. manifold-based techniques [103] and
low-rank exemplar SVM [139].

Eventually, we could have information about the target domain shift
in the form of metadata describing the visual inputs we should expect.
This scenario is called Predictive DA (PDA) and assumes the presence
of a single source domain and multiple auxiliary ones and that each
domain has its own respective metadata [293]. Understanding how a
metadata links to the domain-specific parameters, allows us to infer a
model for any target domain given its respective description.

The first part of this thesis describes how we provided solutions for
the domain-shift problem, regardless of the information we have about
our source/target domain. We started from the latent domain discov-
ery problem, where we assume to have data of both source and target
domains but with the two being mixtures of multiple hidden domains.
In this particular scenario, we show how a weighted version of batch-
normalization (BN) [109], coupled with a domain discovery branch can
equip a deep architecture with the ability to discover latent domains for
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DA [169, 168]. We will show how, the same domain classifier can be
applied to the more complex DG task, where no data is available about
our target domain. In particular, the similarity among the domains can
be used either within the network (i.e. through BN layers [164]) or at
classification level [163] to effectively tackle DG. Finally, we will extend
BN-based DA algorithms to the PDA scenario by relating domains and
their specific parameters through a graph, where each node is a domain
(with attached parameters) and the weight of each edge depends on
the similarity among the domains, as given by the available metadata
[165]. Moreover, we provide a simple extension of BN to tackle the
Continuous DA problem, showing the effectiveness of this algorithm
both on challenging robotics scenarios [166] and as a tool to refine the
target model predicted by our PDA algorithm [165].

1.1.2. Semantic shift: breaking model’s semantic limits
The second major problem we must tackle, if we want to recognize

new semantic concepts in unseen domains, is to understand how to
integrate novel knowledge within our deep architecture, thereby over-
coming the semantic shift problem. To this extent, multiple works have
tried to extend the knowledge base of a pre-trained deep model, and,
depending on the information we have regarding the new concepts, we
can split them into three main categories.

In the case where we have data available for our new concepts, we
are in the incremental learning scenario [216, 118, 144]. In incremen-
tal learning (IL), we have a pre-trained model and we receive data of
the new classes/tasks in successive learning stages without having ac-
cess to the original training set. The goal is to sequentially learn new
classes/tasks as new data are available while not forgetting previous
knowledge, thereby addressing the catastrophic forgetting problem.

A special case is when we want our model to not only acquire new
knowledge but also to detect unseen concepts. This is the goal of open-
world recognition (OWR), where the task is to classify images if they
belong to the categories of the training set, to spot samples corresponding
to unknown classes, and based on such unknown class detections update
the model to progressively include the novel categories [15].

A second scenario assumes that just one or few samples are available
for the novel semantic concepts. This is the case of one and few-shot
learning [66, 266, 246, 255], where we make use of the available training
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data to build a model capable of inferring the classifier for the novel
classes, given a little amount of data. Solutions to this problem usually
rely on classifier regression [121], weight imprinting [211, 246] and
meta-learning techniques [68, 253].

Finally, we might face the extreme case where no training data is
available for the new categories we want to recognize. This research
thread is Zero-Shot Learning [130, 1, 278] where the goal is to recognize
semantic concepts that were not seen during training, given external
information about the novel classes. This information is available either
in the form of manually annotated attributes, visual descriptions, or
word embeddings [2, 278].

In the second part of the thesis, we explore ways to include novel
semantic concepts within a pre-trained architecture. In particular, we
start by considering multi-task/domain learning, where the goal is to
sequentially learn multiple classifiers for different domains/tasks from a
single pre-trained model. To this extent, we propose an algorithm based
on task-specific binary masks applied on top of the parameters of the
pre-trained model. We show how while requiring very few additional
parameters, our algorithm achieves performance comparable to task-
specific fine-tuned models.

Furthermore, we move towards the incremental class learning sce-
nario, considering OWR. For this, we develop the first end-to-end train-
able architecture for OWR [167], based on a deep extension of non-
parametric classifiers, i.e. NCM and NNO [177, 95, 15]. We also show
how we can improve the performances of this algorithm by considering
clustering strategies that can push samples closer to their class-specific
centroid while distancing them from the ones of other classes [69].

Finally, we explore the application of incremental class learning (ICL)
techniques in the task of semantic segmentation [31]. Here we discover
that the performance of standard approaches is hampered by the se-
mantic content of the background class, which changes among different
incremental steps. We call this problem background semantic shift and we
provide the first solution to it through a simple yet effective modification
of the logits used within standard distillation and entropy-based losses.

1.1.3. Recognizing unseen categories in unseen domains
An open research question is whether we can address the domain

and semantic shift problems together, producing a deep model able

Towards Recognizing New Semantic Concepts in New Visual Domains34



1. Introduction 7

to recognize new semantic concepts in possibly unseen domains. In
the third part of this thesis, we will start analyzing how we can merge
these two worlds, providing a first attempt in this direction in an offline
but quite extreme setting. In particular, we consider a scenario where,
during training, we are given a set of images of multiple domains and
semantic categories and our goal is to build amodel that can to recognize
images of unseen concepts, as in ZSL, in unseen domains, as in DG. This
new problem, which we called ZSL+DG, poses novel research questions
which go beyond the ones of DG and ZSL problems, if taken in isolation.
For instance, we can rely on the fact that multiple source domains permit
to disentangle semantic and domain-specific information, as in DG.
Despite this, we have no guarantee that the disentanglement will hold
for the unseen semantic categories at test time. Additionally, while in
ZSL it is reasonable to assume that the learnedmapping between images
and semantic attributeswill generalize also to images of unseen concepts,
in ZSL+DG we have no guarantee that this will happen for images of
unseen domains.

To tackle this problem, we propose a solution based on a variant
of the well-known mixup regularization strategy [301]. In particular,
we show how we can use mixup to simulate features of novel domains
and semantic concepts during training, achieving state-of-the-art perfor-
mances in both DG, ZSL, and in the novel ZSL+DG scenario [162]. Up
to our knowledge, this is the first algorithm able to work in both worlds,
recognizing unseen semantic concepts in unseen domains.
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1.2. Contributions
Focusing on visual recognition, this thesis contributes towards de-

veloping deep learning architectures able to cope with test images con-
taining both different visual domains (i.e. domain shift) as well as new
semantic concepts (i.e. semantic shift) unseen during the initial training
phase. To this extent, we can divide the main contributions into three
parts. The first contains techniques able to attack thewell-knowndomain
shift problem of classical DA by considering non-canonical scenarios
where the amount of information regarding either the source(s) or the
target(s) domains varies. The second part contains algorithms that are
able to extend pre-trained architectures with new semantic concepts
(i.e. tasks or classes) using external datasets not available during the
initial training phase. The goal of these algorithms is to produce models
capable of recognizing previously unseen concepts without hampering
the performances on old ones. In the third part, we start exploring the
recognition of unseen semantic concepts in unseen visual domains, pre-
senting one of the first worksmerging these twoworlds. In the following,
we will describe the specific contributions presented in each part.

Modeling the Domain Shift In the context of attacking the domain shift
problem, we will present:

• The first deep learning model capable of discovering latent do-
mains in unsupervised domain adaptation, when the source do-
main is composed of a mixture of multiple visual domains [169,
168, 170]. Specifically, the architecture is based on two main com-
ponents, i.e. a side branch that automatically computes the assign-
ment of each sample to its latent domain and novel layers that
exploit domain membership information to appropriately align
the distribution of the CNN internal feature representations to a
reference distribution.

• Two domain similarity-based frameworks for Domain Generaliza-
tion [164, 163]. The frameworks rely on the idea that, given a set
of different classification models associated with known domains
(e.g. corresponding to multiple environments, robots), the best
model for a new sample in the novel domain can be computed
directly at test time by optimally combining the known models.
While in [164] the combination is held out through the statistics
of batch-normalization layers [109], in [163] a similar principle is
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applied at classification level.

• A simple yet effective algorithm for Continuous DA in Robotics
[166]. The algorithm is based on an online update of standard
batch-normalization layers. We show the effectiveness of our algo-
rithm on a newly collected dataset with challenging robotic sce-
narios, containing various illumination conditions, backgrounds,
and viewpoints.

• The first deep learning model that can tackle Predictive DA [165].
In this scenario no target data are available and the system has to
learn to generalize from annotated source images plus unlabeled
samples with associated metadata from auxiliary domains. We in-
ject metadata information within a deep architecture by encoding
the relation between different domains through a graph. Given
the target domain metadata, our approach produces the target
model by a weighted combination of the domain-specific parame-
ters associated to the graph nodes. We also propose to refine the
predicted target model through the incoming stream of target data
directly at test time, extending [166].

Modeling the Semantic Shift. In the context of including new semantic
concepts to a pre-trained architecture, we will present:

• An effective algorithm performing multi-domain learning [171,
172]. The algorithm builds on previous works by masking the
weights of a pre-trained architecture through task/domain-specific
binary filters [160]. However, we take into account more elabo-
rated affine transformations of the binary masks, showing that our
generalization achieves significantly higher levels of adaptation to
new tasks, with performances comparable to fine-tuning strategies
while requiring slightly more than 1 bit per network parameter
per additional task. With this strategy, we achieve results close
to the state of the art in the Visual Domain Decathlon challenge
[214].

• An incremental class learning algorithm for semantic segmenta-
tion which explicitly models the background semantic shift prob-
lem [31]. In particular, we identify and analyze the problem of
semantic shift of the background class in incremental learning for
semantic segmentation. This problem arises since the background
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class might contain both old as well as still unseen classes. This
exacerbates the catastrophic forgetting problem and hampers the
ability to learn novel concepts. To tackle this issue, we propose a
new distillation-based algorithm with an objective function and a
classifier initialization strategy that explicitly model the semantic
shift of the background class. The proposed algorithm largely
outperforms standard incremental learning methods in different
benchmarks.

• The first deep architecture that can to perform open-world recog-
nition (OWR) [167]. The proposed deep network is based on a
deep extension of a non-parametric model, [15] and it can detect
whether a perceived object belongs to the set of categories known
by the system and learns without the need to retrain the whole
system from scratch. In a first study [167], we considered both
the cases where annotated images about the new category can
be provided by an ’oracle’ (i.e. human supervision), or by au-
tonomous mining of the Web. In a second instance [69], we show
how clustering-based techniques can boost the performances of
this OWR framework.

Modeling the Semantic and Domain Shift together. In the context of
merging the two worlds, we will describe the new ZSL+DG problem
[162] where, at test time, images of unseen domains as well as unseen
classes must be correctly classified. Additionally, we will present the
first holistic method capable of addressing ZSL andDG individually and
both combined together (ZSL+DG). Our method is based on simulating
new domains and categories during training by mixing the available
training domains and classes both at the image and feature levels. The
mixing strategy becomes increasingly more challenging during training,
in a curriculum fashion. The extensive experimental analysis show the
effectiveness of our approach in all settings: ZSL, DG, and ZSL+DG.
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1.3. Outline
Chapter 2 will discuss the domain shift problem. It will first give an

overview of the problems (Section 2.1) and the related works (Section
2.2), delving into the details of the Domain Alignment Layers of [29, 28],
which serve as a starting point for our works. In Section 2.4, we will
describe ourmulti-domain Alignment Layerswhich allows us to model
multiple but mixed source domains through weighted normalization
and a domain classifier for unsupervised domain adaptation. In Section
2.5,2.6 and 2.7wewill consider the casewhere no target data are available.
In particular, in Section 2.5 we will extend the multi-domain Alignment
Layers to the domain generalization scenario and we show how the
domain classifier can be used as a proxy to merge activations from layers
beyond normalization ones for effective DG. In Section 2.6, we present
ONDA, a continuous DA approach which makes use of continuous
update of normalization statistics as target data arrive. Finally, in Section
2.7, we present AdaGraph, a first deep learning-based approach for
predictive domain adaptation which merges normalization statistics of
different layers based on the given vectorized description of the target
domain.

Chapter 3will lead us to the semantic shift problem. It will start by
presenting a general problem definition (Section 3.1) with an overview
of the relatedworks (Section 3.2). It will then describeBAT (Section 3.3),
an approach formulti-domain learningwhere task-specific binarymasks
are affinely transformed to obtain a good trade-off among performances
and parameters. In Section 3.4, we identify the background-shift prob-
lem on incremental class learning for semantic segmentation and we
describe MiB, the first method addressing it, by changing how back-
ground probabilities are treated in standard entropy losses. Finally, in
Section 3.5, we will describe theDeepNNO, a first deep approach for
Open World Recognition, and how we can improve this model with
clustering and learned rejection thresholds.

Chapter 4will discuss the importance of tackling both domain and
semantic shift together (Section 4.1) and the works that pushed to-
wards this direction (Section 4.2). We will then present a new task,
zero-shot learning under domain generalization and a first holistic
method, CuMix, addressing domain and semantic shift together, using
increasingly more complex mixing of samples and features.
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The thesis concludes by summarizing the findings, open problems,
and possible future direction of research in Chapter 5.
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1.4. Publications
In the following, the author’s publications are listed in chronological

order. Note that some articles (marked with *) have not been included
in the thesis.

• * M. Mancini, S. Rota Bulò, E. Ricci, B. Caputo
Learning Deep NBNN Representations for Robust Place Categorization
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pp. 1794-1801. Presented at IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) 2017.
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2019.
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This chapter presents various strategies to tackle the domain shift problem in
the presence of different information regarding the source and target domains.
We start by providing a general formulation of the problem (Sec. 2.1). We then
review related literature (Sec. 2.2), analyzing the Domain Alignment layers for
DA (Sec. 2.3), introduced in previous works [29, 28, 142]. In the remaining
sections, we describe how we extended the Domain Alignment layers to address
non-canonical DA settings. We start with the latent-domain discovery problem
(Sec. 2.4), where we have multiple source/target domains but mixed, i.e. we do
not know to which domain each sample belongs to. We describe the first deep
learning solution to this problem [169, 168] based on a weighted computation
of the batch-normalization statistics [109] both at training (in case of mixed
source domains) and at inference time (in case of mixed targets). In Sec. 2.5, we
show how a similar approach can be applied to tackle the domain generalization
problem [164], removing the assumption of having target data at training time.
Additionally, we show how to extend the same idea beyond batch-normalization
layers, mixing activations of domain-specific classification modules [163]. In
Sec. 2.6, we take a step further, removing the assumption of having multiple
source domains during training, developing a model able to adapt to arbitrary
target domains at inference time, dynamically updating its internal knowledge,
in a continuous fashion [166]. Finally, in Sec. 2.7, we provide a solution to the
Predictive DA scenario, where we must use multiple auxiliary domains with
associated metadata during training to learn the relationship among metadata
and domains. We then exploit this knowledge to generate a model for the target
domain given just its description in terms of metadata. Our solution, called
AdaGraph [165], is based on multiple domain-specific batch-normalization
layers connected through a graph that we use at inference time to produce a
model for the target domain. AdaGraph is the first deep learning-based approach
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to tackle the Predictive DA problem. In [165], we also extend the continuous
DA approach in [166] to dynamically refine the predicted models at test time.
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2.1. Problem statement
As described in Section 1.1.1, the goal of DA algorithms is to transfer

knowledge from a large labeled dataset, i.e. the source domain, to a
small and/or unlabeled one, i.e. the target. In particular, throughout this
work, we will focus on the case where the target domain is either fully
unsupervised or not present at all during training.

The first case is the Unsupervised Domain Adaptation problem
(UDA). Formally, we can define the UDA problem as follows. Let us
denote with X our input space (e.g. the image space), with Y our out-
put space (e.g. the set of possible semantic classes) and with D the
set of possible visual domains (e.g. environments, illumination con-
ditions). Denoting with Ds ⊂ D the set of our source domain(s), we
can define our supervised training set as S = {(xs

i , ys
i , si)}n

i=1 where
xs

i ∈ X , ys
i ∈ Y and si ∈ Ds. Moreover, let us define our unsupervised

target dataset as T = {(xt
j , tj)}m

j=1, with xt
j ∈ X , and tj ∈ Dt ⊂ D. Note

that we assume source and target domains to differ, i.e. Dt ∩ Ds ≡ ∅.
Moreover, due to the domain shift, each domain has different joint
distribution defined over X × Y : we have p(x, y|di) ̸= p(x, y|dj) with
di ∈ Ds ∪Dt,dj ∈ Ds ∪Dt and di ̸= dj. Our goal is to learn a mapping
f : X → Y which is effective for each of our target domain(s) Dt.

From our formulation, we have the standard single-source/target
scenario when |Ds| = |Dt| = 1, while the multi-source scenario when
|Ds| > 1. In both cases, T is assumed available during training. In case
both S and T are available but at least one of them is composed of an
unknown mixture of domains (i.e. |Ds| = ks ≥ 1, |Dt| = kt ≥ 1 with
unknown ks and/or kt), we are in the latent domain discovery scenario
and we have no domain identifier d in the triplets of S and T .

In case T is not available during training but |Ds| > 1, we are in the
Domain Generalization (DG) scenario. In this setting, we can exploit
the presence of multiple source domains, even latent, to disentangle
domain and semantic specific components from our inputs, producing
a model robust to any possible target domain.

In T is not available during training and |Ds| = 1, we cannot disen-
tangle domain-specific and semantic-specific information. However, we
can still cope with the domain shift problem in different ways, depend-
ing on the information we have about our target. If no information is
available, we can only adapt our model at test time, while classifying
samples of the target domain. This is known as the Continuous/Online
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DA scenario.
Lastly, another scenario is PredictiveDA (PDA). In this case, we have

a set of auxiliary domains Da forming an additional training dataset
A = {(xa

i , da
i )}r

i=1. Moreover, the domain identifiers d ∈ Ds ∪Da are ex-
pressed asmetadata. Using the auxiliary setA and the domain metadata,
we can learn a mapping among metadata and domain-specific param-
eters. Then, given target metadata dt, we can infer its domain-specific
parameters, reducing the domain shift problem.

In the following section, we will review the relevant literature for DA
and each of the previously mentioned problem. As a final remark, it is
worth highlighting that, in this chapter, we assume source and target
domains sharing the same output space Y . In Chapter 3 we will consider
the case where the visual domains are shared among train and test data
(i.e. Ds = Dt) but the semantic classes differ and/or varies over time.
Finally, in Chapter 4 we will consider the scenario where both the output
and the domain space differ among train and test.
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2.2. Related Works
In this section we will review previous works on DA. We start by

reviewing DA methods, based on both hand-crafted and deep features,
in standard scenarios where target domain data are available. We then
review previous works tackling the domain shift problemwithout target
domain data, starting from DG techniques and covering less explored
directions, such as Continuous and Predictive DA.

DA methods with hand-crafted features. Earlier DA approaches op-
erate on hand-crafted features and attempt to reduce the discrepancy
between the source and the target domains by adopting different strate-
gies. For instance, instance-based methods [108, 289, 84] develop from
the idea of learning classification/regression models by re-weighting
source samples according to their similarity with the target data. A
different strategy is exploited by feature-based methods, coping with
domain shift by learning a common subspace for source and target
data such as to obtain domain-invariant representations [86, 153, 67].
Parameter-based methods [291] address the domain shift problem by
discovering a set of shared weights between the source and the target
models. However, they usually require labeled target data which is not
always available.

Whilemost earlier DAapproaches focus on a single-source and single-
target setting, some works have considered the related problem of learn-
ing classificationmodels when the training data spans multiple domains
[174, 60, 252]. The common idea behind these methods is that when
source data arises from multiple distributions, adopting a single source
classifier is suboptimal and improved performance can be obtained by
leveraging information about multiple domains. However, these meth-
ods assume that the domain labels for all source samples are known
in advance. In practice, in many applications the information about
domains is hidden and latent domains must be discovered into the large
training set. Few works have considered this problem in the literature.
Hoffman et al. [104] address this task by modeling domains as Gaussian
distributions in the feature space and by estimating the membership of
each training sample to a source domain using an iterative approach.
Gong et al. [85] discover latent domains by devising a nonparametric
approach which aims at simultaneously achieving maximum distinctive-
ness among domains and ensuring that strong discriminative models
are learned for each latent domain. In [283] domains are modeled as
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manifolds and source images representations are learned decoupling
information about semantic category and domain. By exploiting these
representations the domain assignment labels are inferred using a mu-
tual information based clustering method.

Deep Domain Adaptation. Most recent works on DA consider deep
architectures and robust domain-invariant features are learned using
either supervised neural networks [154, 260, 77, 80, 24, 28], deep au-
toencoders [299] or generative adversarial networks [22, 241]. Research
efforts can be grouped in terms of the number of source domains avail-
able at training time.

In the single-source DA setting, we can identify two main strategies.
The first deals with features and aims at learning deep domain invariant
representations. The idea is to introduce in the learning architecture
different measures of domain distribution shift at a single or multiple
levels [157, 251, 28, 29] and then train the network to minimize these
measures while also reducing a task-specific loss, for instance for classifi-
cation or detection. In this way the network produces features invariant
to the domain shift, but still discriminative for the task at hand. Besides
distribution evaluations, other domain shift measures used similarly are
the error in the target sample reconstruction [80], or various coherence
metrics on the pseudo-labels assigned by the source models to the target
data [237, 97, 229]. Finally, a different group of feature-based methods
rely on adversarial loss functions [260, 78]. The method proposed in
[232], that push the network to be unable to discriminate whether a
sample coming from the source or from the target, is an interesting
variant of [78], where the domain difference is still measured at the
feature level but passing through an image reconstruction step. Besides
integrating the domain discrimination objective into end-to-end classi-
fication networks, it has also been shown that two-step networks may
have practical advantages [261, 7].

The second popular deep adaptive strategy focuses on images. The de-
scribed adversarial logic that demonstrated its effectiveness for feature-
basedmethods, has also been extended to the goal of reducing the visual
domain gap. Powerful GAN [88] methods have been exploited to gener-
ate new images or perturb existing ones to resemble the visual style of a
certain domain, thus reducing the discrepancy at pixel level [23, 241].
Most of the works based on image adaptation aim at generating either
target-like source images or source-like target images, but it has been

Towards Recognizing New Semantic Concepts in New Visual Domains50



2. Recognition across New Visual Domains 23

recently shown that integrating both the transformation directions is
highly beneficial [226].

In practical applications one may be offered more than one source
domain. This has triggered the study of multi-sources DA algorithms.
The multi-source setting was initially studied from a theoretical point
of view, focusing on theorems indicating how to optimally sub-select
the data to be used in learning the source models [47], or proposing
principled rules for combining the source-specific classifiers and obtain
the ideal target class prediction [174]. Several other works followed
this direction in the shallow learning framework. When dealing with
shallow-methods the naïve model learned by collecting all the source
data in single domain without any adaptation was usually showing
low performance on the target. It has been noticed that this behavior
changes when moving to deep learning, where the larger number of
samples as well as their variability supports generalization and usually
provides good results on the target. Only very recently two methods
presented multi-source deep learning approaches that improve over this
reference. The approach proposed in [286] builds over [78] by repli-
cating the adversarial domain discriminator branch for each available
source. Moreover these discriminators are also used to get a perplexity
score that indicates how the multiple sources should be combined at
test time, according to the rule in [174]. A similar multi-way adversarial
strategy is used in [308], but this work comes with a theoretical sup-
port that frees it from the need of respecting a specific optimal source
combination and thus from the need of learning the source weights.

While recent deep DA methods significantly outperform approaches
based on hand-crafted features, the vast majority of them only consider
single-source, single-target settings. Moreover, almost all work pre-
sented in the literature so far assume to have direct access to multiple
source domains, where in many practical applications such knowledge
might not be directly available, or costly to obtain in terms of time and
human annotators. To our knowledge, our works [169, 168] are the
first works proposing a deep architecture for discovering latent source
domains and exploiting them for improving classification performance
on target data.

Domain Generalization. Opposite to domain adaptation [48], where
it is assumed that target data are available in the training phase, the
key idea behind DG is to learn a domain agnostic model to be applied
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to any unseen target domain. Although less researched than domain
adaptation, the need for DG algorithms has been recognized for quite
some time in the literature [186].

Previous DG methods can be broadly grouped into four main cat-
egories. The first category comprises methods which attempt to learn
domain-invariant feature representations by considering specific align-
ment losses, such as maximum mean discrepancy (MMD), adversarial
loss or self-supervised losses. Notable approaches in this category are
[186, 137, 27]. The second category of methods [133, 115] develop from
the idea of creating deep architectures where both domain-agnostic and
domain-specific parameters are learned on source domains. After train-
ing, only the domain-agnostic part is retained and used for processing
target data. The third category devise specific optimization strategies
or training procedures in order to enhance the generalization ability of
the source model to unseen target data. For instance, in [134] a meta-
learning approach is proposed for DG. Differently, in [135] an episodic
training procedure is presented to learn models robust to the domain
shift. The latter category comprises methods which introduce data and
feature augmentation strategies to synthesise novel samples and improve
the generalization capability of the learned model [238, 268, 267]. These
strategies are mostly based either on adversarial training [238, 268] or
data augmentation [267].

Beyond DG: Domain Adaptation without Target Data. DG assumes
that multiple source domains are available, in some applications this
assumption might not hold. This calls for DA methods able to cope
with the domain shift when i) only one source domain is available and
ii) no target data are available in the training phase. Depending on
their available information, these methods can work by exploiting e.g.
the stream of incoming target samples, or side information describing
possible future target domains. Note that, differently from DG, these
methods produce models which are not robust to any possible target
domain, but must be re-adapted if the target domain changes

The first scenario is typically referred as continuous [103] or online
DA [166]. To address this problem, in [103] a manifold-based DA tech-
nique is employed, such as to model an evolving target data distribution.
In [139] Li et al. propose to sequentially update a low-rank exemplar
SVM classifier as data of the target domain become available. In [129],
the authors propose to extrapolate the target data dynamics within a
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reproducing kernel Hilbert space.
The second scenario corresponds to the problem of Predictive DA

(PDA). PDA is introduced in [293], where a multivariate regression
approach is described for learning amapping between domainmetadata
and points in a Grassmanian manifold. Given this mapping and the
metadata for the target domain, two different strategies are proposed
to infer the target classifier. In Section 2.7, we show how it is possible
to address this task with deep architectures, using batch-normalization
layers [109].

Other closely related tasks are the problems of zero shot domain
adaptation and domain generalization. In zero-shot domain adapta-
tion [205] the task is to learn a prediction model in the target domain
under the assumption that task-relevant source-domain data and task-
irrelevant dual-domain paired data are available. Domain generalization
methods [186, 133, 62, 185] attempt to learn domain-agnostic classifica-
tionmodels by exploiting labeled source samples frommultiple domains
but without having access to target data. Similarly to Predictive DA, in
domain generalization multiple datasets are available during training.
However, in PDA data from auxiliary source domains are not labeled.
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2.3. Preliminaries: Domain Alignment Layers
Batch-normalization [109] (BN) is a common strategy used in deep

architectures for stabilizing the optimization problem, making the gradi-
entsmorewell-behaved, and enabling a faster andmore effective training
[233, 20]. BN works by normalizing the input features to a fixed, target
distribution, i.e. a standard Gaussian. Recent works [142, 29, 28] have
shown how we can use BN layers to perform domain adaptation in a
traditional batch setting. In the following, we will denote BN layers with
domain-specific statistics as Domain Alignment layers (DA-layers).

DA-layers [142, 29, 28] are motivated by the observation that, in
general, activations within a neural network follow domain-dependent
distributions. As a way to reduce domain shift, the activations are
thus normalized in a domain-specific way, shifting them according to a
parameterized transformation in order to match their first and second-
order moments to those of a reference distribution, which is generally
chosen to be normal with zero mean and unit standard deviation. While
most previous works only considered settings with two domains, i.e.
source and target, the basic idea can be applied to any number of do-
mains, as long as the domainmembership of each sample point is known.
Specifically, denoting as qd

x the distribution of activations for a given
feature channel and domain d, an input xd ∼ qd

x to the DA-layer can be
normalized according to

DA(xd; µd, σd) =
xd − µd√

σ2
d + ϵ

(2.1)

where µd = Ex∼qd
x
[x], σ2

d = Varx∼qd
x
[x] are mean and variance of the

input distribution, respectively, and ϵ > 0 is a small constant to avoid
numerical issues. In practice, when the statistics µd and σ2

d are computed
over the current mini-batch, we obtain the application of standard batch
normalization separately to the sample points of each domain.

The main idea behind these works is to create a deep architecture
with one parallel branch per domain, where all branches share the same
parameters but embed different, domain-specific, BN layers (i.e. differ-
ent statistics within DA-layers). The domain-specific BN layers align the
distributions of features of different domains to the same reference distri-
bution, achieving the desired domain adaptation effect. In the following
sections, we will show how variants of DA-layers can be successfully
applied in multiple distinct DA scenarios, even without the presence of
target domain data during the initial training phase.
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2.4. Latent Domain Discovery 12

As stated in Section 2.2, the problem of Unsupervised DA has been
widely studied and both theoretical results [14, 174] and several algo-
rithms have been developed, both considering shallow models [108, 84,
86, 153, 67] and deep architectures [154, 260, 77, 155, 80, 28, 24]. While
deep neural networks tend to produce more transferable and domain-
invariant features with respect to shallow models, previous works have
shown that the domain shift is only alleviated but not entirely removed
[59].

Most previous works on UDA focus on a single-source and single-
target scenario. However, in many computer vision applications labeled
training data are often generated from multiple distributions, i.e. there
are multiple source domains. Examples of multi-source DA problems
arise when the source set corresponds to images taken with different
cameras, collected from theweb or associated tomultiple points of views.
In these cases, a naive application of single-source domain adaptation
algorithms would not suffice, leading to poor results. Analogously, tar-
get samples may arise frommore than a single distribution and learning
multiple target-specific models may improve significantly the perfor-
mance. Therefore, in the past several research efforts have been devoted
to develop domain adaptation methods considering multiple source and
target domains [174, 60, 252, 286]. However, these approaches assume
that the multiple domains are known. A more challenging problem
arises when training data correspond to latent domains, i.e. we can
make a reasonable estimate on the number of source and target domains
available, but we have no information, or only partial, about domain
labels. To address this problem, known in the literature as latent domain
discovery, previous works have proposed methods which simultane-
ously discover hidden source domains and use them to learn the target
classification models [104, 85, 283].

This section introduces the first approaches [169, 168] based on deep
neural networks able to automatically discover latent domains in multi-
source, multi-target UDA setting. Our method is inspired from the Do-

1 M. Mancini, L. Porzi, S. Rota Bulò, B. Caputo, E. Ricci. Boosting Domain Adaptation by
Discovering Latent Domains. IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) 2018.

2 M. Mancini, L. Porzi, S. Rota Bulò, B. Caputo, E. Ricci. Inferring Latent Domains
for Unsupervised Deep Domain Adaptation. IEEE Transactions on Pattern Analysis &
Machine Intelligence 2019.
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Fig. 2.1. The idea behind the proposed framework for latent domain discovery. In this
section, we introduce a novel deep architecture which, given a set of images, automatically
discovers multiple latent domains and use this information to align the distributions of
the internal CNN feature representations of sources and target domains for the purpose
of domain adaptation. In this way, more accurate target classifiers can be learned. ©2019
IEEE

main Alignment Layers described in Section 2.3, introduced by [28, 29].
Our approach develops from the same intuition of Domain Alignment
Layers, i.e. aligning representations of source and target distributions to
a reference Gaussian. However, to address the additional challenges of
discovering and handling multiple latent domains, we propose a novel
architecture which is able to (i) learn a set of assignment variables which
associate source and target samples to a latent domain and (ii) exploit
this information for aligning the distributions of the internal CNN fea-
ture representations and learn robust target classifiers (Fig.2.1). Our
experimental evaluation shows that the proposed approach alleviates
the domain discrepancy and outperforms previous UDA techniques on
popular benchmarks, such as Office-31 [228], PACS [138] and Office-
Caltech [86].

To summarize, the contributions presented in this section are three-
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fold. Firstly, we introduce a novel deep learning approach for unsuper-
vised domain adaptation which operates in a multi-source, multi-target
setting. Secondly, we describe a novel architecture which is not only able
to handle multiple domains, but also permits to automatically discover
them by grouping source and target samples. Thirdly, our experiments
demonstrate that this framework is superior to many state-of-the-art
single- and multi-source/target UDA methods.

2.4.1. Problem Formulation
We assume to have data belonging to one of several domains. Specif-

ically, as in Section 2.1, we consider ks source domains, characterized
by unknown probability distributions ps1

xy, . . . , psks
xy defined over X × Y ,

whereX is the input space (e.g. images) and Y the output space (e.g. ob-
ject or scene categories) and, similarly, we assume kt target domains char-
acterized by pt1

xy, . . . , p
tkt
xy . Note that, for simplicity, we wrote = p(x, y|d)

as pd
xy. The numbers of source and target domains are not necessarily

known a-priori, and are left as hyperparameters of our method.
During training we are given a set of labeled sample points from

the source domains, and a set of unlabeled sample points from the
target domains, while we can have partial or no information about the
domain of the source sample points. We model the source data as a
set S = {(xs

1, ys
1), . . . , (xs

n, ys
n)} of i.i.d. observations from a mixture

distribution ps
xy = ∑ks

i=1 πsi p
si
xy, where πsi is the unknown probability

of sampling from a source domain si. Similarly, the target sample T =

{xt
1, . . . , xt

m} consists of i.i.d. observations from the marginal pt
x of the

mixture distribution over target domains. Furthermore, we denote by
xS = {xs

1, . . . , xs
n} and yS = {ys

1, . . . , ys
n}, the source data and label

sets, respectively. We assume to know the domain label for a (possibly
empty) sub-sample Ŝ ⊂ S from the source domains and we denote by
dŜ the domain labels in Ds = {s1. . . . , sks} of the sample points in xŜ.
Note that, differently from the general formulation in Section 2.1, here
neither S and T might have domain labels available.

Our goal is to learn a predictor that is able to classify data from the
target domains. The major difficulties that this problem poses, and that
we have to deal with, are: (i) the distributions of source and target
domains can be drastically different, making it hard to apply a classifier
learned on one domain to the others, (ii) we lack direct observation of
target labels, and (iii) the assignment of each source and target sample
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Fig. 2.2. Schematic representation of our method applied to the AlexNet architecture (left)
and of an mDA-layer (right). ©2019 IEEE

point to its domain is unknown, or known for a very limited number of
source sample points.

Several previous works [154, 260, 77, 80, 24, 28] have tackled the
related problem of domain adaptation in the context of deep neural
networks, dealing with (i) and (ii) in the single domain case for both
source and target data (i.e. ks = 1 and kt = 1). In particular, some recent
works have demonstrated a simple yet effective approach based on the
replacement of standard BN layers with specificDomain Alignment layers
[29, 28]. These layers reduce internal domain shift at different levels
within the network by normalizing features in a domain-dependent way,
matching their distributions to a pre-determined one. We revisit this
idea in the context of multiple, unknown source and target domains and
introduce a novel Multi-domain DA layer (mDA-layer) in Section 2.4.2,
which is able to normalize the multi-modal feature distributions encoun-
tered in our setting. To do this, our mDA-layers exploit a side-output
branch attached to the main network (see Section 2.4.3), which pre-
dicts domain assignment probabilities for each input sample. Finally,
in Section 2.4.4 we show how the predicted domain probabilities can
be exploited, together with the unlabeled target samples, to construct a
prior distribution over the network’s parameters which is then used to
define the training objective for our network.

2.4.2. Multi-domain DA-layers
In Section 2.3, we described Domain Alignment Layers and how

they are a simple yet effective solution for doman adaptation. However,
applying them as described in Eq. (2.1) requires full domain knowledge,
because for each domain d, µd and σ2

d need to be calculated on a data
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sample belonging to the specific domain d. In our case, however, we do
not know the domain of the source/target sample points, or we have
only partial knowledge about that. To tackle this issue, we propose to
model the layer’s input distribution as a mixture of Gaussians, with one
component per domain3. Specifically, we define a global input distribu-
tion qx = ∑d πdqd

x, where πd is the probability of sampling from domain
d, and qd

x = N (µd, σ2
d ) is the domain-specific distribution for d, namely

a normal distribution with mean µd and variance σ2
d . Given a mini-batch

B = {xi}b
i=1, a maximum likelihood estimate of the parameters µd and

σ2
d is given by

µd =
b
∑
i=1

αi,dxi, σ2
d =

b
∑
i=1

αi,d(xi − µd)
2, (2.2)

where
αi,d =

qd|x(d | xi)

∑b
j=1 qd|x(d | xj)

, (2.3)

and qd|x(d | xi) is the conditional probability of xi belonging to domain
d, given xi. Clearly, the value of qd|x is known for all sample points
for which we have domain information. In all other cases, the missing
domain assignment probabilities are inferred from data, using the do-
main prediction network branch which will be detailed in Section 2.4.3.
Thus, from the perspective of the alignment layer, these probabilities
become an additional input, which we denote as wi,d for the predicted
probability of xi belonging to d.

By substituting wi,d for qd|x(d | xi) in (2.3), we obtain a new set of
empirical estimates for the mixture parameters, which we denote as
µ̂d and σ̂2

d . These parameters are used to normalize the layer’s inputs
according to

mDA(xi, wi; µ̂, σ̂) = ∑
d∈D

wi,d
xi − µ̂d√

σ̂2
d + ϵ

, (2.4)

where wi = {wi,d}d∈D , µ̂ = {µ̂d}d∈D , σ̂ = {σ̂2
d}d∈D and D is the set of

source/target latent domains. As in previous works [28, 29, 109], during
back-propagation we calculate the derivatives through the statistics
and weights, propagating the gradients to both the main input and the
domain assignment probabilities.

3 Interestingly, [51] showed how a similar strategy can be effective even within a single
domain.
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2.4.3. Domain prediction

Our mDA-layers receive a set of domain assignment probabilities
for each input sample point, which needs to be predicted, and different
mDA-layers in the network, despite having different input distributions,
share consistently the samedomain assignment for the sample points. As
a practical example, in the typical case in whichmDA-layers are used in a
CNN to normalize convolutional activations, the network would predict
a single set of domain assignment probabilities for each input image,
which would then be fed to all mDA-layers and broadcasted across all
spatial locations and feature channels corresponding to that image. We
compute domain assignment probabilities using a distinct section of
the network, which we call the domain prediction branch, while we refer
to the main section of the network as the classification branch. The two
branches share the bottom-most layers and parameters as depicted in
Figure 2.2.

The domain prediction branch is implemented as a minimal set of
layers followed by two softmax operations with ks and kt outputs for the
source and target latent domains, respectively (more details follow in
Section 2.4.5). The rationale of keeping the domain prediction separated
between source and target derives from the knowledge that we have
about the source/target membership of a sample point that we receive in
input, while it remains unknown the specific source or target domain it
belongs to. Furthermore, for each sample point xi with known domain
membership d̂, we fix in each mDA-layer wi,d = 1 if d = d̂, otherwise
wi,d = 0.

We split the network into a domain prediction branch and classifi-
cation branch at some low level layer. This choice is motivated by the
observation [6] that features tend to become increasingly more domain
invariant going deeper into the network, meaning that it becomes in-
creasingly harder to compute a domain membership as a function of
deeper features. In fact, as pointed out in [28], this phenomenon is even
more evident in networks that include DA-layers.

2.4.4. Training the network

In order to exploit unlabeled data within our discriminative setting,
we follow the approach sketched in [28], where unlabeled data is used
to define a regularizer over the network’s parameters. By doing so, we
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obtain a loss for θ that takes the following form:

L(θ) = Lcls(θ) + Ldom(θ) , (2.5)

where Lcls is a loss term that penalizes based on the final classification
task, while Ldom accounts for the domain classification task.

Classification loss Lcls. The classification loss consists of two compo-
nents, accounting for the the supervised sample from the source domain
S and the unlabeled target sample T , respectively:

Lcls(θ) =− 1
n

n
∑
i=1

log f θ
C(y

s
i ; xs

i ) +
λC
m

m
∑
i=1

H( f θ
C(·; xt

i )). (2.6)

The first term on the right-hand-side is the average log-loss related to the
supervised examples in S , where f θ

C(y
s
i ; xs

i ) denotes the output of the
classification branch of the network for a source sample, i.e. the predicted
probability of xs

i having class ys
i . The second term on the right-hand-

side of (2.6) is the entropy H of the classification distribution f θ
C(·; xt

i ),
averaged over all unlabeled target examples xt

i in T , scaled by a positive
hyperparameter λC.

Domain loss Ldom. Akin to the classification loss, the domain loss
presents a component exploiting the supervision deriving from the
known domain labels in Ŝ and a component exploiting the domain clas-
sification distribution on all sample points lacking supervision. However,
the domain loss has in addition a term that tries to balance the distribu-
tion of sample points across domains, in order to avoid predictions to
collapse into trivial solutions such as constant assignments to a single
domain. Accordingly, the loss takes the following form:

Ldom(θ) = −λD

|Ŝ | ∑
xi∈xŜ

log f θ
Ds
(di; xi)

− λBH( f̄ θ
Ds
(·)) + λE

|S \ Ŝ| ∑
x∈xS\Ŝ

H( f θ
Ds
(·; x))

− λBH( f̄ θ
Dt
(·)) + λE

m

m
∑
i=1

H( f θ
Dt
(·; xt

i )). (2.7)

Here, f θ
Ds

and f θ
Dt

denote the outputs of the domain prediction branch for
data points from the source and target domains, respectively, while f̄ θ

Ds

and f̄ θ
Dt

denote the distributions of predicted domain classes across S
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and T , respectively, i.e.

f̄ θ
Ds
(y) =

1
n

n
∑
i=1

f θ
Ds
(y; xs

i ), f̄ θ
Dt
(y) =

1
m

m
∑
i=1

f θ
Dt
(y; xt

i ) .

The first term in (2.7) enforces the correct domain prediction on the
sample points with known domain and it is scaled by a positive hy-
perparameter λD. The terms scaled by the positive hyperparameter λE

enforce domain predictions with low uncertainty for the data points
with unknown domain labels, by minimizing the entropy of the output
distribution. Finally, the terms scaled by the positive hyperparameter
λB enforce balanced distributions of predicted domain classes across the
source and target sample, by maximizing the entropy of the averaged
distribution of domain predictions. Interestingly, since the classification
branch has a dependence on the domain prediction branch via the mDA-
layers, by optimizing the proposed loss, the network learns to predict
domain assignment probabilities that result in a low classification loss.
In other words, the network is free to predict domain memberships that
do not necessarily reflect the real ones, as long as this helps improving
its classification performance.

We optimize the loss in (2.5) with stochastic gradient descent. Hence,
the samples S , T , Ŝ that are considered in the computation of the gra-
dients are restricted to a random subsets contained in the mini-batch. In
Section 2.4.5 we providemore details on how eachmini-batch is sampled.
We call our model multi-Domain Alignment layers for latent domain
discovery (mDA).

2.4.5. Experimental results
2.4.5.1. Datasets

In our evaluation we consider several common DA benchmarks:
the combination of USPS [72], MNIST [131] and MNIST-m [77]; the
Digits-five benchmark in [286]; Office-31 [228]; Office-Caltech [86] and
PACS [133].

MNIST, MNIST-m and USPS are three standard datasets for digits
recognition. USPS [72] is a dataset of digits scanned fromU.S. envelopes,
MNIST [131] is a popular benchmark for digits recognition and MNIST-
m [77] its counterpart obtained by blending the original images with
colored patches extracted from BSD500 photos [9]. Due to their different
representations (e.g. colored vs gray-scale), these datasets have been
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adopted as a DA benchmark by many previous works [77, 24, 22]. Here,
we consider a multi source DA setting, using MNIST and MNIST-m as
sources and USPS as target, training on the union of the training sets
and testing on the test set of USPS.

Digits-five is an experimental setting proposed in [286] which considers
5 datasets of digits recognition. In addition to MNIST, MNST-m and
USPS, it includes SVHN [189] and Synthetic numbers datasets [78].
SVHN [189] contains pictures of real-world house numbers, collected
from Google Street View. Synthetic numbers [78] is built from com-
puter generated digits, including multiple sources of variations (i.e.
position, orientation, background, color and amount of blur), for a total
of 500 thousands images. We follow the experimental setting described
in [286]: the train/test split comprises a subset of 25000 images for train-
ing and 9000 for testing for each of the domains, except for USPS for
which the entire dataset is used. As in [286], we report the results when
either SVHN or MNIST-m are used as targets and all the other domains
are taken as sources.

Office-31 is a standard DA benchmark which contains images of 31 ob-
ject categories collected from 3 different sources: Webcam (W), DSLR
camera (D) and the Amazon website (A). Following [283], we per-
form our tests in the multi-source setting, where each domain is in turn
considered as target, while the others are used as source.

Office-Caltech [86] is obtained by selecting the subset of 10 common
categories in the Office31 and the Caltech256 [93] datasets. It contains
2533 images, about half of which belong to Caltech256. The different
domains are Amazon (A), DSLR (D), Webcam (W) and Caltech256 (C).
In our experiments we consider the set of source/target combinations
used in [85].

PACS [133] is a recently proposed DA benchmark which is especially
interesting due to the significant domain shift between its domains.
It contains images of 7 categories (dog, elephant, giraffe, guitar, horse)
and 4 different visual styles: i.e. Photo (P), Art paintings (A), Cartoon
(C) and Sketch (S). We employ the dataset in two different settings.
First, following the experimental protocol in [133], we train our model
considering 3 domains as sources and the remaining as target, using
all the images of each domain. Differently from [133] we consider a
DA setting (i.e. target data is available at training time) and we do

2.	 Recognition across New Visual Domains 63



36 Towards Recognizing New Semantic Concepts in New Visual Domains

not address the problem of domain generalization. Second, we use 2
domains as sources and the remaining 2 as targets, in a multi-source
multi-target scenario. In this setting the results are reported as average
accuracy between the 2 target domains.

In all experiments and settings, we assume to have no domain labels
(i.e. Ŝ = ∅), unless otherwise stated.

2.4.5.2. Networks and training protocols
We apply our approach to four different CNN architectures: the

MNIST and SVHN networks described in [77, 78], AlexNet [124] and
ResNet [98]. We choose AlexNet due to its widespread use in many rel-
evant DA works [77, 28, 154, 155], while ResNet is taken as an exemplar
formodern state-of-the-art architectures employing batch-normalization
layers. Both AlexNet and ResNet are first pre-trained on ImageNet and
then fine-tuned on the datasets of interest. The MNIST and SVHN
architectures are chosen for fair comparison with previous works con-
sidering digits datasets [78, 286]. Unless otherwise noted, we optimize
our networks using Stochastic Gradient Descent with momentum 0.9
and weight decay 5 × 10−4.

For the evaluation on MNIST, MNIST-m and USPS datasets, we em-
ploy the MNIST network described in [77], adding an mDA-layer after
each convolutional and fully-connected layer. The domain prediction
branch is attached to the output of conv1, and is composed of a convolu-
tion with the same meta-parameters as conv2, a global average pooling,
a fully-connected layer with 100 output channels and finally a fully-
connected classifier. Following the protocol described in [28, 77], we set
the initial learning rate l0 to 0.01 and we anneal it through a schedule
lp defined by lp = l0

(1+γp)β where β = 0.75, γ = 10 and p is the training
progress increasing linearly from 0 to 1. We rescale the input images
to 32 × 32 pixels, subtract the per-pixel image mean of the dataset and
feed the networks with random crops of size 28 × 28. A batch size of
128 images per domain is used.

For the Digits-five experiments we employ the SVHN architecture
of [78], which is the same architecture adopted by [286], augmented
with mDA-layers and a domain prediction branch in the same way as
the MNIST network described in the previous paragraph. We train
the architecture for 44000 iterations, with a batch size of 32 images per
domain, an initial learning rate of 10−4 which is decayed by a factor of
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10 after 80% of the training process. We use Adam as optimizer with
a weight decay 5 × 10−5, and pre-process the input images like in the
MNIST, MNIST-m, USPS experiments.

For the experiments on Office-31 and Office-Caltech we employ the
AlexNet architecture. We follow a setup similar to the one proposed
in [28, 29], fixing the parameters of all convolutional layers and in-
serting mDA-layers after each fully-connected layer and before their
corresponding activation functions. The domain prediction branch is
attached to the last pooling layer pool5, and is composed of a global
average pooling, followed by a fully connected classifier to produce the
final domain probabilities. The training schedule and hyperparameters
are set following [28].

For the experiments on the PACS dataset we consider the ResNet
architecture in the 18-layers setupdescribed in [98], denoted as ResNet18.
This architecture comprises an initial 7 × 7 convolution, denoted as
conv1, followed by 4 main modules, denoted as conv2 – conv5, each
containing two residual blocks. To apply our approach, we replace each
Batch Normalization layer in the residual blocks of the network with an
mDA-layer. The domain prediction branch is attached to conv1, after
the pooling operation. The branch is composed of a residual block with
the same structure as conv2, followed by global average pooling and
a fully connected classifier. In the multi-target experiments we add a
second, identical domain prediction branch to discriminate between
target domains. We also add a standard BN layer after the final domain
classifiers, which we found leads to a more stable training process in
the multi-target case. In both cases, we adopt the same training meta-
parameters as for AlexNet, with the exception of weight-decay which
is set to 10−6 and learning rate which is set to 5 · 10−4. The network is
trained for 600 iterations with a batch size of 48, equally divided between
the domains, and the learning rate is scaled by a factor 0.1 after 75% of
the iterations.

Regarding the hyperparameters of our method, we set the number
of source domains k equal to Q − 1, where Q is the number of different
datasets used in each single experiment. In the multi-source multi-
target scenarios, since we always have the domains equally split between
source and target, we consider k equal Q/2 for both source and target.
Following [28], in the experiments with AlexNet we fix λC = λE = 0.2
with λB = 0.1. Similarly, for the experiments on digits classification,
we set λC = λE = 0.1 and λB = 0.05 for MNIST, MNIST-m and USPS,
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and λC = 0.01 and λE = λB = 0.05 for Digits-five, with λE = 0.01
if λB = 0, which we found leading to a more stable minimization of
the loss of the domain branch. In the experiments involving ResNet18
we select the values λC = 0.1 and λE = λB = 0.0001 through cross-
validation, following the procedure adopted in [153, 28]. Similarly, in
the multi-target ResNet18 experiments we select λC = λE = λB = 0.1.
When domain labels are available for a subset of source samples, we fix
λD = 0.5.

We implement4 all the models with the Caffe [111] framework and
our evaluation is performed using an NVIDIA GeForce 1070 GTX GPU.
We initialize both AlexNet and ResNet18 from models pre-trained on
ImageNet, taking AlexNet from the Caffe model zoo, and converting
ResNet18 from the original Torch model5. For all the networks and
experiments, we add mDA layers and their variants in place of standard
BN layers.

2.4.5.3. Results
In this section, we first analyze the proposed approach, demonstrat-

ing the advantages of considering multiple sources/targets and discov-
ering latent domains. We then compare the proposed method with
state-of-the-art approaches. For all the experiments we report the re-
sults in terms of accuracy, repeating the experiments at least 5 times
and averaging the results. In the multi-target experiments, the reported
accuracy is the average of the accuracies over the target domains. As for
standard deviations, since we do not tune the hyperparameters of our
model and baselines by employing the accuracy on the target domain,
their values can be high in some settings. For this reason, in order to
provide a more appropriate analysis of the significance of our results,
we propose to adopt the following approach. In particular, let us model
the accuracy of an algorithm as a random variable Xa with unknown dis-
tribution. The accuracy of a single run of the algorithm is an observation
from this distribution. Therefore, in order to compare two algorithms
we consider the two sets of associated observations A = {a1, . . . , an}
and B = {b1, . . . , bm} and estimate the probability that one algorithm is

4 Code available at: https://github.com/mancinimassimiliano/latent_domains_
DA.git

5 https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet
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better than the other as:

p(Xa > Xb) =
∑a∈A ∑b∈B δ(a > b)

|A| · |B|
where δ is the Dirac function. In the following we use this metric to
compare our approachwith respect to a baselinewhere no latent domain
discovery process is implemented (specifically, the method DIAL [29],
see below) considering five runs for each experiment. For sake of clarity,
we denote this probability estimate as p∗.

In the following we first analyze the performances of the proposed
approach with λB = 0 (denoted as mDA λB = 0), i.e. the algorithm we
presented in [169], and then we describe the impact of the loss term we
introduce in this section setting λB > 0 (denoted simply as mDA).

Experiments on the Digits datasets
In a first series of experiments, reported in Table 2.1, we test the

performance of our approach on the MNIST, MNIST-m to USPS bench-
mark (M-Mm to U). The comparison includes: (i) the baseline network
trained on the union of all source domains (Unified sources); (ii) training
separate networks for each source, and selecting the one the performs
the best on the target (Best single source); (iii) DIAL [29], trained on the
union of the sources (DIAL [29] - Unified sources); (iv) DIAL, trained
separately on each source and selecting the best performing model on
the target (DIAL [29] - Best single source). We also report the results of
our approach in the ideal case where the multiple source domains are
known and we do not need to discover them (Multi-source DA). For our
approach with λB = 0, we consider several different values of k, i.e. the
number of discovered source domains.

By looking at the table several observations can be made. First, there
is a large performance gap between models trained only on source data
and DA methods, confirming that deep architectures by themselves are
not enough to solve the domain shift problem [59]. Second, in analogy
with previous works on DA [174, 60, 252], we found that considering
multiple sources is beneficial for reducing the domain shift with re-
spect to learning a model on the unified source set. Finally, and more
importantly, when the domain labels are not available, our approach
is successful in discovering latent domains and in exploiting this in-
formation for improving accuracy on target data, partially filling the
performance gap between the single source models andMulti-source DA.
Interestingly, the performance of our algorithm changes only slightly for
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Tab. 2.1. Digits datasets: comparison of different models in the multi-source scenario.
MNIST (M) and MNIST-m (Mm) are taken as source domains, USPS (U) as target. ©2019
IEEE

Method M-Mm to U
Unified sources 57.1
Best single source 59.8
DIAL [29] - Unified sources 81.7
DIAL [29] - Best single source 81.9
mDA λB = 0 k = 2 82.5
mDA λB = 0 k = 3 82.2
mDA λB = 0 k = 4 82.7
mDA λB = 0 k = 5 82.4
mDA (k = 2) 82.4
Multi-source DA 84.2

different values of k, motivating our choice to always fix k to the known
number of domains in the next experiments. Importantly, comparing
our approach with DIAL we achieve higher accuracy in most of the
runs, i.e. p∗ = 0.65. In this experiment, the introduction of the loss
term forcing a uniform assignment among clusters (denoted as mDA)
leads to comparable performances to our method with λB = 0. This
behaviour can be ascribed to the fact that the separation among different
domains is quite clear in this case and adding constraints to the domain
discovery process is not required. In the following, we show that the
proposed loss is beneficial in more challenging datasets.

In a second set of experiments (Table 2.2), we compare our approach
with previous and recently proposed single and multi-source unsuper-
vised DA approaches. Following [286], we perform experiments on the
Digits-five dataset, considering two settings with SVHN and MNIST-m
as targets. As in the previous case, we evaluate the performance of
the baseline network (with and without BN layers) and of DIAL when
trained on the union of the sources, and, as an upper bound, our Multi-
source DA with perfect domain knowledge. Moreover, we consider the
Deep Cocktail Network (DCTN) [286] multi-source DA model, as well
as the “source only” baseline and the single source DA models reported
in [286]: Reverse gradient (RevGrad) [77] and Domain Adaptation
Networks (DAN) [154]. For all single source DA models we consider
two settings: “Unified Sources”, where all source domains are merged,
and “Multi-Source”, where a separate model is trained for each source
domain, and the final prediction is computed as an ensemble. As we can
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Tab. 2.2. Digits-five [286] setting, comparison of different single source and multi-source
DA models. The first row indicates the target domain with the others used as sources.
©2019 IEEE

Method SVHN MNIST-m Mean

Unified sources

Source only) 74.1 64.4 69.3
Source only+BN 77.7 59.4 68.6
Source only from [286] 72.2 64.1 68.2
RevGrad [77] 68.9 71.6 70.3
DAN [154] 71.0 66.6 68.8
DIAL [29] 82.2 68.8 75.5
mDA λB = 0 82.4 69.1 75.8
mDA 82.6 70.1 76.4

Multi-source

Only Source [286] 64.6 60.7 62.7
RevGRAD [77] 61.4 71.1 66.3
DAN [154] 62.9 62.6 62.8
DCTN [286] 77.5 70.9 74.2
Multi-source DA 84.1 69.4 76.8

see, the Unified Sources DIAL already achieves remarkable results in
this setting, outperforming DCTN, and Multi-source DA only provides
a modest performance increase. As expected, the performance of our
approach lies between these two (p∗ equal to 0.56 and 0.64 for SVHN
and MNIST-m respectively, with λB = 0).

2.4.5.4. Experiments on PACS

Comparison with state of the art. In our main PACS experiments we
compare the proposed approach with the baseline ResNet18 network,
and with ResNet18 + DIAL [29], both trained on the union of source
sets. As in the digits experiments, we also report the performance of
our method when perfect domain knowledge is available (Multi-source
DA). Table 2.3 shows our results. In general, DA models are especially
beneficial when considering the PACS dataset, and multi-source DA
networks significantly outperform the single source one. Remarkably,
our model is able to infer domain information automatically without
supervision. In fact, its accuracy is either comparable with Multi-source
DA (Photo, Art and Cartoon) or in between DIAL and Multi-source
DA (Sketch). The average p∗ is 0.67. Looking at the partial results, it is
interesting to note that the improvements of our approach and Multi-
source DAw.r.t. DIAL are more significant when either the Sketch or the
Cartoon domains are employed as target set (average p∗ = 0.81). Since

2.	 Recognition across New Visual Domains 69



42 Towards Recognizing New Semantic Concepts in New Visual Domains

Tab. 2.3. PACS dataset: comparison of different methods using the ResNet architecture.
The first row indicates the target domain, while all the others are considered as sources.
©2019 IEEE

Method Sketch Photo Art Cartoon Mean
ResNet [98] 60.1 92.9 74.7 72.4 75.0
DIAL [29] 66.8 97.0 87.3 85.5 84.2
mDA λB = 0 69.6 97.0 87.7 86.9 85.3
mDA 70.7 97.0 87.4 86.3 85.4
Multi-source DA 71.6 96.6 87.5 87.0 85.7

these domains are less represented in the ImageNet database, we believe
that the corresponding features derived from the pre-trained model
are less discriminative, and DA methods based on multiple sources
become more effective. Setting λB > 0, allows to obtain a further boost
of performances in the Sketch scenario, where the source domains are
closer in appearances. In the other settings, the domain shift is mostly
among the Sketch domain and all the others and it can be easily captured
by our original formulation in [169].

To analyze the performances of our approach in a multi-source multi-
target scenario, we perform a second set of experiments on the PACS
dataset considering 2 domains as sources and the other 2 as targets. The
results, shown in Table 2.4, comprise the same baselines as in Table 2.3.
Note that, apart from the difficulty of providing useful domain assign-
ments both in the source and target sets during training, the domain
prediction step is required even at test time, thus having a larger impact
on the final performances of the model. The performance gap between
DIAL and our approach increases in this setting compared to Table 2.3.
Our hypothesis is that not accounting for multiple domains has a larger
impact on the unlabeled target than on the labeled source. Looking at
the partial results, when Photo is considered as one of the target do-
mains there are no particular differences in the final performances of the
various DA models: this may be caused by the bias of the pre-trained
network towards this domain. However, when the other domains are
considered as targets, the gain in performances produced by our model
are remarkable. When Sketch is one of the target domains, our model
completely fills the gap between the unified source/target DA method
and the multi-source multi-target upper bound with a gain of more then
7% when Art and Cartoon considered as other target. Setting λB > 0
in this setting allows to obtain a further boost of performances. This is
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Tab. 2.4. PACS dataset: comparison of different methods using the ResNet architecture
on the multi-source multi-target setting. The first row indicates the two target domains.
©2019 IEEE

Method/Targets Photo Photo Photo Art Art Cartoon MeanArt Cartoon Sketch Cartoon Sketch Sketch
ResNet [98] 71.4 84.2 81.4 62.2 70.3 54.2 70.6
DIAL [29] 86.7 86.5 86.8 77.1 72.1 67.7 79.5
Random assignment 86.6 86.7 85.9 76.2 69.1 69.4 79.1
mDA λE = λB = 0 86.8 86.5 86.7 78.6 73.8 68.7 80.2
mDA λB = λC = 0 82.4 85.0 83.7 71.7 74.0 68.8 76.4
mDA λB = 0 86.1 87.9 87.9 79.3 79.9 74.9 82.6
mDA 87.2 88.1 88.7 77.7 81.3 77.0 83.3
Multi-source/target DA 87.7 88.9 86.8 79.0 79.8 75.6 83.0

evident in the scenario where Photo and Art are both the source or tar-
get domains, with Cartoon-Sketch correspond to the other pair. In this
scenario the source/target pairs are quite close and enforcing a uniform
assignment among the latent domains provides a better estimate of each
of them.

Ablation study. We exploit the challenging multisource-multitarget
scenario of Table 2.4 in order to assess the impact of the various com-
ponents of our algorithm. In particular we show how the performance
are affected if (i) a random domain is assigned to each sample; (ii) no
loss is applied to the domain prediction branch; (iii) no entropy loss is
applied to the classification of unlabeled target samples. From Table 2.4
we can easily notice that if we drop either the domain prediction branch
(random assignment) or the losses on top of it (λE = λB = 0), the
performances of the model become comparable to the ones obtain by the
DIAL baseline. This shows not only the importance of discovering latent
domains, but also that both the domain branch and our losses allow to
extract meaningful subsets from the data. Moreover, this demonstrates
the fact that our improvements are not only due to the introduction of
multiple normalization layers, but also to the latent domain discovering
procedure. For what concerns the classification branch, without the
entropy component on unlabelled target samples (λC = 0), the per-
formance of the model significantly decreases (i.e. from 82.6 to 76.4 in
average). This confirms the findings of previous works [28, 29] about
the impact that this loss for normalization based DA approaches. In
particular, assuming that source and target samples of different domains
are independently normalized, the entropy loss generates a gradient
flow through unlabeled samples based in the direction of its most confi-
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dent prediction. This is particularly important to learn useful features
even for the target domain/s, for which no supervision is available.

In-depth analysis. The ability of our approach to discover latent do-
mains is further investigated on PACS. First, in Figure 2.3, we show how
our approach assigns source samples to different latent domains in the
single target setting. The four plots correspond to a single run of the ex-
periments of Table 2.3. Interestingly, when either Cartoon (Figure 2.3c)
or Sketch (Figure 2.3d) is the target, samples from Photo and Art tend
to be associated to the same latent domain and, similarly, when either
Photo (Figure 2.3a) or Art (Figure 2.3b) is the target, samples from Car-
toon and Sketch are mostly grouped together. These results confirms the
ability of our approach to automatically assign images of similar visual
appearance to the same latent distribution. In Figure 2.4, we show the
top-6 images associated to each latent domain for each sources/target
setting. In most cases, images associated to the same latent domain have
similar appearance, while there is high dissimilarity between images
associated to different latent domains. Moreover, images assigned to
the same latent domain tend to be associated with one of the original
domains. For instance, the first row of Figure 2.4a contains only images
fromArt, while the third contains only images from Sketch. Note that no
explicit domain supervision is ever given to our method in this setting.

In Figure 2.5, we show the histograms of the domain assignment
probabilities predicted by our model with λB = 0 in the various multi-
source, multi-target settings of Table 2.3. As the figures shows, in most
cases the various pairs of target domains tend to be very well separated:
this justifies the large gain of performances produced by our model
in this scenario. The only cases where the separation is less marked
is when Art and Photo, which have very similar visual appearance,
are considered as targets. On the other hand, source domains are not
always as clearly separated as the targets. In particular the pairs Photo-
Cartoon, Art-Photo andArt-Cartoon, tend to receive similar assignments
when they are considered as source. A possible explanation is that the
supervised source loss could have a stronger influence on the domain
assignment than the unsupervised target one. In any case, note that
these results do not detract from the validity of our approach. In fact,
our main objective is to obtain a good classification model for the target
set, independently from the actual domain assignments we learn.

In Figure 2.6, the same analysis is performed on our method with
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(a) Photo as target (b) Art as target

(c) Cartoon as target (d) Sketch as target

Fig. 2.3. Distribution of the assignments produced by the domain prediction branch for
each latent domain in all possible settings of the PACS dataset. Different colors denote
different source domains. ©2019 IEEE

(a) Photo as target (b) Art as target

(c) Cartoon as target (d) Sketch as target

Fig. 2.4. Top-6 images associated to each latent domain for the different sources/target
combinations. Each row corresponds to a different latent domain. ©2019 IEEE

2.	 Recognition across New Visual Domains 73



46 Towards Recognizing New Semantic Concepts in New Visual Domains

0.0 0.2 0.4 0.6 0.8 1.0

Latent Domain 1

0

20

40

60

80

100

%
 
o
f
 
s
a
m
p
l
e
s

(a) Cartoon and Sketch as sources
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(b) Art and Photo as targets
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(c) Art and Sketch as sources
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(d) Cartoon and Photo as targets
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(e) Art and Cartoon as sources
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(f) Photo and Sketch as targets
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(g) Photo and Sketch as sources
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(h) Art and Cartoon as targets

0.0 0.2 0.4 0.6 0.8 1.0

Latent Domain 1

0

20

40

60

80

100

%
 
o
f
 
s
a
m
p
l
e
s

(i) Cartoon and Photo as sources
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(j) Art and Sketch as targets
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(k) Art and Photo as sources
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(l) Cartoon and Sketch as targets

Fig. 2.5. Distribution of the assignments produced by the domain prediction branch in all
possible multi-target settings of the PACS dataset. Different colors denote different source
domains (red: Art, yellow: Cartoon, blue: Photo, green: Sketch). ©2019 IEEE
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the additional constraint of having a uniform assignment distribution
among domains. As the figure shows, this constraint allows to obtain
a clearer domain separation in most of the cases, overcoming the dif-
ficulties that the domain prediction branch experienced in separating
domain pairs such as Photo-Cartoon and Photo-Art.

We perform a similar analysis in another dataset, Digits-five. The
results are reported in Figure 2.7. As the figure shows, when SVHN
is the target domain, one of the latent domains (latent domain 1) re-
ceives very confident assignments for the samples of the MNIST dataset.
The samples of the other source datasets receive assignment spread
through all the latent domains, with the exceptions of USPS which re-
ceives the most confident predictions for the second latent domain and
MNIST-m, which partially influences the first latent domain, the one
with confidence assignments to MNIST. One latent domain does not
receive assignments form any of the sources (latent domain three): this
might happen if the entropy term overcomes the uniform assignment
constraints in the early stages of training. Similarly, when MNIST-m is
the target domain, the first two latent domains receive confident assign-
ments for samples belonging to MNIST and SVHN datasets respectively,
while the third and the fourth receive higher assignments for samples
of the remaining source domains.
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(a) Cartoon and Sketch as sources
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(b) Art and Photo as targets
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(c) Art and Sketch as sources
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(d) Cartoon and Photo as targets
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(e) Art and Cartoon as sources
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(f) Photo and Sketch as targets
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(g) Photo and Sketch as sources
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(h) Art and Cartoon as targets
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(i) Cartoon and Photo as sources

0.0 0.2 0.4 0.6 0.8 1.0

Latent Domain 1

0

20

40

60

80

100

%
 
o
f
 
s
a
m
p
l
e
s

(j) Art and Sketch as targets
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(k) Art and Photo as sources
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(l) Cartoon and Sketch as targets

Fig. 2.6. Distribution of the assignments produced by the domain prediction branch
trained with the additional constraint on the entropy loss in all possible multi-target
settings of the PACS dataset. Different colors denote different source domains (red: Art,
yellow: Cartoon, blue: Photo, green: Sketch). ©2019 IEEE
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(a) SVHN as target
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(b)MNIST-m as target

Fig. 2.7. Distribution of the assignments produced by the domain prediction branch for
each latent domain in all target settings of the Digits-five dataset. Different colors denote
different source domains (black: MNIST, blue: MNIST-m, green: USPS, red: SVHN,
yellow: Synthetic numbers). ©2019 IEEE

2.4.5.5. Experiments on Office-31

In our Office-31 experiments we consider the following baselines,
trained on the union of the source sets: (i) a plain AlexNet network;
(ii) AlexNet with BN inserted after each fully-connected layer; and (iii)
AlexNet + DIAL [29]. Additionally, we consider single source domain
adaptation approaches, using the results reported in [286]. Themethods
are Transfer Component Analysis (TCA) [198], Geodesic Flow Kernel
(GFK) [86], Deep Domain Confusion (DDC) [260], Deep Reconstruc-
tion Classification Networks (DRCN) [80] and Residual Transfer Net-
work (RTN) [155], as well as the Reversed Gradient (RevGrad) [77] and
Domain Adaptation Network (DAN) [154] algorithms considered in
the digits experiments. For these algorithms we report the performances
obtained in the “Best single source” and “Unified sources“ settings, as
available from [286]. As in the previous experiments, Multi-source DA
with perfect domain knowledge can be regarded as a performance up-
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per bound for our method. Finally, we include results reported in [286]
for different multi-source DA models: Deep Cocktail Network (DCTN)
[286], the two shallow methods in [282] (sFRAME) and [91] (SGF),
and an ensemble of baseline networks trained on each source domain
separately (Source only). These results are summarized in Table 2.5.

We note that, in this dataset, the improvements obtained by adopting
a multi-source model instead of a single-source one are small. This is
in accordance with findings in [133], where it is shown that the do-
main shift in Office-31, when considering deep features, is indeed quite
limited if compared to PACS, and it is mostly linked to changes in the
background (Webcam-Amazon, DSLR-Amazon) or acquisition camera
(DSLR-Webcam). This is further supported by the smaller gap between
DIAL and ourmethod in this case compared to the previous experiments
(average p∗ of 0.54). In this setting, introducing our uniform loss term
does not provides boost in performances. We ascribe this behaviour to
the fact that in this scenario, each batch is built with a non-uniform num-
ber of samples per domain (following [28]) while our current objective
assumes a balanced sampling among domains.
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Fig. 2.8. Office31 dataset. Performance at varying number of domain labels (%) for source
samples. ©2019 IEEE

In a final Office-31 experiment, we consider a setting where the true
domain of a subset of the source samples is known at training time.
Figure 2.8 shows the average accuracy obtainedwhen a different amount
of domain labels are available. Interestingly, by increasing the level of
domain supervision the accuracy quickly saturates towards the value
of Multi-source DA, completely filling the gap with as few as 5% of the
source samples.
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Tab. 2.5. Office-31 dataset: comparison of different methods using AlexNet. In the first
row we indicate the source (top) and the target domains (bottom). ©2019 IEEE

Method Source A-W A-D W-D MeanTarget D W A

Best
single
source
[286]

TCA[198] 95.2 93.2 51.6 68.8
GFK[86] 95.0 95.6 52.4 68.7
DDC[260] 98.5 95.0 52.2 70.7
DRCN[80] 99.0 96.4 56.0 73.6
RevGrad[77] 99.2 96.4 53.4 74.3
DAN[154] 99.0 96.0 54.0 72.9
RTN[155] 99.6 96.8 51.0 73.7

Unified
sources

Source only from [286] 98.1 93.2 50.2 80.5
Source only 94.6 89.1 49.1 77.6
Source only+BN 91.9 92.7 46.5 77.0
RevGrad[286] 98.8 96.2 54.6 83.2
DAN[286] 98.8 95.2 53.4 82.5
Single BN 92.9 95.2 60.1 82.7
DIAL [29] 93.8 94.3 62.5 83.5
mDA λB = 0 93.7 94.6 62.6 83.6
mDA 93.6 93.6 62.4 83.2

Multi-
source

Source only [286] 98.2 92.7 51.6 80.8
sFRAME[282] 54.5 52.2 32.1 46.3
SGF[91] 39.0 52.0 28.0 39.7
DCTN [286] 99.6 96.9 54.9 83.8
Multi-source DA 94.8 95.8 62.9 84.5

2.4.5.6. Comparison with S.o.t.A. on inferring latent domains
In this section we compare the performance of our approach with

previous works on DA which also consider the problem of inferring la-
tent domains [104, 283, 85]. Since there are no previous works adopting
deep learning models (i) in a multi-source setting and (ii) discovering
hidden domains. Therefore, the methods we compare to all employ
handcrafted features. For these approaches we report results taken from
the original papers. Furthermore, we evaluate the method of Gong et
al. [85] using features from the last layer of the AlexNet architecture.
For a fair comparison, when applying our method we freeze AlexNet
up to fc7, and apply mDA layers only after fc7 and the classifier.

We first consider the Office-31 dataset, as this benchmark has been
used in [104, 283], showing the results in Table 2.6. Our model out-
performs all the baselines, with a clear margin in terms of accuracy.
Importantly, even when the method in [85] is applied to features de-
rived from AlexNet, still our approach leads to higher accuracy. For
the sake of completeness, in the same table we also report results from
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Tab. 2.6. Office-31: comparison with state-of-the-art algorithms. In the first row we
indicate the source (top) and the target domains (bottom). ©2019 IEEE

Method Sources A-D A-W W-D MeanTarget W D A
Hoffman et al. [104] 24.8 42.7 12.8 26.8
Xiong et al. [283] 29.3 43.6 13.3 28.7
Gong et al. (AlexNet) [85] 91.8 94.6 48.9 78.4
mDA λB = 0 93.1 94.3 64.2 83.9
mDA 94.5 94.9 64.9 84.8
Gopalan et al. [92] 51.3 36.1 35.8 41.1
Nguyen et al. [190] 64.5 68.6 41.8 58.3
Lin et al. [148] 73.2 81.3 41.1 65.2

previous multi-source DAmethods [92, 190, 148] based on shallowmod-
els. While these approaches significantly outperform [104] and [283],
still their accuracy is much lower than ours. Moreover, introducing our
novel loss term provides higher performances with respect to the our
approach with λB = 0.

To provide a comparison in a multi-target scenario, we also con-
sider the Office-Caltech dataset, comparing our model with [104, 85].
Following [85], we test both single target (Amazon) and multi-target
(Amazon-Caltech andWebcam-DSLR) scenarios. As for the PACSmulti-
source/multi-target case, the assignment of each sample to the source or
target set is assumed to be known, while the assignment to the specific
domain is unknown. We again want to remark that, since we do not
assume to know the target domain to which a sample belongs, the task
is even harder since we require a domain prediction step also at test
time. As in the Office-31 experiments, our approach outperforms all
baselines, including the method in [85] applied to AlexNet features. In
this scenario, introducing our uniform loss provides a boost in perfor-
mances in the multi-target setting, where the two source/target pairs
have similar appearance. This is inline to what reported for the multitar-
get experiments on PACS (Table 2.4).

2.4.6. Conclusions
In this section, we presented a novel deep DA model for automati-

cally discovering latent domains within visual datasets. The proposed
deep architecture is based on a side-branch that computes the assign-
ment of source and target samples to their associated latent domain.
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Tab. 2.7. Office-Caltech dataset: comparison with state-of-the-art algorithms. In the first
row we indicate the source (top) and the target domains (bottom). ©2019 IEEE

Method Source A-C W-D C-W-D MeanTarget W-D A-C A
Gong et al. [85] - original 41.7 35.8 41.0 39.5
Hoffman et al. [104] - ensemble 31.7 34.4 38.9 35.0
Hoffman et al. [104] - matching 39.6 34.0 34.6 36.1
Gong et al. [85] - ensemble 38.7 35.8 42.8 39.1
Gong et al. [85] - matching 42.6 35.5 44.6 40.9
Gong et al. (AlexNet) [85] - ensemble 87.8 87.9 93.6 89.8
mDA λB = 0 93.5 88.2 93.7 91.8
mDA 95.0 88.7 93.9 92.5

These assignments are then used within the main network by novel
domain alignment layers which reduce the domain shift by aligning
the feature distributions of the discovered sources and the target do-
mains. Our experimental results demonstrate the ability of our model
to efficiently exploit the discovered latent domains for addressing chal-
lenging domain adaptation tasks. Future works could investigate other
architectural design choices for the domain prediction branch, as well as
the possibility to integrate it into other CNNmodels for unsupervised
domain adaptation [77]. In the next section, we will remove the as-
sumption of having target data during training, focusing on the domain
generalization scenario. We will show how mDA layers can be extended
to effectively address the domain generalization problem.
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2.5. Domain Generalization
In the previous section, we showed how it is possible to overcome the

domain shift problem effectively even when our source/target domain
is a mixture of multiple ones. However, it relies on a fundamental
assumption: the presence of target data during training. Unfortunately,
this assumption is not always satisfied in practice.

Let us consider the problem of semantic place categorization from
visual data [273]. This task is important in robotics, since correctly iden-
tifying the semantic category of a place allows the robot to improve
its localization, mapping and exploration [249, 120] capabilities. We
have three strategies to address this problem. The first is using labeled
datasets of training images [274, 65, 262, 173]. While the resulting mod-
els are very accurate when test samples are similar to training data, their
performance significantly degrade when the robot collects images with
very different visual appearance [210].

A second strategy could be exploiting domain adaptation (DA) tech-
niques [208, 117, 46]. These methods develop models which are meant
to be effective in the scenario where the robot will operate, i.e. the target
domain. While domain adaptation algorithms provide effective solu-
tions, they require some prior knowledge of the target domain at training
time, e.g. to have access to target data. Unfortunately, this information
may not always be available. Consider for instance an household robot:
since the number of possible customers is huge, it is inconceivable to
collect data for each possible house and application scenario.

In this context, a more relevant problem to address is domain general-
ization (DG). As described in previous sections, opposite to DA, where
target data are exploited to produce a classifier accurate under specific
working conditions, the idea behind DG is to learn a domain agnostic
model applicable to any unseen target domain. In other words, the
goal of DG is building a model which is as general as possible, e.g.
employable by different robots and in various environmental conditions.

In this section, we build on the mDA layers presented in Section 2.4
and we first propose a novel deep learning framework for DG, namely
We call this approachWBN (Weighted BatchNormalization for Domain
Generalization) [164]. The approach develops from the idea that, given
data from multiple source domains and the associated models, the best
model for the target domain can be generated on-the-fly when a novel
sample arrives by optimally combining the precomputed models from
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Fig. 2.9. The domain generalization problem. At training time (orange block) images
of multiple source domains (e.g. A,B,C) are available. These images are used to train
different models with parameters θi . Our approach automatically computes a model D
which accurately classifies images of a novel domain (not available during training) by
combining the models of the known domains. ©2018 IEEE

source domains (see Fig.2.9). To implement this idea we design a novel
CNN architecture which relies on two main components. First, inspired
by recent works on domain adaptation [29, 142], we construct multiple
source models by embedding into a common CNN few domain-specific
Batch Normalization layers. In this way, different classifiers can be
built keeping the number of parameters limited. Second, we design
a lateral network branch which computes the likelihood that a certain
instance belongs to a given domain. When applied to a novel target
sample, this branch calculates its probabilities to be part of the different
source domains. These values are used to construct the target classifier
performing a combination of known source models. This is similar to
the idea of mDA layers, with the difference that (i) no target data are
available during training and (ii) the domain assignment branch is used
to compute the similarity of target samples with source domains.

In the second part of this section, we extend this approach by consid-
ering domain-specific classifiers, and classifying each incoming target
image by optimally fusing the prediction scores of the source-specific
classifiers. As in WBN, this is achieved through an end-to-end trainable
deep architecture with two main components. The first implements
the source-specific classifiers, while the second module is a network
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branch which computes the similarities of an input sample to all source
domains, such as to assign weights to the source classifiers and properly
merge their predictions. The second module is also designed in order to
easily permit, if needed, the integration of a domain agnostic classifier
which, acting in synergy with the domain-specific models, can further
improve generalization. We call this approach Best Sources Forward
for Domain Generalization (BSF) [163].

To this aim, the novel Weighted Batch Normalization (WBN) lay-
ers are introduced. We demonstrate the effectiveness of the proposed
DG approach with extensive experiments on three datasets, namely the
COsy Localization Database (COLD) [209], the Visual Place Catego-
rization (VPC) dataset [273] and the Specific PlacEs Dataset (SPED)
[42]. Moreover, we show how the proposed framework can be employed
where no prior information about source domains is available at training
time: given a training set, our model can be used to automatically cluster
training data and learning multiple models, discovering latent domains
and associated classifiers.

To summarize, the main contributions of this section are: (i) an
extension of the mDA framework, WBN, which exploits the similarity
of target samples with the given source domains to address the DG
problem; (ii) we introduce the problem of domain generalization for
semantic place recognition, showing howWBN is effective in addressing
it, even without exact domain knowledge; (iii) we extend of WBN, by
considers source-specific classifiers in place of domain-specific align-
ment layers, showing its effectiveness in standard DG benchmarks in
computer vision.

2.5.1. Problem Formulation
The goal of DG is to extend the knowledge acquired from a set of

source domains to any unknown target domain. In this context, the
source sets correspond, e.g., to data acquired by multiple robots in
different environments while the unknown target to any unseen envi-
ronment. Formally, following the notation in Section 2.1, we have our
training set defined as S = {(xs

i , ys
i , si)}n

i=1 where xs
i ∈ X , ys

i ∈ Y and
si ∈ Ds, with Ds ⊂ D. Note that no target domain data T is available
during training. Moreover, we assume |Ds| = ks > 1, analyzing in
Sections 2.6 and 2.7 the case where |Ds| = 1 but other information is
available. Our goal is to learn a predictor f : X → Y able to work in
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Fig. 2.10. Example of the proposed WBN framework. (a) AlexNet with BN layers after
each fully connected. (b) The same network employing Domain Alignment layers for
domain adaptation, where different BN are used for source and target domains. (c) Our
approach for DG with WBN layers. ©2018 IEEE

any possible target domain Dt unseen during training, i.e. Ds ̸= Dt. It is
worth highlighting that, differently from the Latent Domain Discovery
problem presented in Section 2.4, here we might have full knowledge
about the domain labels.
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2.5.2. Starting point: Domain Generalization with Weighted
BN 6

A clear issuewith DAmethods, including DA-layers andmDA, is that
they require the presence of a target set Xt in the training phase. This
implies that data collected in the scenario of interest should be available
for learning the classification model. However, a more realistic situation,
especially in robotics, is when we employ our system in completely
unseen environments/domains. As an example, consider a service robot:
it is unfeasible to collect data for all possible working environments.
Therefore, it is important to drop the assumption of having target data
beforehand while designing deep models addressing the domain shift
problem. In this subsection, we start by removing target data from
DA-layers and mDA layers.

From the formulation of DA-layers defined in Eq. (2.1), we can obtain
multiple, domain-specific models by considering separate BN statistics
for each of the source domains during training. In particular, given the
features of a sample xi at a given layer and spatial location (omitted
for simplicity) as well as its domain label si, we can apply the domain-
specific BN as follows:

x̂i = γ
xi − µsi√

σ2
si
+ ϵ

+ β . (2.8)

The problem with this formulation is that, at test time, no statistics
from the unseen target domains are available. To solve this problem, we
restore to a soft-version of Eq. (2.8). Let us write Eq. (2.8) as:

x̂i = γ
ks

∑
j=1

1si=sj

xi − µsj√
σ2

sj
+ ϵ

+ β . (2.9)

The hard-assignment in Eq. (2.9), used at training time, can be replaced
with a weighted version at test time, modeling the uncertainty we have
about our target domain. In particular, we can write:

x̂t
i = γ

ks

∑
j=1

wi,j
xi − µsj√

σ2
sj
+ ϵ

+ β , (2.10)

6 M. Mancini, S. Rota Bulò, B. Caputo, E. Ricci. Robust Place Categorization with Deep
Domain Generalization. IEEE Robotics and Automation Letters, July 2018, vol. 3, n. 3.,
pp. 2093-2100.
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where wi,j is the probability of sample i to belong to domain j, with
∑N

j=1 wi,j = 1 and ∀j wi,j ≥ 0. The intuition behind this choice is deriving
a classification model for the target domain as a combination of models
from the source domains, with the weights derived from the similarity
of the target domain data to the source domains.

In order to compute the weights wi,j, we restore to the same domain
classification module described in Section 2.4.3, employing a separate
network branch which originates from the first few convolutional layers
of the main network (see Fig. 2.10c). This choice is motivated by the
fact that end-to-end training is allowed and the number of parameters
is kept limited. The specific architecture of the branch may be variable,
with the only restriction that its final output must be a probability vector
of dimension ks, corresponding to the number of known domains.

Denoting the classification branch as f θ
C and f θ

D, during training we
minimize a simplified version of Eq. (2.5), namely:

L(θ) = −1
n

n
∑
i=1

log f θ
C(y

s
i ; xs

i ) + λ log f θ
D(di; xi) (2.11)

the loss is the sum of two terms, one considering place label information
for accurate recognition, the other enforcing the lateral branch to suc-
cessfully compute the correct domain, with λ balances the contribution
of the semantic classification and the domain prediction terms. At test
time, the domain assignment produced by f θ

D for target samples will be
used to obtain the domain similarity w.,j of Eq. (2.10).

Finally, we would like to highlight that this framework can be easily
extended to perform DG in the lack of domain labels, following what
described in Section 2.4. In particular, we can rely on the soft-assignment
strategy to compute the latent domain statistics, as in Eq. (2.2). As in
the previous section, the intuition is that, since similar input images will
tend to produce similar outputs in the lateral network branch, implicitly
visual data will be automatically clustered, enabling a latent domain
discovery process. In this scenario, we let the domain assignment net-
work be guided by the semantic loss while computing the statistics using
Eq. (2.2). In Fig.2.10 we show the difference between this model and
standard DA-layers.

2.	 Recognition across New Visual Domains 87



60 Towards Recognizing New Semantic Concepts in New Visual Domains

2.5.3. WBN Experiments: Domain Generalization in Semantic
Place Categorization

Datasets. In our experiments we use three robot vision datasets, namely
the widely adopted COLD [209] and VPC [273] datasets, and the recent
SPED dataset [42].

The COLD Database contains three datasets of indoor scenes ac-
quired in different laboratories and from different robots. The COLD-
Freiburg (Fr) has 26 image sequences collected in the Autonomous Intel-
ligent Systems Laboratory at the University of Freiburg, with a camera
mounted on an ActivMedia Pioneer-3 robot. COLD-Ljubljana (Lj) con-
tains 18 sequences acquired from an iRobot ATRV-Mini platform at the
Visual Cognitive Systems Laboratory of University of Ljubljana. In the
COLD-Saarbrücken (Sa) an ActivMedia PeopleBot has been employed
to gather 29 sequences inside the Language Technology Laboratory at
the German Research Center for Artificial Intelligence in Saarbrücken.

The VPC dataset contains images acquired from several rooms of
6 different houses with multiple floors. The images are acquired by
means of a camcorder placed on a rolling tripod, simulating a mobile
robotic platform. The dataset contains 11 semantic categories, but only
5 are common to all houses: bedroom, bathroom, kitchen, living room
and dining-room. Following previous works [273, 65, 290], we use the
common categories in our experiments.

SPED is a large scale dataset introduced in the context of place recog-
nition. It contains images of 2543 outdoor cameras collected from the
Archive of Many Outdoor Scenes (AMOS) [110] during February and
August 20147

Networks and training protocols. For COLD and VPC we perform ex-
periments with two common architectures: AlexNet [124] and ResNet
[98]. For AlexNet we use the standard architecture pre-trained on Im-
agenet [52]. In all the experiments, we fine-tune the last two fully-
connected layers, rescaling the input images to 227 × 227 pixels. For
ResNet we consider the 10 layers version of the architecture, again pre-
trained on ImageNet. In all the experiments, we rescale the input images
to 224x224 pixels, fine-tuning the network starting from the last residual
block. Both the networks are trained with a weight decay of 0.0005 and

7 The full dataset was not available at the time we proposed WBN, but the authors pro-
vided us a subset with about 500 images per camera corresponding to 900 categories.
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an initial learning rate of 0.001, while the initial learning-rate of the final
classifier is set to 0.01. The learning rate is dropped of a 0.1 factor after
90% of the iterations. For the experiments on COLD, we use a batch size
of 256 for AlexNet and 64 for ResNet, training the networks for 1000
iterations. For VPC, we set the batch size to 128 and 64 for AlexNet
and ResNet respectively, training the networks for 2000 iterations. The
training parameters are the same for our method and the baselines and
fine-tuning is performed for all the models.

WBN can be applied to common CNNs by simply replacing stan-
dard BN layers with our WBN layers. While for ResNet BN layers are
already employed, this is not true for AlexNet. For these experiments
we employ a variant of AlexNet where BN layers are inserted after each
fully-connected layer.

For SPED we use AlexNet and the AMOSNet architecture, following
[42]. AMOSNet is very similar to AlexNet, with the first fully-connected
layer replaced by a convolutional layer and a pooling operation. We
follow the same protocol of [42], using the same hyperparameters for
training. We train both networks from scratch, applying BN or WBN
layers after each layer with parameters, except the classifier. The imple-
mentation details of the domain assignment branch follows the one of
Section 2.4.5 and we set λ = 1 for all the experiments.

The evaluation was performed using a NVIDIA GeForce 1070 GTX
GPU, implementing all the models with the popular Caffe [111] frame-
work. For the baseline AlexNet architecture we take the pre-trained
model available in Caffe, while for ResNet we consider the model from
[244]. The code implementing the WBN layers is publicly available8

Results on COLD.We first perform experiments on the COLD database,
where the goal is to demonstrate the effectiveness of WBN in learning ef-
fective classification models in case of varying environmental conditions
(e.g. illuminations, laboratories).. For each laboratory and illumina-
tion condition we consider the standard sequences 1 of part A, except
for Saarbrücken Cloudy, for which we take sequence 2 due to known
acquisition issues9 and Saarbrücken Sunny, for which we take part B
since sunny sequences for part A are not available. We consider the 4
classes shared between the sequences: printer area, corridor, bathroom

8 https://github.com/mancinimassimiliano/caffe
9 http://www.cas.kth.se/COLD/bugs.php
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Tab. 2.8. DG accuracy on COLD over different lighting conditions. First row indicates the
target sequence, with the first letters denoting the laboratory and the last the illumination
condition (C=Cloudy, S=Sunny, N=Night). Vertical lines separate domains of the same
laboratory. * indicates the algorithm uses domain knowledge. ©2018 IEEE

Net Norm. Fr.C Fr.N Fr.S Lj.C Lj.N Lj.S Sa.C Sa.N Sa.S avg.

A
le
xN

et BN 97.3 89.1 97.4 92.9 64.4 94.2 75.6 69.7 44.0 80.5
WBN 98.1 91.3 97.1 93.1 65.1 94.1 77.7 68.8 50.2 81.7
WBN∗ 97.1 91.9 98.0 93.9 65.6 95.0 77.2 69.9 49.9 82.1

Re
sN

et BN 97.7 82.2 90.7 89.5 61.2 90.3 70.7 73.0 38.7 77.1
WBN 98.1 81.8 94.1 94.5 61.7 93.7 75.8 76.9 37.8 79.4
WBN∗ 97.9 81.3 93.4 94.7 65.1 94.6 78.1 76.5 38.5 80.0

and office (obtained by merging 1-person and 2-persons office). We
report the results as the average accuracy per class. In these experiments
we consider both AlexNet and ResNet comparing WBN with baseline
models obtained adding traditional BN layers to the same architectures.

We test two different variants of the proposed approach. In the first
case (WBN∗) we consider the presence of domain priors at training time,
as in Section 2.5.2. In the second variant, WBN,we do not assume to have
knowledge about domains at training time, thus our model just relies
on the soft-assignment. We highlight that WBN with soft-assignment is
similar to the mDA layers of Section 2.4 except that (i) no loss is applied
on the domain prediction branch and (ii) no target data are available
during training, thus no statistics are available for them and we must
rely on the domain prediction branch also at test time.

Firstly, we consider different lighting conditions, i.e. we assume that
the domain shift is due to changes of illuminations. To this extent we
train the network on sequences of the same laboratory, training on two
lighting conditions (e.g. sunny and cloudy) and testing on the third (e.g.
night). The results are reported in Table 2.8.

As expected, when knowledge about domains is available (WBN∗),
improved classification accuracy can be obtained, in general, with respect
to a domain agnostic classifier. Interestingly, for both networks the
result of WBN without domain priors is either comparable or surpasses
the baseline in almost all settings. This suggests that the network is
able to latently discover clusters of samples and effectively using this
information for learning robust classification models.

Secondly, we perform a similar analysis to Table 2.8 but considering
changes of robotic platform/environment. We keep constant the lighting
condition, training on two laboratories and testing on the third. Table

Towards Recognizing New Semantic Concepts in New Visual Domains90



2. Recognition across New Visual Domains 63

0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 2.11. Distribution of the values of the
weights computed with AlexNet+WBN for
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Fig. 2.12. Distribution of accuracy gains of
AlexNet+WBN*w.r.t. AlexNet+BN consid-
ering Saarbrücken as target, varying both
laboratory and illumination. Colors indi-
cate larger (blue), lower (red) and compa-
rable (green) performances. ©2018 IEEE

2.9 shows the obtained results. Again, in most cases exploiting domain
priors brings benefits in term of performances, for both networks. The
results of Tables 2.8 and 2.9 show that the benefits of our WBN layer,
with and without domain loss, are not limited to a particular type of
domain shift (i.e. changes in robots, environment or illumination condi-
tion), demonstrating that our approach provides a general and effective
strategy to address domain variations. In both experiments, there are
few cases in which standard BN achieves comparable or slightly supe-
rior results w.r.t. WBN. A possible reason is that in some situations the
ability of our model to generalize to novel settings may be hindered by
the small number or by the specific characteristics of the available source
domains.

In order to verify the ability of WBN to discover latent domains, Fig.
2.11 shows the distribution of the values ŵi,j computed for the images
of the original source domains associated to one of the experiments in
Table 2.9. The plots associated to other experiments are similar and we
do not report them due to lack of space. Since we consider two latent
domains in these experiments and ŵi,1 + ŵi,2 = 1, we report only the
values computed for ŵi,1. Different colors represent the original source
domains. As the figure shows, the lateral branch computes different
assignments for the samples of the different original source domains. As
a result, the latent source domains extracted byWBN tend to correspond
to the original ones used by WBN∗.

In another series of experiments we consider the scenario where both
illumination and laboratory change. We performed 27 different experi-
ments, corresponding to the case where Saarbrücken is considered as
target domain. Figure 2.12 report the histogram of the gains in accuracy
of our approach AlexNet+WBN* w.r.t. AlexNet+BN. As shown in Fig.
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Tab. 2.9. DG accuracy on COLD over different environments/sensors. First row indicates
the target sequence, with the first letters denoting the laboratory and the last the illumi-
nation condition (C=Cloudy, S=Sunny, N=Night). Vertical lines separate domains with
same illumination condition. * indicates the algorithm uses domain knowledge. ©2018
IEEE

Net Norm. Fr.C Sa.C Lj.C Fr.N Sa.N Lj.N Fr.S Lj.S Sa.S avg.

A
le
xN

et BN 26.0 38.4 34.4 27.9 26.6 33.1 28.8 34.2 25.1 30.5
WBN 25.8 38.2 33.0 29.4 26.6 34.8 30.3 36.9 25.1 31.1
WBN∗ 25.9 40.3 33.4 28.0 27.6 34.9 31.5 44.3 28.6 32.7

Re
sN

et BN 37.9 40.9 39.3 30.8 48.3 41.2 30.6 40.6 27.6 37.5
WBN 37.3 39.5 42.6 40.4 51.8 41.0 33.8 39.6 30.8 39.6
WBN∗ 36.6 40.3 40.0 41.2 56.2 45.2 35.4 39.4 25.6 40.0

2.12, in most of the cases our model leads to an increase in accuracy
between 1-5%. In only 5 out of 27 experiments, our model does not
produce benefits.

Comparison with SOTA on VPC. In order to compare our model with
the state-of-the art approaches in robotics, we consider the VPC dataset.
VPC has been used in previous works to test the DG abilities of different
methods. Following the standard experimental protocol of [273], we
evaluate our model using 5 houses for training and 1 for test, averaging
the results between the 6 configurations. For each house we report the
average accuracy per class. Table 2.10 compares the result of our models
with baseline deep architectures, with and without traditional BN lay-
ers. We consider both the case where domain information is available
(WBN∗) and where it is not (WBN). Analogously to what observed in
the experiments on COLD dataset, the accuracy increases when WBN is
adopted, both in case of AlexNet and ResNet architectures. Interestingly,
having domain priors during training produce a boost of performances
for ResNet, while for AlexNet this is not the case. This suggests that
different features have a different impact on our model. Features of the
very last layers, as in AlexNet, may not be enough domain discrimina-
tive, especially in case of limited shift within the source domains. In
those cases, a soft-assignment can provide a more effective strategy for
clustering samples.

Finally, Table 2.11 compares the results obtained with WBN with
those of state-of-the-art methods. Specifically we consider the method
in [273], where SIFT [158] and CENTRIST (CE) features [274] are pro-
vided as input to a nearest neighbor classifier, and the approach in [65],
where the same classifier is employed but using Histogram of Oriented
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Tab. 2.10. VPC dataset: average accuracy per class. ©2018 IEEE

Net H1 H2 H3 H4 H5 H6 avg.
AlexNet 49.8 53.4 49.2 64.4 41.0 43.4 50.2
AlexNet + BN 54.5 54.6 55.6 69.7 41.8 45.9 53.7
AlexNet + WBN 54.7 51.9 61.8 70.6 43.9 46.5 54.9
AlexNet + WBN∗ 53.5 54.6 55.7 68.1 44.3 49.9 54.3
ResNet 55.8 47.4 64.0 69.9 42.8 50.4 55.0
ResNet + WBN 55.7 49.5 64.7 70.2 42.1 52.0 55.7
ResNet + WBN∗ 56.8 50.9 64.1 69.3 45.1 51.6 56.5

Tab. 2.11. VPC dataset: comparison with state of the art. ©2018 IEEE

Method [273] [65] [290] AlexNet ResNet
Config. SIFT CE BF - - Base BN WBN∗ BN WBN∗

Acc. 35.0 41.9 45.6 45.9 50.0 50.2 53.7 54.3 55.0 56.5

Uniform Patterns (HOUP) as input. For sake of completeness, we also
report the results obtained by exploiting also the temporal information
between images. For this setting, we report the performances of the
CENTRIST-based approach of [274] coupled with Bayesian Filtering
(BF) and the results of [290] which used again a Bayesian Filter together
with object templates. As shown in the Table, applying deep-learning
techniques already guarantees an increase in performances of about 4%
with respect to the state of the art. Introducing WBN inside the network,
allows a further accuracy gain.

Experiments on a large-scale scenario: SPED. In this section we show
the results obtained when WBN is applied to a large scale dataset of
outdoor scenes, i.e. the SPED dataset. In order to utilize SPED as a
DG benchmark, we split the dataset in two sets, February and August,
considering the months of data acquisition. Since no other automatic
training data splits are possible using timestamps, in these experiments
we do not use domain supervision and only consider WBN with two
latent domains. The choice of having two domains is motivated by
the fact that the dataset contains images collected at different times
of the day and thus we assume that the latent domains automatically
discovered by our method correspond to "night" and "day".

Results are shown in Table 2.12. WBN provides a clear gain in all
considered settings and for all considered architectures. The improve-
ment of 4% obtained in the case "August-to-February" for both networks
is remarkable given the very large number of classes and the lack of
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Tab. 2.12. SPED dataset: comparison of different models. ©2018 IEEE

Net AMOSNet AlexNet
Config. Base BN WBN Base BN WBN
February-to-August 83.7 88.8 90.3 83.6 88.9 90.5
August-to-February 71.2 82.7 86.1 73.9 83.1 87.0

domain supervision.

2.5.4. From BN to Classifiers: Best Sources Forward 10

In Section 2.5.2, we discussed how to address DG given a domain
classification branch and domain-specific (either latent or explicit) nor-
malization layers. However, the same approach can be applied, in prin-
ciple, to other parts of the network. In this subsection, we describe how
the same methodology can be applied to domain-specific classification
layers (Fig. 2.13).

The approach devised in the previous section requires three com-
ponents: (i) a way to estimate domain membership of a sample both
at training and at test time, (ii) a distinction between domain-specific
and domain-agnostic network elements, and (iii) a strategy to merge
domain-specific activations within the network. The first point can be
easily addressed through a domain classifier, as described in Sections
2.5.2 and 2.4.3.

For what concerns the second point, we can write our classification
model as f Θ

C , where Θ = {θj}ks
j=1 denotes the set of parameters to learn

and each θj are the parameters corresponding to a specific domain j.
Moreover, let us consider θj = {θ̂s, θ̂j}, where θ̂s indicates the parameters
shared by all domain-specific models and θ̂j the domain-specific ones.
Under this formulation, in Section 2.5.2, θ̂s were all the parameters of
the network while θ̂j the domain-specific BN statistics. In this section,
we change perspective and we assume θ̂s to be a feature extractor and
θ̂j to be domain-specific semantic classification heads. Note that the
formulation is general and can be applied to multiple/different levels of
the network.

Now that we have defined the domain-specific component we must
define how to merge activations of the domain-specific layers. During

10 M. Mancini, S. Rota Bulò, B. Caputo, E. Ricci. Best sources forward: domain generalization
through source-specific nets. IEEE International Conference on Image Processing (ICIP)
2018.
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Fig. 2.13. Intuition behind the proposed BSF framework. Different domain-specific classi-
fiers and the classifiers fusion are learned at training time on source domains, in a single
end-to-end trainable architecture. When a target image is processed, our deep model opti-
mally combines the source models in order to compute the final prediction. ©2018 IEEE

training, the most simple strategy would be to rely on the domain-label
of the sample, namely:

f Θ
C (xi) =

ks

∑
j=1

1si=sj f j(xi) (2.12)

where we wrote f
θj
C as f j for simplicity. Similarly to Eq. (2.9), also this

equation cannot be applied at test time, when the domain membership
of a sample is unknown and falls out the space of the available source
domains Ds. Similarly to what we did in Section 2.5.2, we can use a soft
version of Eq. (2.12) at test time:

f Θ
C (xi) =

ks

∑
j=1

wi,j f j(xi, θj) (2.13)

where wi,j = f Θ
D is the probability of sample i to belong to domain j, as

computed by our domain classifier. The model is trained with the same
semantic and domain classification loss defined Eq. (2.11).

We highlight that, differently from Sections 2.4 and 2.5.2, here the
merging of the domain-specific activations/components is held-out after
and not within the feature extraction process. Moreover, we found a
simple modification being beneficial in this scenario. In particular, we in-
troduce an hyperparameter 0 < α < 1 and we re-write the classification
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Fig. 2.14. Simplified architecture of the proposed BSF framework. The input image is
fed to a series of domain-specific classifiers and to the domain prediction branch. The
latter produces the assignment w which is fed to the domain prediction loss. The same w
is modulated by α before being used to combine the output of each classifier. The final
output of the architecture z, is fed to the classification loss. ©2018 IEEE

function as follows:

f Θ
C (xi) = (1 − α)

ks

∑
j=1

wi,j f j(xi) +
α

ks

ks

∑
j=1

f j(xi) . (2.14)

In practice, α allows to merge domain-specific component both exploit-
ing the similarity among domains with its first term (as in Eq. (2.12)),
while considering domain agreements on the predictions, weighting
them equally with the second term. This allows themodel to be robust to
inaccurate domain assignment at test time while increasing the feedback
to domain-specific models for source sets with few samples. In practice,
during training we randomly switch with probability α between using
the given domain label as wij or assigning to all domain-classifier a uni-
formweight 1/ks. At test time, we use Eq. (2.14) with wi,j obtained from
the domain prediction branch. As the experiments show, this choice
allows us to obtain a more robust final classification model. Figure 2.14
provides an overview of our model.

2.5.5. Experiments: Domain Generalization in Computer Vi-
sion

Datasets. We test the performance of BSF on two publicly available
benchmarks. The first is rotated-MNIST [79], a dataset composed by
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different domains originated applying different degrees of rotations
to images of the original MNIST digits dataset [131]. We follow the
experimental protocol of [185], randomly extracting 1000 images per
class from the dataset and rotating them respectively of 0, 15, 30, 45, 60
and 75 degrees counterclockwise. As previous works, we consider one
domain as target and the rest as sources.

The second is PACS [133] the same database we used on the latent
domain discovery section. Differently from Section 2.4.5.1, we consider
a domain generalization setting (i.e. no target data available during
training). Following the experimental protocol of [133], we train our
model considering three domains as source datasets and the remaining
one as target.

Networks and training protocols. In our evaluation we set the parame-
ters α = 0.25 and λ = 0.5. For the experiments on the rotated-MNIST
dataset, we employ the LeNet architecture [131] following [185]. The
network is trained from scratch, using a batch size of 250 with an equal
number of samples for each source domain. We train the network for
10000 iterations, using Stochastic Gradient Descent (SGD)with an initial
learning rate of 0.01, momentum 0.9 and weight decay 0.0005. The learn-
ing rate is decayed through an inverse schedule, following previous
works [77]. For the domain prediction branch, we take as input the
image and perform two convolutions, with the same parameters of the
first two convolutional layers of the main network. Each convolution is
followed by a ReLU non linearity and a pooling operation. The domain
prediction branch follows the implementations of the previous sections.
It terminates with a global average pooling followed by a fully connected
layer which outputs the final weights. To ensure that ∑N

j=1 wi,j = 1, we
apply the softmax operator after the fully connected layer.

For PACS, we trained the standard AlexNet architecture, starting
from the ImageNet pre-trained model. We use a batch size of 192, with
64 samples for each source domain. The initial learning rate is set to
5 · 10−4 with aweight decay of 10−6 and amomentumof 0.9. We train the
network for 3000 iterations, decaying the initial learning rate by a factor
of 10 after 2500 iterations, using SGD. For the domain prediction branch,
we use the features of pool5 as input, performing a global average
pooling followed by a fully-connected layer and a softmax operator
which outputs the domain weights.

Our evaluation is performedusing aNVIDIAGeForce 1070GTXGPU,
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Tab. 2.13. Rotated-MNIST dataset: comparison with previous methods. ©2018 IEEE

Method 0 15 30 45 60 75 Mean
CAE[221] 72.1 95.3 92.6 81.5 92.7 79.3 85.5
MTAE [79] 82.5 96.3 93.4 78.6 94.2 80.5 87.5
CCSA [185] 84.6 95.6 94.6 82.9 94.8 82.1 89.1
BSF 85.6 95.0 95.6 95.5 95.9 84.3 92.0

implementing all the models with the popular Caffe [111] framework.
For the baseline AlexNet architecture we take the pre-trained model
available in Caffe.

Results on Rotated-MNIST. We first test the effectiveness of our model
on the rotated-MNIST benchmark. We compare BSF with the CCSA
method in [185] and the multi-task autoencoders in [79] (MTAE) and
[221] (CAE). The results from baseline methods are taken directly from
[185]. As shown in Table 2.13, BSF outperforms all the baselines. A
remarkable gain in accuracy is achieved in the 45o case. We ascribe this
gain to the capability of our deep network to assign, for each target
image, more importance to the source domains corresponding to the
closest orientations, increasing the weights of the associated classifiers.
Indeed, since 45o is in the middle of the range between all possible orien-
tations, it is likely that a stronger classifier can be constructed since we
can exploit all the source models appropriately re-weighted. To further
verify the effectiveness of our framework and its ability to properly com-
bine source-specific models, we also compute for target samples with
different orientations the number of assignments to each source domain.
In this experiment one target sample xi is assigned to a source domain
by computing the arg maxj wi,j. The results are shown in Fig. 2.15 (the
number of assignments are normalized for each row). The figure clearly
shows that the proposed domain prediction branch tends to associate a
target sample to the source domains corresponding to the closest orien-
tations. Consequently, our deep network classifies target samples con-
structing a model from the most related source classifiers. This results
into more accurate predictions than previous domain-agnostic models
due to the specialization of source classifiers on specific orientations.

Results on PACS. We also perform experiments on the PACS dataset.
We compare BSF with both previous approaches using precomputed
features (in this case DECAF-6 features [59]) as input and end-to-end
trainable deep models. For the baselines with pre-computed features,
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Fig. 2.15. Rotated-MNIST dataset: analysis of the assignments computed by the domain
prediction branch. ©2018 IEEE

we report the results of MTAE [79], low-rank exemplar SVMs (LRE-
SVM) [288], and uDICA [186]), while for the end-to-end trainable deep
models, we report the results of the domain agnostic model coupled
with tensor factorization of [133] (TF-CNN) and the meta-learning ap-
proach MLDG [144]. For a fair comparison the deep models [133, 144]
and our network are all based on the same architecture, i.e. AlexNet.
Table 2.14 shows the results of our comparison. The performance of
previous methods are taken directly from previous papers [133, 144].
For our approach and [133] we also report results obtained without fine-
tuning. Our model outperforms all previous methods. These results
are remarkable because, differently from the rotated-MNIST dataset, in
PACS the domain shift is significant and it is not originated by simple
image perturbations. Therefore, the association between a target sample
and the given source domains is more subtle to capture. For sake of com-
pleteness we also report the performances obtained with the standard
AlexNet network. These results shows that state of the art deep models
have excellent generalization abilities, typically outperforming shallow
models. However, designing deep networks specifically addressing the
DG problem as we do leads to higher accuracy.

We also perform a sensitivity analysis to study the impact of the pa-
rameter α on the performance and demonstrate the benefit of adding a
domain-agnostic classifier. We consider the proposed approach without
fine-tuning. As shown in Table 2.15, considering only the source-specific
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Tab. 2.14. PACS dataset: comparison with previous methods. ©2018 IEEE

Model Art Cartoon Photo Sketch Mean
MTAE [79] 60.3 58.7 91.1 47.9 64.5
LRE-SVM [288] 59.7 52.8 85.5 37.9 59.0
uDICA [186] 64.6 64.5 91.8 51.1 68.0
TF-CNN[133] (no ft) 62.7 52.7 88.8 52.2 64.1
TF-CNN[133] 62.9 67.0 89.5 57.5 69.2
MLDG [144] 66.2 66.9 88.0 59.0 70.0
BSF (no ft) 64.1 60.6 90.4 49.4 66.1
BSF 64.1 66.8 90.2 60.1 70.3
AlexNet [133] 63.3 63.1 87.7 54.1 67.1

Tab. 2.15. PACS dataset: sensitivity analysis. ©2018 IEEE

α Art Cartoon Photo Sketch
0 65.2 54.5 90.7 52.4
0.25 64.1 60.6 90.4 49.4
0.5 63.8 61.0 90.4 49.1
0.75 64.0 60.9 90.5 47.8
1 63.0 60.1 90.5 47.5

classifiers (α = 0) leads, on average, to the best performances, surpass-
ing in the majority of the cases a domain agnostic classifier obtained
by setting α = 1. This confirms our original intuition that addressing
DG by fusing multiple source models is an effective strategy. However,
there are few situations where using only source models can lead to
a decrease in accuracy (e.g. in the setting Cartoon) and incorporating
a domain-agnostic component, even with reduced weight as α = 0.25,
improves generalization accuracy.

2.5.6. Conclusions
In this section, we presented twodeep learningmodels for addressing

DG. The first, WBN, exploits a weighted formulation of BN to learn ro-
bust classifiers that can be applied to previously unseen target domains.
We showed how this approach is effective in the context of semantic
place categorization in robotics, achieving state-of-the-art performance
on the VPC benchmark. The effectiveness of WBN is also confirmed by
experiments on a large scale dataset of outdoor scenes.

The second, BSF, addresses the problem of DG by exploiting multi-
ple domain-specific classifiers. In particular, it extends the principles
of WBN, with a domain prediction branch choosing the optimal com-
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bination of source classifiers to use at test time, based on the similarity
between the input image and the samples from the source domains.
Differently from WBN, it goes beyond domain-specific BN layers but
explores domain-specific classification modules. Moreover, a domain
agnostic component is also introduced in our framework further im-
proving the performance of the method. Experiments demonstrate the
effectiveness of BSF which outperformed the state-of-the-art models on
two benchmarks (at the time of submission).

With WBN and BSF, we have merged domain-specific models either
at the BNs-level or at the classifiers one, due to the ease of linearly
combining their parameters/statistic (WBN) and predictions (BSF). In
future works, it would be interesting to blend domain-specific models at
different levels of the networks, as explored in other works in contexts
such as multi-task learning [181], life-long learning [4] and motion
control [306, 302].

A drawback of both WBN and BSF is the assumption that multiple
and diverse source domains are available at training time. This may
be not always possible due to costly or even unfeasible data collection
processes. Other recent approaches overcome this issue by considering
external sources of knowledge such as automatically-generated training
data [176] and online annotators [247]. Generating synthetic data for
the target task could be a huge advantage for training deep models,
but requires the knowledge of the target task beforehand, something
that is not assumed by our model. A possible solution to this issue
consists of endowing the robot with the ability of access, on-demand,
additional information about the target data. Indeed, the generality of
our framework allows the integration of external sources of knowledge
(e.g. generating multiple domains through web queries or synthetic
data). Finally, a major drawback of DG models is the need for multiple
labeled source domains during training. In the next sections, we will
show how we can drop the assumption of having multiple source do-
mains by extending the DA-layers models to the Continuous DA and
Predictive DA scenarios.
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2.6. Continuous Domain Adaptation11

Despite the remarkable performances achieved by DA algorithms
in computer vision [142, 28], and their growing popularity in robot
vision [7] they require the presence of images from the target domain in
advance during training. This is a huge limitation, especially in robotics,
due to the likely unpredictable conditions of the environment in which
a robot will be employed. In the previous section, we have seen how we
can sidestep the need for target data during training in case we are given
a set of multiple labeled source domains, addressing the DG scenario.
However, this setting has also a limitation: the need of collecting (and
labeling) data of multiple source domains. In this section, we want
to overcome this issue, performing adaption given just a single source
domain during training, without any target domain data. This setting,
Continuous DA [103], requires to cope with the domain shift directly at
test time, as the model processes data of the target domain.

Here, we consider a realistic application scenario for Continuous
DA algorithms: the task of kitting. This task is the process of grouping
related parts such as gathering components of a personal computer (PC)
into one bin for assembly [12]. The kitting task requires the recognition
of the parts in the environment, the ability to pick objects from the bins,
and placing them at the correct location [105]. All of these subtasks are
very challenging on their own but the recognition of the parts is crucial
for the robot to sequentially perform the other subtasks. Already in
today’s factory settings, object recognition tasks possess challenges such
as environmental effects (illumination, viewpoint, etc), varying object
material properties, and cluttered scenes [149]. In order to simplify
the recognition task, some approaches use machine vision in rather
isolated settings for decreasing the environmental variability [236]. Liu
et. al [149] proposed a specially designed camera system and estimation
based on 3D CAD models to robustly detect and verify the type and the
pose of the object. Kaiba et. al. [112] proposed an interactive method
where a remote human operator resolves ambiguities in the perception
system. Unfortunately, none of the above methods are generic enough
to be applied in a truly unconstrained setting. In this section, we are
primarily concerned with solving the object recognition problem for

11 M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, B. Caputo. Kitting in the Wild through
Online Domain Adaptation. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2018.

Towards Recognizing New Semantic Concepts in New Visual Domains102



2. Recognition across New Visual Domains 75

kitting using vision in the wild, i.e. in non-isolated settings exhibiting
large variations. Right now, most of the robots in the manufacturing
industry are operating in isolation, primarily because of safety concerns.
However, many future scenarios have robots and humansworking closer
together, moving robots into new areas of applications, beyond mass
production and preprogrammed behavior. For this to happen, not only
safety but perception will be a major challenge.

In this section, we describe two main contributions. The first is
a kitting dataset that contains images of objects taken under varying
illumination, viewpoint, and background conditions from a robotic
platform. This dataset provides the community with a novel tool for
studying the robustness of robot vision algorithms to drastic changes in
the appearance of the input images and assess progress in the field. We
are not aware of existing, publicly available kitting databases covering
this range of visual variability.

Second, we describe an approach for achieving online adaptation
of a deep model [166]. Differently from classical DA approaches, this
algorithm can adapt a deep model to any target domain on the fly,
without requiring any target domain data before-hand. We benchmark
the performance of our algorithm on the proposed dataset, showing
how this model is able to produce large improvements on the target
domain performances compared to the base architecture trained on the
source domain, and matching what would be achieved by having all
data from the target available beforehand.

2.6.1. The KTH Handtool Dataset
The KTH Handtool Dataset12 is collected for evaluating the object

recognition/detection performance of robot vision methods in varying
viewpoint, illumination and background settings, all crucial abilities for
robot kitting in unconstrained, real-world settings. Instead of having
general household objects, the dataset consists of hand tools in order
to represent a workshop setting in a factory. It consists of 9 different
hand tools for 3 different categories; hammer, plier and screwdriver. The
images are collectedwith a 2-arm stationary robot platform shown in Fig.
2.17. Dataset consists of 3 different illuminations, 2 different cameras
(One Kinect camera and one webcam) with different viewpoints and 2
different background settings that correspond to 12 (3x3x2) domains in

12 https://www.nada.kth.se/cas/data/handtool/
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Domain A

Offline Training

Sequence of target images (Domain B)

... ...

TimeOnline Adaptation

Fig. 2.16. Our ONDA approach for performing kitting in arbitrary conditions. Given a
training set, we can train a robot vision model offline. As the robot performs the task, we
gradually adapt the visual model to the current working conditions, in an online fashion
and without requiring target data during the offline training phase. ©2018 IEEE

Fig. 2.17. The 2-arm stationary robot platform. ©2018 IEEE

total. For each hand tool, approximately 40 images with different poses
are collected for each camera and domain setting. Table 2.16 shows
example images from different domains. In total, approximately 4500
RGB images are available in the dataset.
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Tab. 2.16. Example Images from KTH Handtool Dataset ©2018 IEEE

Camera Type Illumination
Artificial Cloudy Directed

Kinect

Webcam

2.6.2. Problem Formulation
Supposewe collected a set of images using a robotic platformwith the

aim of training a robot vision model with it. Since the image collection
has been acquired in the real world, the resulting model will be biased
towards the particular conditions (e.g. illumination, environmental) un-
der which the images have been acquired. Because of this, if we employ
such a system and the current working conditions are different from
those of the training set, the performances of themodel will degrade due
to the presence of a substantial shift between the training and test data.
In this situation, to increase the generalization capabilities of the robot
we can remove the acquisition bias either by collecting more training
data in a large variety of conditions, which is extremely expensive, or by
developing algorithms able to bridge the gap between the training and
test data, aligning the original model to the novel scenario. The latter is
the goal of domain adaptation. Formally, we assume to have a source
domain S = {xs

i , ys
i }n

i=1, where xs
i is an image and ys

i ∈ {1, · · · , C} the
associated semantic label. Opposite to traditional domain adaptation
in a batch setting, during training we have only access to the source
domain S and we do not have any data or prior information about the target
domain T , apart from the set of semantic labels which is assumed to be
shared. When the robot is active, the current working conditions will
compose the target domain and we will have access to the automatically
acquired sequence of images T = {xt

1, · · · , xt
T}. In this scenario, in
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Fig. 2.18. The statistics of the BN layers are initialized offline, by training the network on
the images of the source domain. At deployment time, the input frames are processed
using the global estimate of the statistics (red lines). However the robot collects each nt
input frames to compute partial BN statistics, using these estimated values to gradually
update the BN statistics for the current scenario. ©2018 IEEE

order to adapt the network parameters θ to this novel domain, we must
exploit the incoming test images collected by the robot on the fly.

2.6.3. ONDA: ONline Domain Adaptation with Batch-Norm
Starting from the idea of Domain Alignment Layers (Section 2.3),

we can follow the same principle of obtaining a target-specific model
but considering an online setting. In particular, instead of having a
fixed target set available during training, we propose to exploit the
stream of data acquired while the robot is acting in the environment
and continuously update the BN statistics. In this way, we can gradually
adapt the deep network to a novel scenario.

Specifically, we start by training the network on the source domain
S , initializing the BN statistics at time t = 0 as {µ0, σ2

0} = {µS , σ2
S}.

Assuming that the set of network parameters θ are shared between the
source and target domain except for the BN statistics, we can adapt the
network classifier fθ by updating the BN statistics with the estimates
computed from the sequence T . Defining as nt the number of target
images to use for updating online the BN statistics, we can compute a
partial estimate {µ̂t, σ̂2

t } of the BN statistics as:

µ̂t =
1
nt

nt

∑
i=1

xt
i σ̂t

2 =
1
nt

nt

∑
i=1

(xt
i − µ̂t)

2

where xt
i is the distribution of activations for a given feature channel

and domain t, following the notation in Section 2.3. The global statistics
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at time t can be updated as follows:

σ2
t = (1 − α)σ2

t−1 + α
nt

nt − 1
σ̂2

t

µt = (1 − α)µt−1 + αµ̂t

where α is the hyperparameter regulating the decay of the moving aver-
age.

The above formulation achieves a similar adaptation effect of DAL
layers [142, 29, 28] but with three main advantages. First, no samples
of the target domain, neither labeled nor unlabeled, are used during
training. Thus, no further data acquisition and annotation efforts are re-
quired. Second, since we do not exploit target data for training, contrary
to standard DA algorithms, we have no bias towards a particular target
domain. Third, since the adaptation process is online, the model can
adapt itself to multiple sequential changes of the working conditions,
being able to tackle unexpected environmental variations (e.g. sudden
illumination changes).

The reader might wonder if other possible choices may be considered
for initializing {µ0, σ2

0}, such as exploiting a first calibration phase where
the robot collects images of the target domain in order to produce a
first estimate of the BN statistics. Here we choose to use the statistics
estimated on the source domain because 1) we want a model ready to
be employed, without requiring any additional preparation at test time;
2) the robot may occur in multiple domains during employment and
if a shift occurs (e.g. illumination condition changes) our method will
automatically adapt the visual model to the novel domain starting from
the current estimated statistics: initializing {µ0, σ2

0} = {µS , σ2
S} allows

to check the performance of the algorithm even for multiple sequential
shifts and long-term applications. Obviously our method can benefit
from a calibration phase of the statistics closer to the target working
conditions: we plan to analyze these aspects in the future.

2.6.4. Experimental results
Networks and training protocols. We perform our experiments with
the AlexNet [124] architecture pre-trained on ImageNet [52]. We train
3 additional models: a variant of AlexNet with BN, the DA architecture
DIAL from [29] and our ONline DAmodel (ONDA). Following [29], we
add BN layers or its variants after each fully-connected layer. Both the
standard AlexNet, AlexNet with BN and DIAL are trained with a batch
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size of 128. We implemented [29] by splitting the batch size between
images of source and target domain proportionally to the number of
images for each set, as in [29], without employing the entropy-loss for
target images [29, 28]. We highlight that DIAL is our upper-bound in
this case, since it shares the same philosophy of ONDA but with the
assumption that images of the target domain are available at training
time.

As preprocessing, we rescale all the images in order to ensure a
shortest side of 256 pixels, preserving the aspect ratio and subtracting
the mean value per channel computed over the ImageNet database. As
input to the network we use a random crop of 227×227 at training time,
employing a central crop with the same dimensions during test. No
additional data augmentation is performed. For all the variants of the
architecture, we fine-tune the last layers for 30 epochs with an initial
learning rate of 0.001 for fc6, fc7 and of 0.01 for the classifier, with a
weight decay of 0.0005 and momentum 0.9. We scale the initial learning
rates by a factor of 0.1 after 25 epochs.

In order to apply ONDA, we start from the weights of AlexNet with
BN, training on the given source domain. Then, we perform one iteration
over the target domain, without updating any parameter other than the
BN statistics. As a trade-off between stability of the statistics and fastness
of adaptation we set nt = 10 and α = 0.1. We will detail the impact of
these choices in the following subsections.

In all the experiments, we consider the task of object recognition in
the fine-grained setting, with all the 9 classes considered as classification
objective. We report the average accuracy between 5 runs, shuffling the
order of the input images in each run of our model.

2.6.4.1. Domain Adaptation results
In this subsection, we will present the results of our algorithm. In

order to analyze the particular effect that each possible change may have
to the adaptation capabilities of our model, we isolate the sources of
shift. To this extent, we consider two sample starting source domains: in
the first case (Figure 2.19a), the acquisition conditions are artificial light,
Kinect camera and white background; in the second case we consider
cloudy illumination, webcam and brown background (Figure 2.19b).
From these source domains we start by changing only one of the ac-
quisition conditions (left part of the figures) and gradually increasing
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the number of changes to 2 and 3 conditions (middle and right parts
respectively). We report the results for our model after 25%, 50% and
90% of the target data processed.

As the figures show, our model is able to fill the gap between the
BN baseline (red bars) and the DA upper bound DIAL (green bars)
in almost all settings. Only in few cases, where the shift between the
performances of BN and DIAL is lower, this does not happen (i.e. Figure
2.19a, target artificial-Kinect-brown and directed-Kinect-White). In all
the other settings the gains are remarkable: considering both figures,
the average difference between the performance of BN and ONDA-90
are of 15%, 18% and 20% for the single, double and triple shift cases
respectively. We stress that the gain increases with the amount of shift
between the source and target domains, underlying the importance
of applying DA adaptation methods in changing environments. As
expected, the statistics computed in the first stages (i.e. ONDA-25) are
not always sufficiently representative of the true estimate since they
may be still biased by the statistics computed over the source domain.
However the estimate becomesmore precise asmore images of the target
domain are processed (i.e. ONDA-50 andONDA-90), gradually covering
the gap with the estimate computed by DIAL. The fastness of adaptation
and the quality of the estimates depend on the two hyperparameters α

and nt. In the next subsection we will analyze their impact to the final
performances of the algorithm.

Ablation study. In this subsection we analyze the impact of the two
hyperparameters, the update frequency nt and the decay α, on the num-
ber of images needed by ONDA to estimate the statistics for the target
domain. We use a sample scenario of Figure 2.19b, where cloudy illumi-
nation, webcam camera and brown background are the source domain
conditions and artificial light, Kinect camera and white background are
the target domain ones. In the first experiment, we fix nt to 10, varying
the value of α. We start by a single pre-trained model of AlexNet with
BN repeating the experiments for 5 runs, shuffling the order of the input
data, and reporting the average accuracy for each update step.

Results are shown in Figure 2.20a: increasing the value of α to 0.2
(green line) or 0.5 (black line) allows the model to achieve a faster adap-
tation to the target conditions, with the drawback of a noisier estimation
of the statistics. Thus, increasing α leads to an unstable convergence of
the performance. On the other hand, choosing too low values of α (e.g.
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(a) Source Domain: Artificial light, Kinect camera and White background

(b) Source Domain: Cloudy light, Webcam camera and Brown background

Fig. 2.19. Experiments on isolated shifts. The labels of the x-axes denote the conditions
of target domain, with the first line indicating the light condition, the second the camera
and the third the background. We underlined the changes between the source and target
domains. ©2018 IEEE

0.05 or 0.01, purple and gold lines respectively) allows a more stable
convergence of the model, but with the drawback of slower adaptation
to the novel conditions.

Regarding the hyperparameter nt, we follow the same protocol of
the first experiment, fixing α to 0.1 and varying the number of images
collected before updating the statistics, nt, reporting how the accuracy
changeswith respect to the number of frames processed. As Figure 2.20b
shows, low values of nt (e.g. nt = 2) allows a faster adaptation, due
to the higher update frequency, but at the price of a noisier estimation
of the statistics, which is harmful to the final accuracy achieved by the
model. At the same time, high values of nt (e.g. 20, 30) allow for a more
precise estimate of the statistics, highlighted by the smoothness of the
respective lines in the graph, with the drawback of a lower speed of
adaptation to the novel domain, caused by the lower update frequency.

The speed of adaptation and the final quality of the BN statistics is
obviously a consequence of the values chosen for both hyperparameters.
Obviously α and nt are not independent from each other: for a lower nt a
lower α should be selected in order to preserve the final performance of
the algorithm and conversely for a higher nt, a higher α will allow a faster
adaptation of themodel. As a trade-off between fast adaptation and good
results, we found experimentally that choosing nt = {5, 10, 20} and
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(a) Ablation on α with nt = 10 (b) Ablation on nt with α = 0.1

Fig. 2.20. Accuracy vs number of updates of ONDA for different values of (a) α and (b)
nt in a sample scenario. The red line denotes the BN lower bound of the starting model,
while the yellow line the DIAL upper bound. ©2018 IEEE

α = {0.05, 0.1} worked well for both short and long term experiments.

2.6.5. Conclusions
In this section, we presented a novel dataset for addressing the kitting

task in robotics. The dataset takes into account multiple variations of
acquisition conditions such as camera, illumination, and background
changes which may occur during the robot employment. This dataset is
intended for testing the robustness of robot vision algorithms to chang-
ing environments, providing a novel benchmark for assessing the ro-
bustness of robot vision systems.

Additionally, we described ONDA, an algorithm capable of perform-
ing online adaptation of deep models to any unseen visual domain. The
algorithm, based on the update of the statistics of batch-normalization
layers, can continuously adapt the model to the current environmental
conditions of the robot, providing more robustness to unexpected work-
ing conditions. Experiments on the newly proposed dataset, confirm the
ability of ONDA to fill the gap between a standard architecture, trained
only on source data, and its domain adapted counterpart, without re-
quiring any additional target data during training.

It is worth highlighting how, despite its effectiveness and the fact of
requiring a single source domain (differently from the DG approaches
in Section 2.5), the method has two main drawbacks. Since it adapts to
the stream of the target samples, its adaptation is gradual and it cannot
work under abrupt changes of the input distribution. As a consequence,
it can only address one target domain shift at the time, contrary to DG
approaches, which build a single model for multiple target domains. In
the next section, we will show howwe can merge the benefits of DG and
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Continuous DA, proposing the first deepmodel for the task of Predictive
DA.

Finally, as future works, we plan to enlarge the dataset, including
more sources of variations and more objects. We further plan to provide
a deeper analysis of our algorithm with more architectures, as well as
exploring possible extensions that could exploit knowledge coming from
previously met scenarios.
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2.7. Predictive Domain Adaptation 13

An underline common thread linking the sections of this chapter
is the importance of being able to overcome the domain shift problem
even under incomplete (Section 2.4) or absent (Sections 2.5 and 2.6)
information about our target domain during training. In particular,
although it might be reasonable for some applications to have target
samples available during training, in most cases data collection and
labeling might be too costly (e.g. robotics) or even unfeasible (e.g.
hazardous environments). Therefore, we argued that it is important to
build models able to perform domain adaptation even without target
data at training time.

For this reason, in Sections 2.5 and 2.6 we focused on scenarios that
do not assume the presence of target data during training, namely DG
and Continuous DA. In both scenarios, different information is used
to overcome the domain shift. In the first, DG, the presence of multi-
ple labeled source domains allows us to build models disentangling
domain-specific and semantic-specific information, possibly generaliz-
ing to unseen input distributions. In the second, Continuous DA, target
data received at test time are used to update the model gradually. Both
scenarios have some inherent drawbacks. In DG, we require the pres-
ence of multiple labeled source domain, something that might be hard
to obtain. In Continuous DA, instead, the model gradually adapts to the
target distribution and, consequently, (i) it cannot work under abrupt
changes of domains and (ii) it can address only one target domain shift
at the time.

In this section, we want to take a step forward by (i) dropping the
assumption of having multiple labeled source domains (opposite to
DG) and (ii) adding the possibility to rapidly adapt the model to multi-
ple target domains (opposite to Continuous DA). Following this idea,
previous studies proposed the Predictive Domain Adaptation (PDA)
scenario [293], where neither the data nor the labels from the target are
available during training. Only annotated source samples are available,
together with additional information from a set of auxiliary domains, in
form of unlabeled samples and associated metadata (e.g. corresponding
to the image timestamp or camera pose, etc).

13 M. Mancini, S. Rota Bulò, B. Caputo, E. Ricci. AdaGraph: Unifying Predictive and
Continuous Domain Adaptation through Graphs. IEEE/CVF International Conference on
Computer Vision and Pattern Recognition (CVPR) 2019.
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Fig. 2.21. Predictive Domain Adaptation. During training we have access to a labeled
source domain (yellow block) and a set of unlabeled auxiliary domains (blue blocks),
all with associated metadata. At test time, given the metadata corresponding to the
unknown target domain, we predict the parameters associated to the target model. This
predicted model is further refined during test, while continuously receiving data of the
target domain. ©2019 IEEE

In this section we describe AdaGraph [165], a deep architecture for
PDA. As for the works presented in previous sections, we learn a set of
domain-specific models by considering a common backbone network
with domain-specific alignment layers embedded into it [28, 29, 142].
However, differently from the previous works, we propose to exploit
metadata and auxiliary samples by building a graph which explicitly
describes the dependencies among domains. Within the graph, nodes
represent domains, while edges encode relations between domains, im-
posed by their metadata. Thanks to this construction, whenmetadata for
the target domain are available at test time, the domain-specific model
can be recovered. We further exploit target data directly at test time
by devising an approach for continuously updating the deep network
parameters once target samples are made available (Figure 2.21). We
demonstrate the effectiveness of our method with experiments on three
datasets: the Comprehensive Cars (CompCars) [292], the Century of Por-
traits [82] and the CarEvolution datasets [218], showing that our method
outperforms state-of-the-art PDA approaches. Finally, we show that the
proposed approach for continuous updating of the network parameters
can be used for continuous domain adaptation, producingmore accurate
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predictions than previous methods [103, 139].

To summarize, the contributions presented in this section are: (i) the
first deep architecture for addressing the problem of PDA; (ii) a strategy
for injecting metadata information within a deep network architecture
by encoding the relation between different domains through a graph;
(iii) a simple strategy for refining the predicted target model which
exploits the incoming stream of target data directly at test time.

2.7.1. Problem Formulation

Our goal is to produce a model that is able to accomplish a task in a
target domain T for which no data is available during training, neither
labeled nor unlabeled. The only information we can exploit is a charac-
terization of the content of the target domain in the form of metadata mt

plus a set of known domains K, each of them having associated meta-
data. All the domains in K carry information about the task we want
to accomplish in the target domain. In particular, since in this work we
focus on classification tasks, we assume that images from the domains
in K and T can be classified with semantic labels from a same set Y .
As opposed to standard DA scenarios, the target domain T does not
necessarily belong to the set of known domains K. Also, we assume
that K can be partitioned into a labeled source domain S and N unlabeled
auxiliary domains A = {A1, · · · , AN}.

In the specific, in this section we focus on the predictive DA (PDA)
problem, aimed at regressing the target model parameters using data
from the domains in K. We achieve this objective by (i) interconnect-
ing each domain in K using the given domain metadata; (ii) building
domain-specific models from the data available in each domain in K;
(iii) exploiting the connection between the target domain and the do-
mains in K, inferred from the respective metadata, to regress the model
for T .

A schematic representation of the method is shown in Figure 2. We
propose to use a graph because of its seamless ability to encode rela-
tionships within a set of elements (domains in our case). Moreover, it
can be easily manipulated to include novel elements (such as the target
domain T ).
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2.7.2. AdaGraph: Graph-based Predictive DA
We model the dependencies between the various domains by instan-

tiating a graph composed of nodes and edges. Each node represents
a different domain and each edge measures the relatedness of two do-
mains. Each edge of the graph is weighted, and the strength of the
connection is computed as a function of the domain-specific metadata.
At the same time, in order to extract one model for each available do-
main, we employ recent advances in domain adaptation involving the
use of domain-specific batch-normalization layers [141, 29]. With the
domain-specific models and the graph we are able to predict the param-
eters for a novel domain that lacks data by simply (i) instantiating a
new node in the graph and (ii) propagating the parameters from nearby
nodes, exploiting the graph connections.

Connecting domains through a graph. Let us denote the space of do-
mains asD and the space of metadata asM. As stated in Section 2.7.1, in
the PDA scenario, we have a set of known domains K = {k1, · · · , kn} ⊂
D and a bijective mapping ϕ : D → M relating domains and metadata.
For simplicity, we regard as unknown a metadata m that is not associated
to domains in K, i.e. such that ϕ−1(m) /∈ K.

Here we structure the domains as a graph G = (V , E), where V ⊂ D
represents the set of vertices corresponding to domains and E ⊆ V × V
the set of edges, i.e. relations between domains. Initially the graph
contains only the known domains so V = K. In addition, we define an
edge weight ω : E → R that measures the relation strength between two
domains (v1, v2) ∈ E by computing a distance between the respective
metadata, i.e.

ω(v1, v2) = e−d(ϕ(v1),ϕ(v2)) , (2.15)

where d : M2 → R is a distance function on M.
Let Θ be the space of possible model parameters and assume we

have properly exploited the domain data from each domain in k ∈ K
to learn a set of domain-specific models (we will detail this procedure
in the next subsection). We can then define a mapping ψ : K → Θ,
relating each domain to its set of domain-specific parameters. Given
some metadata m ∈ M we can recover an associated set of parameters
via the mapping ψ ◦ ϕ−1(m) provided that ϕ−1(m) ∈ K. In order to
deal with metadata that is unknown, we introduce the concept of virtual
node. Basically, a virtual node ṽ ∈ V is a domain for which no data is
available but we have metadata m̃ associated to it, namely m̃ = ϕ(ṽ). For
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simplicity, let us directly consider the target domain T . We have T ∈ D
and we know ϕ(T ) = mt. Since no data of T is available, we have no
parameters that can be directly assigned to the domain. However, we
can estimate parameters for T by using the domain graph G . Indeed, we
can relate T to other domains v ∈ V using ω(T , v) defined in (2.15) by
opportunely extending E with new edges (T , v) for all or some v ∈ V
(e.g. we could connect all v that satisfy ω(T , v) > τ for some τ). The
extended graph G′ = (V ∪ {T }, E′) with the additional node T and the
new edge set E′ can then be exploited to estimate parameters for T by
propagating the model parameters from nearby domains. Formally we
regress the parameters θ̂T through the formula

θ̂T = ψ(T ) =
∑(T ,v)∈E′ ω(T , v)ψ(v)

∑(T ,v)∈E′ ω(T , v)
, (2.16)

where we normalize the contribution of each edge by the sum of the
weights of the edges connecting node T . With this formula we are able
to provide model parameters for the target domain T and, in general, for
any unknown domain by just exploiting the corresponding metadata.

We want to highlight that this strategy only depends extending the
graph with a virtual node ṽ and computing the relative edges. While the
relations of ṽ with other domains can be inferred from given metadata,
as in (2.15), there could be cases in which no metadata is available for
the target domain. In such situations, we can still exploit the incoming
target image x to build a probability distribution over nodes in V , in
order to assign the new data point to a mixture of known domains. To
this end, let use define p(v|x) the conditional probability of an image
x ∈ X , where X is the image space, to be associated with a domain
v ∈ V . From this probability distribution, we can infer the parameters
of a classification model for x through:

θ̂x = ∑
v∈V

p(v|x) · ψ(v) (2.17)

where ψ(v) is well defined for each node linked to a known domain,
while it must be estimated with (2.16) for each virtual domain ṽ ∈ V
for which p(ṽ|x) > 0.

In practice, the probability p(v|x) is constructed from a metadata
classifier µ, trained on the available data, that provides a probability
distribution overM given x, which can be turned into a probability over
D through the inverse mapping ϕ−1.
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Fig. 2.22. AdaGraph framework (Best viewed in color). Each BN layer is replaced by its
GBN counterpart. The parameters used in a GBN layer are computed from a given meta-
data and the graph. Each domain in the graph (circles) contains its specific parameters
(rectangular blocks). During the training phase (blue part), a metadata (i.e. mz, blue
block) is mapped to its domain (z). While the statistics of GBN are determined only by
the one of z (θz), scale and bias are computed considering also the graph edges. During
test, we receive the metadata for the target domain (mṽ, red block) to which no node is
linked. Thus we initialize ṽ and we compute its parameters and statistics exploiting the
connection with the other nodes in the graph (θṽ). ©2019 IEEE

Extracting node specific models. We have described how to regress
model parameters for an unknown domain by exploiting the domain
graph. Now, we focus on the actual problem of training domain-specific
models using data available from the known domainsK. SinceK entails
a labeled source domain S and a set of auxiliary domains A, we cannot
simply train independent models with data from each available domain
due to the lack of supervision ondomains inA for the target classification
task. For this reason, we need to estimate the model parameters for the
unlabeled domains A by exploiting DA techniques.

To achieve this, we start from the domain alignment layers presented
in [141, 28, 29] and described in Section 2.3. In this scenario, the set of
parameters for a domain k, ψ(k) = θk is composed of different parts.
Formally for each domain we have ψ(k) = {θa, θs

k}, where θa holds the
domain-agnostic components and θs

k the domain-specific ones. In our
case θa comprises parameters from standard layers (i.e. the convolu-
tional and fully connected layers of the architecture), while θs

k comprises
parameters and statistics of the domain-specific BN layers.

We start by using the labeled source domain S to estimate θa and
initialize θs

S . In particular, we obtain θS by minimizing the standard
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cross-entropy loss:

L(θS ) = − 1
|S| ∑

(x,y)∈S
log( fθS (y; x)) , (2.18)

where fθS is the classification model for the source domain, with param-
eters θS .

To extract the domain-specific parameters θs
k for each k ∈ K, we

employ 2 steps: the first is a selective forward pass for estimating the
domain-specific statistics while the second is the application of a loss to
further refine the scale and bias parameters. Formally, we replace each
BN layer in the network with a GraphBN counterpart (GBN), where the
forward pass is defined as follows:

GBN(x, v) = γv ·
x − µv√

σ2
v + ϵ

+ βv . (2.19)

where γv and βv are the node specific scale and bias parameters of the BN
layers. Basically in a GBN layer, the set of BN parameters and statistics
to apply is conditioned on the node/domain to which x belongs. While
this equation is similar to Eq. (2.1), we highlight that, differently from
it and [29, 28], here we use domain-specific scale and bias parameters,
not only statistics. During training, as for standard BN, we update the
statistics by leveraging their estimate obtained from the current batch B:

µ̂v =
1

|Bv| ∑
x∈Bv

x and σ̂2
v =

1
|Bv| ∑

x∈Bv

(x − µv)
2 , (2.20)

where Bv is the set of elements in the batch belonging to domain v. As
for the scale and bias parameters, we optimize them by means of a loss
on the model output. For the auxiliary domains, since the data are
unlabeled, we use an entropy loss, while a cross-entropy loss is used for
the source domain:

L(Θs) = − 1
|S| ∑

(x,y)∈S
log( fθS (y; x)) (2.21)

−λ · ∑
Ai∈A

1
|Ai| ∑

x∈Ai

∑
y∈Y

fθAi
(y; x) log

(
fθAi

(y; x)
)

(2.22)

where Θs = {θs
k | k ∈ K} represents the whole set of domain-specific

parameters and λ the trade off between the cross-entropy and the entropy
loss.
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While (2.21) allows to optimize the domain-specific scale and bias
parameters, it does not take into account the presence of the relationship
between the domains, as imposed by the graph. A way to include the
graph within the optimization procedure is to modify (2.19) as follows:

GBN(x, v,G) = γG
v · x − µv√

σ2
v + ϵ

+ βG
v (2.23)

with:
νGv =

∑k∈K ω(v, k) · νk

∑k∈K ω(v, k)
, (2.24)

for ν ∈ {β, γ}. Basically we use a scale and bias parameters during the
forward pass which are influenced by the graph edges, as described in
(2.24).

Taking into account the presence of G during the forward pass is
beneficial for mainly two reasons. First, it allows to keep a consistency
between how those parameters are computed at test time and how they
are used at training time. Second, it allows to regularize the optimization
of γv and βv, which may be beneficial in cases where a domain contains
few data. While the same procedure may be applied also for µv, σv, in
our current design we avoid mixing them during training. This choice
is linked to the fact that each image belongs to a single domain and
keeping the statistics separate allows us to estimate them more precisely.

At test time, once we have initialized the domain-specific parameters
of T using either (2.16) or (2.17), the forward pass of each GBN layer
is computed through (2.23). In Figure 2.22, we sketch the behaviour of
AdaGraph both at training and test time.

2.7.3. Model Refinement through Joint Prediction and Adapta-
tion

While the approach described in the previous section allows to per-
form a blind adaptation of a model to a target domain given metadata,
it is not completely true that we have no information about the images
of the target domain. In fact, while at training time we have no access
to target data, at test time target samples are gradually made available.
While we could passively classify the target data stream, this would not
be an effective choice, since the information coming directly from target
images is valuable and can be leveraged to refine our model. This will
be extremely important, e.g. in the case of an inaccurate estimate of the
target model parameters or in the presence of noisy metadata. In those
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cases, exploiting the stream of incoming images would compensate for
the initial error.

To this end, we equip ourmodel with a simple yet effective strategy to
perform continuous domain adaptation. Following recent works [141]
and our ONDA framework, we start with the observation that a simple
way to continuously adapt a model to the incoming stream of target
data, is just by updating the BN statistics. Formally, let us suppose our
target domain is composed by a set of T observations T = {x1, · · · , xT}.
Since we will receive one data sample at time, we provide our model
with a memory. This memory has a fixed size M (e.g. M = 16 in all
our experiments) and allows to store a sequence of M target samples.
Once these samples have been collected, we use them to compute a local
estimate of the GBN statistics for the target domain. This estimate will
be added to the global estimation of the statistics used by the GBN layers
of our model, in the same way BN statistics are updated during training.
After the update, we free the memory and restart collecting samples of
the target domain. Obviously the presence of a memory can be used not
only to estimate the statistics for updating the GBN layers, but also as a
starting point for more complex optimization strategies. In this work,
we exploit the memory to further refine the regressed scale and bias
parameters. In particular, we follow recent BN-based DA algorithms
[28, 29] and employ an entropy loss on the target domain data collected
in the memory. This loss is applied to the "output" normalized through
the statistics computed using the samples within the memory, in order
to ensure a consistency with the training phase for the update of the
statistics and the parameters of each GBN layer.

2.7.4. Experimental results
2.7.4.1. Experimental setting

Datasets. We analyze the performance of AdaGraph on three datasets:
the Comprehensive Cars (CompCars) [292], the Century of Portraits [82]
and the CarEvolution [218].

The Comprehensive Cars (CompCars) [292] dataset is a large-scale
database composed of 136,726 images spanning a time range between
2004 and 2015. As in [293], we use a subset of 24,151 images with 4
types of cars (MPV, SUV, sedan and hatchback) produced between 2009
and 2014 and taken under 5 different view points (front, front-side, side,
rear, rear-side). Considering each view point and each manufacturing
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year as a separate domain we have a total of 30 domains. As in [293] we
use a PDA setting where 1 domain is considered as source, 1 as target
and the remaining 28 as auxiliary sets, for a total of 870 experiments. In
this scenario, the metadata are represented as vectors of two elements,
one corresponding to the year and the other to the view point, encoding
the latter as in [293].

Century of Portraits (Portraits) [82] is a large scale collection of images
taken from American high school yearbooks. The portraits are taken
over 108 years (1905-2013) across 26 states. We employ this dataset in a
gender classification task, in two different settings. In the first setting we
test our PDA model in a leave-one-out scenario, with a similar protocol
to the tests on the CompCars dataset. In particular, to define domains we
consider spatio-temporal information and we cluster images according
to decades and to spatial regions (we use 6 USA regions, as defined
in [82]). Filtering out the sets where there are less than 150 images,
we obtain 40 domains, corresponding to 8 decades (from 1934 on) and
5 regions (New England, Mid Atlantic, Mid West, Pacific, Southern). We
follow the same experimental protocol of the CompCars experiments,
i.e. we use one domain as source, one as target and the remaining 38 as
auxiliaries. We encode the domain metadata as a vector of 3 elements,
denoting the decade, the latitude (0 or 1, indicating north/south) and
the east-west location (from 0 to 3), respectively. Additional details can
be found in the appendix. In a second scenario, we use this dataset for
assessing the performance of our continuous refinement strategy. In
this case we employ all the portraits before 1950 as source samples and
those after 1950 as target data.

CarEvolution [292] is composed of car images collected between 1972
and 2013. It contains 1008 images of cars produced by three different
manufacturers with two car models each, following the evolution of the
production of those models during the years. We choose this dataset
in order to assess the effectiveness of our continuous domain adapta-
tion strategy. A similar evaluation has been employed in recent works
considering online DA [139]. As in [139], we consider the task of manu-
facturer prediction where there are three categories: Mercedes, BMW and
Volkswagen. Images of cars before 1980 are considered as the source set
and the remaining are used as target samples.

Networks and Training Protocols. To analyze the impact on perfor-
mance of our main contributions we consider the ResNet-18 architecture
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[98] and perform experiments on the Portraits dataset. In particular, we
apply our model by replacing each BN layer with its AdaGraph coun-
terpart. We start with the network pre-trained on ImageNet, training it
for 1 epoch on the source dataset, employing Adam as optimizer with a
weight decay of 10−6 and a batch size of 16. We choose a learning rate of
10−3 for the classifier and 10−4 for the rest of the architecture. We train
the network for 1 epoch on the union of source and auxiliary domains
to extract domain-specific parameters. We keep the same optimizer and
hyperparameters except for the learning rates, decayed by a factor of
10. The batch size is kept to 16, but each batch is composed by elements
of a single pair year-region belonging to one of the available domains
(either auxiliary or source). The order of the pairs is randomly sampled
within the set of allowed ones.

In order to fairly compare with previous methods we also consider
Decaf features [59]. In particular, in the experiments on the CompCars
dataset, we use Decaf features extracted at the fc7 layer. Note that
these features are comparable to the ones used in [293] (i.e. penultimate
layer of the VGG-F model in [35]). Similarly, for the experiments on
CarEvolution, we follow [139] and use Decaf features extracted at the
fc6 layer. In both cases, we apply our model by adding either a BN
layer or our AdaGraph approach directly to the features, followed by
a ReLU activation and a linear classifier. For these experiments we
train the model on the source domain for 10 epochs using Adam as
optimizer with a learning rate of 10−3, a batch size of 16 and a weight
decay of 10−6. The learning rate is decayed by a factor of 10 after 7
epochs. For CompCars, when training with the auxiliary set, we use the
same optimizer, batch size and weight decay, with a learning rate 10−4

for 1 epoch. Domain-specific batches are randomly sampled, as for the
experiments on Portraits.

For all the experiments we use as distance measure d(x, y) = 1
2·σ ·

||x − y||22 with σ = 0.1 and set λ equal to 1.0, both in the training and
in the refinement stage. At test time, we classify each input image as
it arrives, performing the refinement step after the classification. The
buffer size in the refinement phase is equal to 16 and we set α = 0.1, the
same used for updating the GBN components while training with the
auxiliar domains.

We implemented14 our method with the PyTorch [202] framework

14 The code is available at https://github.com/mancinimassimiliano/adagraph
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and our evaluation is performed using a NVIDIA GeForce 1080 Ti GTX
GPU.

2.7.4.2. Results
In this section we report the results of our evaluation, showing both

an empirical analysis of the proposed contributions and a comparison
with state-of-the-art-approaches.

Analysis of AdaGraph. We first analyze the performance of our ap-
proach by employing the Portraits dataset. In particular, we evaluate
the impact of (i) introducing a graph to predict the target domain BN
statistics (AdaGraph BN), (ii) adding scale and bias parameters trained
in isolation (AdaGraph SB) or jointly (AdaGraph Full) and (iii) adopting
the proposed refinement strategy (AdaGraph + Refinement). As base-
line15 we consider the model trained only on the source domain and, as
an upper bound, a corresponding DA method which is allowed to use
target data during training. In our case, the upper bound corresponds
to a model similar to the method proposed in [28].

The results of our ablation are reported in Table 2.17, where we re-
port the average classification accuracy corresponding to two scenarios:
across decades (considering the same region for source and target do-
mains) and across regions (considering the same decade for source and
target dataset). The first scenario corresponds to 280 experiments, while
the second to 160 tests. As shown in the table, by simply replacing the
statistics of BN layers of the source model with those predicted through
our graph a large boost in accuracy is achieved (+4% in the across decades
scenario and +2.4% in the across regions one). At the same time, esti-
mating the scale and bias parameters without considering the graph is
suboptimal. In fact there is a misalignment between the forward pass of
the training phase (i.e. considering only domain-specific parameters)
and how these parameters will be combined at test time (i.e. considering
also the connection with the other nodes of the graph). Interestingly, in
the across regions setting, our full model slightly drops in performance
with respect to predicting only the BN statistics. This is probably due to
how regions are encoded in the metadata (i.e. considering geographical
location), making it difficult to capture factors (e.g. cultural, histori-
cal) which can be more discriminative to characterize the population

15 We do not report the results of previous approaches [293] since the code is not publicly
available.
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Fig. 2.23. Portraits dataset: comparison of different models in the PDA scenario with
respect to the average accuracy on a target decade, fixed the same region of source and
target domains. The models are based on ResNet-18. ©2019 IEEE

Tab. 2.17. Portraits dataset. Ablation study. ©2019 IEEE

Method Across Decades Across Regions
Baseline 82.3 89.2
AdaGraph BN 86.3 91.6
AdaGraph SB 86.0 90.5
AdaGraph Full 87.0 91.0
Baseline + Refinement 86.2 91.3
AdaGraph + Refinement 88.6 91.9
DA upper bound 89.1 92.1

of a region or a state. However, as stated in Section 2.7.3, employing a
continuous refinement strategy allows the method to compensate for
prediction errors. As shown in Table 2.17, with a refinement step (Ada-
Graph + Refinement) the accuracy constantly increases, filling the gap
between the performance of the initial model and our DA upper bound.

It is worth noting that applying the refinement procedure to the
source model (Baseline + Refinement) leads to better performance (about
+4% in the across decades scenario and +2.1% for across regions one).
More importantly, the performance of the Baseline + Refinement method
is always worse than what obtained by AdaGraph + Refinement, because
ourmodel provides, on average, a better starting point for the refinement
procedure.

Figure 2.23 shows the results associated to the across decades scenario.
Each bar plot corresponds to experiments where the target domain is
associated to a specific year. As shown in the figure, on average, our
full model outperforms both AdaGraph BN and AdaGraph SB, showing
the benefit of the proposed graph strategy. The results in the figure
clearly also show that our refinement strategy always leads to a boost in
performance.
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Tab. 2.18. CompCars dataset [292]. Comparison with state of the art. † denotes Decaf
features as input, ‡ denotes VGG-Full. ©2019 IEEE

Method Avg. Accuracy
Baseline‡ [293] 54.0
Baseline + BN† 56.1
MRG-Direct‡ [293] 58.1
MRG-Indirect‡ [293] 58.2
AdaGraph (metadata)† 60.1
AdaGraph (images)† 60.8
Baseline + Refinement† 59.5
AdaGraph + Refinement† 60.9
DA upper bound† 60.9

Comparison with the state of the art. Here we compare the perfor-
mances of our model with state-of-the-art PDA approaches. We use
the CompCars dataset and we benchmark against the Multivariate Re-
gression (MRG) methods proposed in [293]. We apply our model in
the same setting as [293] and perform 870 different experiments, com-
puting the average accuracy (Table 2.18). Our model outperforms the
two methods proposed in [293] by improving the performances of the
Baseline network by 4%. AdaGraph alone outperforms the Baseline
model when it is updated with our refinement strategy and target data
(Baseline + Refinement). When coupled with a refinement strategy, our
graph-based model further improves the performances, filling the gap
between AdaGraph and our DA upper bound. It is interesting to note
that our model is also effective when there are no metadata available
in the target domain. In the table, AdaGraph (images) corresponds to
our approach when, instead of initializing the BN layer for the target
exploiting metadata, we employ the current input image and a domain
classifier to obtain a probability distribution over the graph nodes, as
described in Section 2.7.2. The results in the Table show that AdaGraph
(images) is more accurate than AdaGraph (metadata).

Exploiting AdaGraph Refinement for Continous Domain Adaptation.
In Section 2.7.3, we have shown a way to boost the performances of
our model by leveraging the stream of incoming target data and refine
the estimates of the target BN statistics and parameters. Throughout
the experimental section, we have also demonstrated how this strategy
improves the target classification model, with performances close to DA
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Tab. 2.19. CarEvolution [218]: comparison with state of the art. ©2019 IEEE

Method Accuracy
Baseline SVM [139] 39.7
Baseline + BN 43.7
CMA+GFK [103] 43.0
CMA+SA [103] 42.7
LLRESVM [139] 43.6
LLRESVM+EDA[139] 44.3
ONDA (Baseline+Refinement Stats) [166] 46.5
Baseline + Refinement Full 47.3

Tab. 2.20. Portraits dataset [292]: performances of the refinement strategy on the continu-
ous adaptation scenario. ©2019 IEEE

Method Baseline Refinement Stats [166] Refinement Full
Accuracy 81.9 87.3 88.1

methods which exploit target data during training.

In this section we show how this approach can be employed as a
competitive method in the case of continuous domain adaptation [103].
We consider the CarEvolution dataset and compare the performances of
our proposed strategy with two state of the art algorithms: the manifold-
based adaptation method in [103] and the low-rank SVM strategy pre-
sented in [139]. As in [139] and [103], we apply our adaptation strategy
after classifying each novel image and compute the overall accuracy. The
images of the target domain are presented to the network in a chrono-
logical order i.e. from 1980 to 2013. The results are shown in Table 2.19.
While the integration of a BN layer alone leads to better performances
over the baseline, our refinement strategy produces an additional boost
of about 3%. If scale and bias parameters are refined considering the
entropy loss, accuracy further increases.

We also test the proposed model on a similar task considering the
Portraits dataset. The results of our experiments are shown in Table 2.20.
Similarly to what observed on the previous experiments, continuously
adapting our deep model as target data become available leads to better
performance with respect to the baseline. The refinement of scale and
bias parameters contributes to a further boost in accuracy.
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2.7.5. Conclusions
We present the first deep architecture for Predictive Domain Adap-

tation, AdaGraph. We leverage metadata information to build a graph
where each node represents a domain, while the strength of an edge
models the similarity among two domains according to their metadata.
We then propose to exploit the graph for the purpose of DA and we
design novel domain-alignment layers. This framework yields the new
state of the art on standard PDA benchmarks. We further present an
approach to exploit the stream of incoming target data such as to refine
the target model. We show that this strategy itself is also an effective
method for continuous DA, outperforming state-of-the-art approaches,
and our previous ONDAmodel. In future works, it would be interest-
ing to explore methodologies to incrementally update the graph and
to automatically infer relations among domains, even in the absence
of metadata. Moreover, the connections among the nodes can be used
in few-shot scenarios, using the relations among domains to provide
additional feedback to nodes of domains with few samples.

This section concludes our works which considered the domain shift
problem in isolation both in the presence and in absence of target data
and under different settings. In the next chapters, we will describe our
works that tackled the semantic shift problem in isolation first (Chapter
3) and coupled with the domain shift one lately (Chapter 4).

Towards Recognizing New Semantic Concepts in New Visual Domains128



3.	 Recognizing New Semantic Concepts
3. Recognizing New Semantic Concepts

This chapter analyzes different problems concerning the extension of a pre-
trained architecture to new visual concepts in an incremental fashion, varying
the knowledge we want to add and what we want to recognize. As in the previ-
ous chapter, we start by providing a general formulation of the problem (Sec.
3.1) and reviewing previous works on incremental learning of classes/tasks
and in an open world (Sec. 3.2). In Sec. 3.3 we show how we can extend a
model perform the same task (i.e. classification) across multiple visual domains
with different output spaces (e.g. digits recognition, street signal classifica-
tion) through affinely transformed binary mask [172]. This approach extends
previous works on multi-domain learning [160], achieving the highest (at the
time of acceptance) trade-off among learning new tasks effectively, and using
a low number of parameters. In Sec. 3.4 we focus on the incremental class
learning problem when new classes are added to the same classification head
of old ones but in the context of semantic segmentation [31]. Here we show
how there is an inherent problem in this setting caused by the semantic shift
of the background class across different incremental steps. We show how this
problem can be addressed by a simple modification of the cross-entropy and
distillation losses employed in previous approaches [144]. Finally, in Sec. 3.5,
we analyze the problem of open-world recognition, where the goal is to not only
include new classes incrementally but also to detect if an image belongs to an
unknown category. We analyze the problem in robotics scenarios, starting by
implementing the first deep approach for this problem [167]. The approach
extends standard non-parametric methods [15] and is further improved in a
subsequent work by clustering-based losses and class-specific rejection options
[69]. In [167] we also discuss how the approach could be employed in a realistic
scenario by obtaining datasets with new knowledge directly from the web, a first
step towards having agents able to automatically expand their visual recognition
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capabilities by reasoning on what they see in the real world.

3. Recognizing New Semantic Concepts

This chapter analyzes different problems concerning the extension of a pre-
trained architecture to new visual concepts in an incremental fashion, varying
the knowledge we want to add and what we want to recognize. As in the previ-
ous chapter, we start by providing a general formulation of the problem (Sec.
3.1) and reviewing previous works on incremental learning of classes/tasks
and in an open world (Sec. 3.2). In Sec. 3.3 we show how we can extend a
model perform the same task (i.e. classification) across multiple visual domains
with different output spaces (e.g. digits recognition, street signal classifica-
tion) through affinely transformed binary mask [172]. This approach extends
previous works on multi-domain learning [160], achieving the highest (at the
time of acceptance) trade-off among learning new tasks effectively, and using
a low number of parameters. In Sec. 3.4 we focus on the incremental class
learning problem when new classes are added to the same classification head
of old ones but in the context of semantic segmentation [31]. Here we show
how there is an inherent problem in this setting caused by the semantic shift
of the background class across different incremental steps. We show how this
problem can be addressed by a simple modification of the cross-entropy and
distillation losses employed in previous approaches [144]. Finally, in Sec. 3.5,
we analyze the problem of open-world recognition, where the goal is to not only
include new classes incrementally but also to detect if an image belongs to an
unknown category. We analyze the problem in robotics scenarios, starting by
implementing the first deep approach for this problem [167]. The approach
extends standard non-parametric methods [15] and is further improved in a
subsequent work by clustering-based losses and class-specific rejection options
[69]. In [167] we also discuss how the approach could be employed in a realistic
scenario by obtaining datasets with new knowledge directly from the web, a first
step towards having agents able to automatically expand their visual recognition
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3.1. Problem statement

Overview. In Chapter 2 we have analyzed multiple algorithms being
able to overcome the domain shift problem in various scenarios. How-
ever, while the domain shift is a crucial issue for the applicability of
visual systems in real scenarios, it deals with one side of the problem:
changes in the input distribution without changes in the semantic space.
In this chapter, we are interested in tackling the opposite problem. Given
a model trained to recognize a set of classes in a given domain, we want
to extend its output space, equipping it with the ability to recognize
semantic concepts not included in the initial training set.

The methodologies used to add new knowledge to a pre-trained
model can be roughly divided into three main categories, depending on
the information we have about the training classes. In the first category,
we receive data for the novel concepts we want our model to recognize.
This scenario is usually called continual/incremental learning [49] and
requires to add new knowledge to the model without access to the
initial training set and, more importantly, without forgetting previous
knowledge [175, 114, 89]. In the second category, we have models using
few sample images of the classes of interests at test time, using the initial
training set to learn how to compare this support set composed of few
images with a query image. These models fall in the few-shot learning
paradigm and require to receive, at test time, sample images of the
classes we want to recognize [246, 68]. The last category of methods
learn to recognize concepts beyond the initial training set without any
image available but using class descriptions (e.g. binary attributes [130],
word embeddings [180]). In this scenario, called zero-shot learning [278],
a model has to map images in a given semantic embedding space where
all classes (seen and unseen) are projected. In this way, it is possible to
compare images with unseen and/or seen concepts to perform the final
classification.

In this thesis, we will consider both incremental and zero-shot learn-
ing models. In particular, in this chapter, we will consider scenarios
where the domain shift is not present, i.e. training and test domains are
the same, but the semantic space of the model is incrementally extended
over time, as for the first category. In Chapter 4, we will show how we
can obtain a model attacking both domain- and semantic shift, recogniz-
ing unseen categories (as in zero-shot learning) in unseen domains (as
in domain generalization).
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Incremental Learning. Let us formalize the incremental learning prob-
lem. Assuming we have a model pre-trained on a set T0 = {(x0

i , y0
i )}

n0
i=1

with x0
i ∈ X and y0

i ∈ C0. Note that X is the input space, as in Section
2.1, while C0 is the output space of the initial training set (i.e. the set
of classes in T0). Using this set we can obtain a function f θ

0 : X → C0

parametrized by θ and mapping images into the initial output space.
To include new concepts in f θ

0 , we receive a new dataset containing the
new concepts of interests. Since we might perform multiple training
steps, let us denote with Tt = {(xt

i , yt
i)}

nt
i=1 the dataset we receive at time

t. Note that, while the input space does not change (i.e. xt
i ∈ X ) the

output space does and we have yt
i ∈ Ct with Ci

⋂ Cj = ∅ if i ̸= j. After
T training learning steps, our goal is to obtain a model f θ

T : X → YT

where the output space YT comprises all the concepts seen until the
training step T, i.e. YT =

⋃
Ct

T
t=0.

Under this definition, we have different problems, depending on
how the output space is built [36]. The first distinction is on the number
of classification heads. We have single-head models, where there is a
single classification head for all the concepts in YT , and multi-head, in
case we have one head per set of classes Ct. In this latter scenario,
despite some exceptions [5, 213], it is common to give as input to the
prediction function the information about the output space of interests,
i.e. f θ

T : X × Z → YT with Z = {0, · · · , T}. We will analyze this
scenario in the context of Multi-Domain Learning [214, 19], in Section
3.3.

Considering the single-head scenario, the second distinction relates
to the limits of YT . In case YT is closed-ended, we have the standard
incremental class learning scenario and we ask our model to recognize
which to which class in YT our image belongs. We will analyze this
setting in Section 3.4, in the task of semantic segmentation. In case YT

is open-ended, i.e. the model includes a rejection option for known
classes, we are in the open world recognition one, and our model is
asked to recognize the class of an image and, eventually, detecting if
it belongs to an unknown concept. This scenario will be the focus of
Section 3.5.

In the following section, we will report the relevant literature for in-
cremental learning, multi-domain learning and open world recognition.
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3.2. Related Works

Incremental Learning. The problem of catastrophic forgetting [175] has
been extensively studied for image classification tasks [49]. Previous
works can be grouped in three categories [49]: replay-based [216, 30, 239,
106, 272, 195], regularization-based [118, 36, 300, 144, 56], and parameter
isolation-based [161, 160, 227]. In replay-based methods, examples of
previous tasks are either stored [216, 30, 106, 275] or generated [239, 272,
195] and then replayed while learning the new task. Parameter isolation-
based methods [161, 160, 227] assign a subset of the parameters to
each task to prevent forgetting. Regularization-based methods can be
divided in prior-focused and data-focused. The former [300, 36, 118, 3]
define knowledge as the parameters value, constraining the learning
of new tasks by penalizing changes of important parameters for old
ones. The latter [144, 56] exploit distillation [102] and use the distance
between the activations produced by the old network and the new one
as a regularization term to prevent catastrophic forgetting.

Despite these progresses, very few works have gone beyond image-
level classification. A first work in this direction is [240] which considers
ICL in object detection proposing a distillation-based method adapted
from [144] for tackling novel class recognition and bounding box pro-
posals generation. In this work we also take a similar approach to [240]
and we resort on distillation. However, here we propose to address
the problem of modeling the background shift which is peculiar of the
semantic segmentation setting.

To our knowledge, the problem of ICL in semantic segmentation has
been addressed only in [196, 197, 256, 178]. Ozdemir et al. [196, 197]
describe an ICL approach for medical imaging, extending a standard
image-level classification method [144] to segmentation and devising a
strategy to select relevant samples of old datasets for rehearsal. Taras
et al. proposed a similar approach for segmenting remote sensing data.
Differently, Michieli et al. [178] consider ICL for semantic segmenta-
tion in a particular setting where labels are provided for old classes
while learning new ones. Moreover, they assume the novel classes to be
never present as background in pixels of previous learning steps. These
assumptions strongly limit the applicability of their method.

Here we propose a more principled formulation of the ICL problem
in semantic segmentation. In contrast with previous works, we do
not limit our analysis to medical [196] or remote sensing data [256]
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and we do not impose any restrictions on how the label space should
change across different learning steps [178]. Moreover, we are the first to
provide a comprehensive experimental evaluation of state of the art ICL
methods on commonly used semantic segmentation benchmarks and
to explicitly introduce and tackle the semantic shift of the background
class, a problem recognized but largely overseen by previous works
[178].

Multi-domain Learning. Another challenge in incremental learning is
extending a pre-trained model to address new tasks, each with different
output space. Indeed, the need for visual models capable of addressing
multiple domains received a lot of attention in recent years for what
concerns bothmulti-task learning [298, 150, 32] andmulti-domain learn-
ing [214, 223]. Multi-task learning focuses on learning multiple visual
tasks (e.g. semantic segmentation, depth estimation [150]) with a single
architecture. On the other hand, the goal of multi-domain learning is
building a model able to address a task (e.g. classification) in multiple
visual domains (e.g. real photos, digits) without forgetting previous do-
mains and by using fewer parameters possible. An important work in this
context is [19], where the authors showed how multi-domain learning
can be addressed by using a network sharing all parameters except for
batch-normalization (BN) layers [109]. In [214], the authors introduced
the Visual Domain Decathlon Challenge, a first multi-domain learning
benchmark. The first attempts in addressing this challenge involved
domain-specific residual components added in standard residual blocks,
either in series [214] or in parallel [215], In [223] the authors propose
to use controller modules where the parameters of the base architecture
are recombined channel-wise, while in [150] exploits domain-specific
attentionmodules. Other effective approaches include devising instance-
specific fine-tuning strategies [96], target-specific architectures [184]
and learning covariance normalization layers [140].

In [161] only a reserved subset of network parameters is considered
for each domain. The intersection of the parameters used by different
domains is empty, thus the network can be trained end-to-end for each
domain. Obviously, as the number of domain increases, fewer parame-
ters are available for each domain, with a consequent limitation on the
performances of the network. To overcome this issue, in [160] the au-
thors proposed a more compact and effective solution based on directly
learning domain-specific binary masks. The binary masks determine
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which of the network parameters are useful for the new domain and
which are not, changing the actual composition of the features extracted
by the network. This approach inspired subsequent works, improving
both either the power of the binary masks [171] or the number of bits
required, masking directly an entire channel [17].

In our work [172], we take inspiration from these last research trends.
In particular, we generalize the design of the binary masks employed in
[160] and [171] considering neither simple multiplicative binary masks
nor simple affine transformations of the original weights [171] but a
general and flexible formulation capturing both cases. Experiments
show how our approach in [172] leads to a boost in the performances
while using a comparable number of parameters per domain. More-
over, our approach achieves performances comparable to more complex
models [215, 184, 140, 140] in the challenging Visual Domain Decathlon
challenge, largely reducing the gap of binary-mask based methods with
the current state of the art. Note that while learning to address the same
task (i.e. classification) in multiple visual domains, these trend of works
addresses catastrophic forgetting by adding domain-specific parameters,
extending the semantic extent of a pre-trained model by exploiting iso-
lated set of parameters. In fact, if the initial network parameters remain
untouched, the catastrophic forgetting problem is avoided but at the
cost of the additional parameters required. The extreme case is the work
of [227] in the context of reinforcement learning, where a parallel net-
work is added each time a new domain is presented with side domain
connections, exploited to improve the performances on novel domains.
Differently to [227], the mask-based approaches [161, 160, 171, 172]
require a much lower overhead in terms of total parameters, showing
comparable or even superior results to task-specific fine-tuned models
[161, 160, 172].

Open World Recognition. The necessity of breaking the closed-world
assumption (CWA) for robot vision systems [254] has lead various re-
search efforts on understanding how to extend pre-trained models with
new semantic concepts while retain previous knowledge and detecting
possibly unknown ones. There are two components towards this goal:
the first is incrementally adding new categories to the pre-trainedmodel,
while the second is maintaining a right estimation of the uncertainty
on the predictions allowing to reject inputs of unseen classes. Due to
the central role this task has in real-world applications, recent years
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have seen a growing interests among robotic vision researches on topics
such as continual [132] and incremental learning [263, 25, 32]. In [201],
the authors study how to update the visual recognition system of a
humanoid robot on multiple training sessions. In [25], a variant of the
Regularized Least Squares algorithm is introduced to add new classes
to a pre-trained model. In [200], a growing dual-memory is proposed
to dynamically learn novel object instances and categories. In [126]
the authors proposed to learn an embedding in order to perform fast
incremental learning of new objects. Another solution to this problem
can exploit the help of a human-robot interaction, as in [263] where a
robot incrementally learns to detect new objects as they are manually
pointed by a human.

While these approaches focus on incremental and continual learning,
acting in the open world requires both detecting unknown concepts
automatically and adding them in subsequent learning stages. Towards
this objective, in [15] the authors introduced the OWR setting, as a more
general and realistic scenario for agents acting in the real world. In
[15], the authors extend the Nearest Class Mean (NCM) classifier [177,
95] to act in the open set scenario, proposing the Nearest Non-Outlier
algorithm (NNO). In order to estimate whereas a test sample belongs
to the known or unknown set of categories, this method introduces a
rejection threshold that, after the first initialization phase, is kept fixed
for subsequent learning episodes. In [50], the authors proposed to
tackle OWR with the Nearest Ball Classifier, with a rejection threshold
based on the confidence of the predictions. In [167], we extended the
NNO algorithm of [15] by employing an end-to-end trainable deep
architecture as feature extractor, with a dynamic update strategy for the
rejection threshold. Moreover, our work was the first to consider the
collection of datasets containing new knowledge using web resources,
towards agent able to automatically include new knowledgewith limited
to none human supervision. In the subsequent work [69], we showed
how we can improve the performances of NCM based classifier for
OWR through a global to local clustering loss. Moreover, differently for
previous works, we designed class-specific rejection threshold rather
are explicitly learned rather than fixed based on heuristic strategies.
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3.3. Sequential and Memory Efficient Learning of
New Datasets 12

In this section, we focus on the problem of multi-domain learning
[214, 19]. Following the problem statement of [214], the goal of multi-
domain learning is to train a model to address multiple classification
tasks using as few parameters per each of them. In the following, we
focus on the case, considered also in [214] where we adapt an initial
pre-trained model to address novel tasks sequentially. This capability is
crucial for increasing the knowledge of an intelligent system and devel-
oping effective incremental [222, 125], life-long [258, 259, 243] learning
algorithms. While fascinating, achieving this goal requires facing multi-
ple challenges. First, learning a new task should not negatively affect the
performance on old tasks. Second, it should be avoided adding multiple
parameters to the model for each new task learned, as it would lead to
poor scalability of the framework. In this context, while deep learning
algorithms have achieved impressive results on many computer vision
benchmarks [124, 98, 83, 152], mainstream approaches for adapting
deep models to novel tasks tend to suffer from the problems mentioned
above. In fact, fine-tuning a given architecture to new data does pro-
duce a powerful model on the novel task, at the expense of a degraded
performance on the old ones, resulting in the well-known phenomenon
of catastrophic forgetting [71, 89]. At the same time, replicating the
network parameters and training a separate network for each task is a
powerful approach that preserves performances on old tasks, but at the
cost of an explosion of the network parameters [214].

Different works addressed these problems by either considering
losses encouraging the preservation of the current weights [144, 118] or
by designing task-specific network parameters [227, 214, 223, 161, 160].
Interestingly, in [160] the authors showed that an effective strategy
for achieving good sequential multi-task learning performances with
a minimal increase in term of network size is to create a binary mask
for each task. In particular, this mask is then multiplied by the main
network weights, determining which of them are useful for addressing

1 M. Mancini, E.Ricci, B. Caputo, S. Rota Bulò. Adding New Tasks to a Single Network with
Weight Transformations using Binary Masks. European Computer Vision Conference
Workshop on Transferring and Adapting Source Knowledge in Computer Vision 2018.

2 M. Mancini, E.Ricci, B. Caputo, S. Rota Bulò. Boosting Binary Masks for Multi-Domain
Learning through Affine Transformations. Machine Vision and Applications 2020.
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Fig. 3.1. Idea behind our BAT approach. A network pre-trained on a given recognition
task A (i.e. ImageNet) can be extended to tackle other recognition tasks B (e.g. digits) and
C (e.g. traffic sign) by simply transforming the network weights (orange cubes) through
task-specific binary masks (colored grids).

the new task.
In this section, we take inspiration from these last work. and we

formulate the sequential multi-task learning as the problem of learning
a perturbation of a baseline, pre-trained network, in a way to maximize
the performance on a new task. Importantly, the perturbation should be
compact in the sense of limiting the number of additional parameters
required with respect to the baseline network. To this extent, we apply
an affine transformation to each convolutional weight of the baseline
network, which involves both a learned binary mask and few additional
parameters. The binary mask is used as a scaled and shifted additive
component and as a multiplicative filter to the original weights. Figure
3.1 shows an example application of our proposed algorithm. Given a
network pre-trained on a particular task (i.e. ImageNet [225], orange
blocks) we can transform its original weights through binary masks
(colored grids) and obtain a network which effectively addresses a novel
tasks (e.g. digit [189] or traffic sign [250] recognition) We name our so-
lution BAT (Binary-mask Affinely Transformed for multi-domain learn-
ing). This solution allows us to achieve two main goals: 1) boosting the
performance of each task-specific network that we train, by leveraging
the higher degree of freedom in perturbing the baseline network, while
2) keeping a low per-task overhead in terms of additional parameters
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(slightly more than 1 bit per parameter per task).
We assess the validity of BAT, and some variants thereof, on stan-

dard benchmarks including the Visual Decathlon Challenge [214]. The
experimental results show that our model achieves performances com-
parable with fine-tuning separate networks for each recognition task
on all benchmarks, while retaining a very small overhead in terms of
additional parameters per task. Notably, we achieve results comparable
to state-of-the-art models on the Visual Decathlon Challenge [214] but
without requiring multiple training stages [140] or a large number of
task-specific parameters [96, 215].

3.3.1. Problem Formulation
We address the problem of sequential learning of new tasks, i.e. we

modify a baseline network such as, e.g. ResNet-50 pre-trained on the Im-
ageNet classification task, so to maximize its performance on a new task,
while limiting the amount of additional parameters needed. The solu-
tion we propose exploits the key idea from Piggyback [160] of learning
task-specific masks, but instead of pursuing the simple multiplicative
transformation of the parameters of the baseline network, we define a
parametrized, affine transformation mixing a binary mask and real pa-
rameters that significantly increases the expressiveness of the approach,
leading to a rich and nuanced ability to adapt the old parameters to the
needs of the new tasks. This in turn brings considerable improvements
on all the conducted experiments, as we will show in the experimental
section, while retaining a reduced, per-task overhead.

Let us assume to be given a pre-trained, baseline network f0(·; Θ, Ω0) :
X → Y0 assigning a class label inY0 to elements of an input spaceX (e.g.
images).3 The parameters of the baseline network are partitioned into
two sets: Θ comprises parameters that will be shared for other domains,
whereas Ω0 entails the rest of the parameters (e.g. the classifier). Our
goal is to learn for each domain i ∈ {1, . . . , m}, with a possibly different
output space Yi, a classifier fi(·; Θ, Ωi) : X → Yi. Here, Ωi entails the
parameters specific for the ith domain, while Θ holds the shareable
parameters of the baseline network mentioned above.

Each domain-specific network fi shares the same structure of the
baseline network f0, except for having a possibly differently sized clas-

3 We focus on classification tasks, but the proposed method applies also to other tasks.

3.	 Recognizing New Semantic Concepts 139



112 Towards Recognizing New Semantic Concepts in New Visual Domains

0

1

Binarized Mask

Task-Specific 
Real-valued Mask

Pretrained Kernel

Task-Specific Kernel

+

+

Range: {0, k2} Range: {k1,k1+k2}k2
k1

k0

k3

. .

.

Fig. 3.2. Overview of the proposed BAT model (best viewed in color). Given a convolu-
tional kernel, we exploit a real-valued mask to generate a domain-specific binary mask.
An affine transformation directly applied to the binary masks, which changes their range
(through a scale parameter k2) and their minimum value (through k1). A multiplicative
mask applied to the original kernels and the pre-trained kernel themselves are scaled by
the factors k3 and k0 respectively. All the different masks are summed to produce the final
domain-specific kernel.

sification layer. For each convolutional layer4 of f0 with parameters W,
the domain-specific network fi holds a binary mask M, with the same
shape of W, that is used to mask original filters. The way the mask is
exploited to specialize the network filters produces different variants of
our model, which we describe in the following.

3.3.2. Affine Weight Transformation through Binary Masks
Following previous works [160], we consider domain-specific net-

works fi that are shaped as the baseline network f0 and we store in
Ωi a binary mask M for each convolutional kernel W in the shared set
Θ. However, differently from [160], we consider a more general affine
transformation of the base convolutional kernel W that depends on a bi-
nary mask M as well as additional parameters. Specifically, we transform
W into

W̃ = k0W + k11 + k2M + k3W ◦ M , (3.1)

where kj ∈ R are additional domain-specific parameters in Ωi that we
learn along with the binary mask M, 1 is an opportunely sized tensor of

4 Fully-connected layers are a special case.
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1s, and ◦ is the Hadamard (or element-wise) product. The transformed
parameters Ŵ are then used in the convolutional layer of fi. We highlight
that the domain-specific parameters that are stored in Ωi amount to
just a single bit per parameter in each convolutional layer plus a few
scalars per layer, yielding a low overhead per additional domain while
retaining a sufficient degree of freedom to build new convolutional
weights. Figure 3.2 provides an overview of the transformation in (3.1).

Ourmodel, can be regarded as a parametrized generalization of [160],
since we can recover the formulation of [160] by setting k0,1,2 = 0 and
k3 = 1. Similarly, if we get rid of the multiplicative component, i.e. we
set k3 = 0, we obtained the following transformation

W̌ = k0W + k11 + k2M , (3.2)

which corresponds to a simpler but still effective version of our method
(presented in [171]) and will be taken into account in our analysis.

We want to highlight that each model (i.e. [160], BAT, and its simpli-
fied version) has different representation capabilities. In fact, in [160],
the domain-specific parameters can take only two possible values: either
0 (i.e. if m = 0) or the original pre-trained weights (i.e. if m = 1).
On the other hand, the scalar components of our simple model [171]
allow both scaling (i.e. with k0) and shifting (i.e. with k1) the original
network weights, with the additive binary mask adding a bias term (i.e.
k2) selectively to a group of parameters (i.e. the one with m = 1). BAT
generalizes [160] and [171] by considering the multiplicative binary-
mask term W ◦ M as an additional bias component scaled by the scalar k3.
In this way, our model has the possibility to obtain parameter-specific bias
components, something that was not possible neither in [160] nor in
[171]. The additional degrees of freedom makes the search space of our
method larger with respect to [160, 171], with the possibility to express
more complex (and tailored) domain-specific transformations. Thus, as
we show in the experimental section, the additional parameters that we
introduce with ourmethod bring a negligible per-domain overhead com-
pared to [160] and [171], which is nevertheless generously balanced
out by a significant boost of the performance of the domain-specific
classifiers.

Finally, following [19], we opt also for domain-specific batch-normalization
parameters (i.e. mean, variance, scale and bias), unless otherwise stated.
Those parameters will not be fixed (i.e. they do not belong to Θ) but
are part of Ωi, and thus optimized for each domain. In the cases where
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we have a convolutional layer followed by batch normalization, we keep
the corresponding parameter k0 fixed to 1, because the output of batch
normalization is invariant to the scale of the convolutional weights.

3.3.3. Learning Binary Masks
Given the training set of the ith domain, we learn the domain-specific

parameters Ωi by minimizing a standard supervised loss, i.e. the classifi-
cation log-loss. However, while the domain-specific batch-normalization
parameters can be learned by employing standard stochastic optimiza-
tion methods, the same is not feasible for the binary masks. Indeed,
optimizing the binary masks directly would turn the learning into a
combinatorial problem. To address this issue, we follow the solution
adopted in [160], i.e. we replace each binary mask M with a thresholded
real matrix R. By doing so, we shift from optimizing discrete variables in
M to continuous ones in R. However, the gradient of the hard threshold
function h(r) = 1r≥0 is zero almost everywhere, making this solution
apparently incompatible with gradient-based optimization approaches.
To address this issue we consider a strictly increasing, surrogate function
h̃ that will be used in place of h only for the gradient computation, i.e.

h′(r) ≈ h̃′(r) ,

where h′ denotes the derivative of h with respect to its argument. The
gradient that we obtain via the surrogate function has the property that
it always points in the right down hill direction in the error surface. Let
r be a single entry of R, with m = h(r) and let E(m) be the error function.
Then

sgn((E ◦ h)′(r)) = sgn(E′(m)h′(r)) = sgn
(
E′(m)h̃′(r)

)

and, since h̃′(r) > 0 by construction of h̃, we obtain the sign agreement

sgn
(
(E ◦ h)′(r)

)
= sgn

(
E′(m)

)
.

Accordingly, when the gradient of E(h(r)) with respect to r is positive
(negative), this induces a decrease (increase) of r. By themonotonicity of
h this eventually induces a decrease (increase) of m, which is compatible
with the direction pointed by the gradient of E with respect to m.

In the experiments, we set h̃(x) = x, i.e. the identity function, recov-
ering the workaround suggested in [100] and employed also in [160].
However, other choices are possible. For instance, by taking h̃(x) =
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(1 + e−x)−1, i.e. the sigmoid function, we obtain a better approximation
that has been suggested in [90, 16]. We test different choices for h̃(x) in
the experimental section.

3.3.4. Experimental results
Datasets. In the following we test our method on two different multi-
task benchmarks, where the multiple tasks regard different classification
objectives and/or domains. For the first benchmark we follow [160], and
we use 6 datasets: ImageNet [225], VGG-Flowers [191], Stanford Cars
[122], Caltech-UCSD Birds (CUBS) [269], Sketches [63] and WikiArt
[231]. VGG-Flowers [191] is a dataset of fine-grained recognition con-
taining images of 102 categories, corresponding to different kind of
flowers. There are 2’040 images for training and 6’149 for testing. Stan-
ford Cars [122] contains images of 196 different types of cars with ap-
proximately 8 thousand images for training and 8 thousands for testing.
Caltech-UCSD Birds [269] is another dataset of fine-grained recognition
containing images of 200 different species of birds, with approximately 6
thousands images for training and 6 thousands for testing. Sketches [63]
is a dataset composed of 20 thousands sketch drawings, 16 thousands
for training and 4 thousands for testing. It contains images of 250 dif-
ferent objects in their sketched representations. WikiArt [231] contains
painting from 195 different artists. The dataset has 42’129 images for
training and 10628 images for testing. These datasets contain a lot of
variations both from the category addressed (i.e. cars [122] vs birds
[269]) and the appearance of their instances (from natural images [225]
to paintings [231] and sketches [63]), thus representing a challenging
benchmark for sequential multi-task learning techniques.

The second benchmark is the Visual Decathlon Challenge [214]. This
challenge has been introduced in order to check the capability of a single
algorithm to tackle 10 different classification tasks. The tasks are taken
from the following datasets: ImageNet [225], CIFAR-100 [123], Aircraft
[159], Daimler pedestrian classification (DP) [187], Describable textures
(DTD) [44], German traffic signs (GTS) [250] , Omniglot [128], SVHN
[189], UCF101 Dynamic Images [18, 248] and VGG-Flowers [191]. A
more detailed description of the challenge and the datasets can be found
in [214]. For this challenge, an independent scoring function is defined
[214]. This function S is expressed as:

S =
10

∑
d=1

αdmax{0, Emax
d − Ed}2 (3.3)
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where Emax
d is the test error of the baseline in the domain d, Ed is the test

error of the submitted model and α is a scaling parameter ensuring that
the perfect score for each task is 1000, thus with a maximum score of
10000 for the whole challenge. The baseline error is computed doubling
the error of 10 independent models fine-tuned on the single tasks. This
score function takes into account the performances of a model on all
10 classes, preferring models with good performances on all of them
compared to models outperforming by a large margin the baseline in
just few of them. Following [17], we use this metric also for the first
benchmark, keeping the same upper-bound of 1000 points for each task.
Moreover, as in [17], we report the ratio among the score obtained and
the parameters used, denoting it as Sp. This metric allows to capture the
trade-off among the performances and model size.

Networks and training protocols. For the first benchmark, we use
3 networks: ResNet-50 [98], DenseNet-121 [107] and VGG-16 [245],
reporting the results of Piggyback [160], PackNet [161] and both the
simple [171] and full version of our model (BAT).

Following the protocol of [160], for all the models we start from the
networks pre-trained on ImageNet and train the task-specific networks
using Adam [116] as optimizer except for the classifiers where SGD [21]
with momentum is used. The networks are trained with a batch size of
32 and an initial learning rate of 0.0001 for Adam and 0.001 for SGDwith
momentum 0.9. Both the learning rates are decayed by a factor of 10 after
15 epochs. In this scenario we use input images of size 224 × 224 pixels,
with the same data augmentation (i.e. mirroring and random rescaling)
of [161, 160]. The real-valued masks are initialized with random values
drawn from a uniform distribution with values between 0.0001 and
0.0002. Since our model is independent on the order of the tasks, we do
not take into account different possible orders, reporting the results as
accuracy averaged across multiple runs. For simplicity, in the following
we will denote this scenario as ImageNet-to-Sketch.

For theVisualDecathlonwe employ theWideResNet-28 [297] adopted
by previous methods [214, 223, 160], with a widening factor of 4 (i.e. 64,
128 and 256 channels in each residual block). Following [214] we rescale
the input images to 72 × 72 pixels giving as input to the network images
cropped to 64 × 64. We follow the protocol in [160], by training the
simple and full versions of our model for 60 epochs for each task, with a
batch size of 32, and using again Adam for the entire architecture but the
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classifier, where SGD with momentum is used. The same learning rates
of the first benchmark are adopted and are decayed by a factor of 10 after
45 epochs. The same initialization scheme is used for the real-valued
masks. No hyperparameter tuning has been performed as we used a single
training schedule for all the 10 tasks, except for the ImageNet pre-trained
model, which was trained following the schedule of [214]. As for data
augmentation, mirroring has been performed, except for the datasets
with digits (i.e. SVHN), signs (Omniglot, GTS) and textures (i.e. DTD)
as it may be rather harmful (as in the first 2 cases) or unnecessary.

In both benchmarks, we train our network on one task at the time,
sequentially for all tasks. For each task we introduce the task specific
binary masks and additional scalar parameters, as described in section
3.3.2. Moreover, following previous approaches [214, 215, 160, 223], we
consider a separate classification layers for each task. This is reflected
also in the computation of the parameters overhead required by our
model, we do not consider the separate classification layers, following
comparison systems [214, 215, 160, 223].

3.3.4.1. Results

ImageNet-to-Sketch. In the following we discuss the results obtained by
ourmodel on the ImageNet-to-Sketch scenario. We compare ourmethod
with Piggyback [160], PackNet [161] and two baselines considering the
network only as feature extractor, training only the task-specific classifier,
and individual networks separately fine-tuned on each task. PackNet
[161] adds a new task to an architecture by identifying importantweights
for the task, optimizing the architecture through alternated pruning and
re-training steps. Since this algorithm is dependent on the order of
the task, we report the performances for two different orderings [160]:
starting from the model pre-trained on ImageNet, in the first setting (↓)
the order is CUBS-Cars-Flowers-WikiArt-Sketch while for the second
(↑) the order is reversed. For our model, we evaluate both the full and
the simple version, including task-specific batch-normalization layers.
Since including batch-normalizatin layers affects the performances, for
the sake of presenting a fair comparison, we report also the results of
Piggyback [160] obtained as a special case of our model with separate
BN parameters per task for ResNet-50 and DenseNet-121. Moreover,
we report the results of the Budget-Aware adapters (BA2) method in
[17]. This method relies on binary masks applied not per-parameter
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but per-channel, with a budget constraint allowing to further squeeze
the network complexity. As in our method, also in [17] task-specific BN
layers are used.

Results are reported in Tables 3.1, 3.2 and 3.3. We see that both
versions of our model are able to fill the gap between the classifier only
baseline and the individual fine-tuned architectures, almost entirely in
all settings. For larger and more diverse datasets such as Sketch and
WikiArt, the gap is not completely covered, but the distance between our
models and the individual architectures is always less than 1%. These
results are remarkable given the simplicity of our method, not involving
any assumption of the optimal weights per task [161, 144], and the small
overhead in terms of parameters that we report in the row "# Params"
(i.e. 1.17 for ResNet-50, 1.21 for DenseNet-121 and 1.16 for VGG-16),
which represents the total number of parameters (counting all tasks and
excluding the classifiers) relative to the ones in the baseline network5.

For what concerns the comparison with the other algorithms, our
model consistently outperforms both the basic version of Piggyback and
PackNet in all the settings and architectures, with the exception of Sketch
for the DenseNet and VGG-16 architectures and CUBS for VGG-16, in
which the performances are comparable with those of Piggyback. When
task-specific BN parameters are introduced also for Piggyback (Tables
3.1 and 3.2), the gap in performances is reduced, with comparable per-
formances in some settings (i.e. CUBS) but with still large gaps in others
(i.e. Flowers, Stanford Cars and WikiArt). These results show that the
advantages of our model are not only due to the additional BN param-
eters, but also to the more flexible and powerful affine transformation
introduced.

This statement is further confirmed with the VGG-16 experiments
of Table 3.3. For this network, when the standard Piggyback model is
already able to fill the gap between the feature extractor baseline and
the individual architectures, our model achieves either comparable or
slightly superior performances (i.e. CUBS, WikiArt and Sketch). How-
ever in the scenarios where Piggyback does not reach the performances
of the independently fine-tunedmodels (i.e. Stanford Cars and Flowers),

5 If the base architecture contains Np parameters and the additional bits introduced
per task are Ap then # Params = 1 + Ap ·(T−1)

32·Np
, where T denotes the number of tasks

(included the one used for pre-training the network) and the 32 factor comes from the
bits required for each real number. The classifiers are not included in the computation.
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Tab. 3.1. Accuracy of ResNet-50 architectures in the ImageNet-to-Sketch scenario.

Dataset Classifier PackNet[160] Piggyback BA2 BAT Individual
Only [160] ↓ ↑ [160] BN [17] Simple Full [160]

# Params 1 1.10 1.16 1.17 1.03 1.17 1.17 6
ImageNet 76.2 75.7 75.7 76.2 76.2 76.2 76.2 76.2 76.2
CUBS 70.7 80.4 71.4 80.4 82.1 81.2 82.6 82.4 82.8
Stanford Cars 52.8 86.1 80.0 88.1 90.6 92.1 91.5 91.4 91.8
Flowers 86.0 93.0 90.6 93.5 95.2 95.7 96.5 96.7 96.6
WikiArt 55.6 69.4 70.3 73.4 74.1 72.3 74.8 75.3 75.6
Sketch 50.9 76.2 78.7 79.4 79.4 79.3 80.2 80.2 80.8
Score 533 732 620 934 1184 1265 1430 1458 1500
Score/Params 533 665 534 805 1012 1228 1222 1246 250

Tab. 3.2. Accuracy of DenseNet-121 architectures in the ImageNet-to-Sketch scenario.

Dataset Classifier PackNet[160] Piggyback BA2 BAT Individual
Only [160] ↓ ↑ [160] BN [17] Simple Full [160]

# Params 1 1.11 1.15 1.21 1.17 1.21 1.21 6
ImageNet 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4
CUBS 73.5 80.7 69.6 79.7 81.4 82.4 81.5 81.7 81.9
Stanford Cars 56.8 84.7 77.9 87.2 90.1 92.9 91.7 91.6 91.4
Flowers 83.4 91.1 91.5 94.3 95.5 96.0 96.7 96.9 96.5
WikiArt 54.9 66.3 69.2 72.0 73.9 71.5 75.5 75.7 76.4
Sketch 53.1 74.7 78.9 80.0 79.1 79.9 79.9 79.8 80.5
Score 324 685 607 946 1209 1434 1506 1534 1500
Score/Params 324 617 547 822 999 1226 1245 1268 250

ourmodel consistently outperform the baseline, either halving (Flowers)
or removing (Stanford Cars) the remained gap. Since this network does
not contain batch-normalization layers, it confirms the generality of our
model, showing the advantages of both our simple and full versions,
even without task-specific BN layers.

For what concerns the comparisonwith BA2, the performances of our
model are either comparable or superior in most of the settings. Remark-
able are the gaps in the WikiArt dataset, with our full model surpassing
BA2 by 3% with ResNet-50 and 4% for DenseNet-121. Despite both
Piggyback and BA2 use fewer parameters than our approach, our full
model outperforms both of them in terms of the final score (Score row)
and the ratio among the score and the parameters used (Score/Params
row). This shows that our model is the most powerful in making use
of the binary masks, achieving not only higher performances but also a
more favorable trade-off with the model size.

Finally, both Piggyback, BA2 and our model outperform PackNet
and, as opposed to the latter method, do not suffer from the heavily
dependence on the ordering of the tasks. This advantage stems from
having a sequential multi-task learning strategy that is task independent,
with the base network not affected by the new tasks that are learned.

Visual Decathlon Challenge. In this section we report the results ob-
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Tab. 3.3. Accuracy of VGG-16 architectures in the ImageNet-to-Sketch scenario.

Dataset Classifier PackNet[160] Piggyback BAT Individual
Only [160] ↓ ↑ [160] Simple Full [160]

# Params 1 1.09 1.16 1.16 1.16 6
ImageNet 71.6 70.7 70.7 71.6 71.6 71.6 71.6
CUBS 63.5 77.7 70.3 77.8 77.4 77.4 77.4
Stanford Cars 45.3 84.2 78.3 86.1 87.2 87.3 87.0
Flowers 80.6 89.7 89.8 90.7 91.6 91.5 92.3
WikiArt 50.5 67.2 68.5 71.2 71.6 71.9 67.7
Sketch 41.5 71.4 75.1 76.5 76.5 76.7 76.4
Score 342 1152 979 1441 1530 1538 1500
Score/Params 342 1057 898 1243 1319 1326 250

tained on the Visual Decathlon Challenge. We compare our model with
the baseline method Piggyback [160] (PB), the budget-aware adapters
of [17] (BA2), the improved version of the winner entry of the 2017
edition of the challenge [223] (DAN), the network with task-specific
parallel adapters [215] (PA), the task-specific attention modules of [150]
(MTAN), the covariance normalization approach [140] (CovNorm) and
SpotTune [96]. We additionally report the baselines proposed by the
authors of the challenge [214]. For the latter, we report the results of 5
models: the network used as feature extractor (Feature), 10 different
models fine-tuned on each single task (Fine-tune), the network with
task-specific residual adapter modules [214] (RA), the samemodel with
increased weight decay (RA-decay) and the same architecture jointly
trained on all 10 tasks, in a round-robin fashion (RA-joint). The first
two models are considered as references. For the parallel adapters ap-
proach [215] we report also the version with a post training low-rank
decomposition of the adapters (PA-SVD). This approach extracts a task
specific and a task agnostic component from the learned adapters with
the task specific components which are further fine-tuned on each task.
Additionally we report the novel results of the residual adapters [214]
as reported in [215] (RA-N).

Similarly to [223] we tune the training schedule, jointly for the 10
tasks, using the validation set, and evaluate the results obtained on
the test set (via the challenge evaluation server) by a model trained
on the union of the training and validation sets, using the validated
schedule. As opposed to methods like [214] we use the same sched-
ule for the 9 tasks (except for the baseline pre-trained on ImageNet),
without adopting task-specific strategies for setting the hyperparame-
ters. Moreover, we do not employ our algorithm while pre-training the
ImageNet architecture as in [214]. For fairness, we additionally report
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the results obtained by our implementation of [160] using the same
pre-trained model, training schedule and data augmentation adopted
for our algorithm (PB ours).

The results are reported in Table 3.4 in terms of the S-score (see,
Eq. (3.3)) and Sp. In the first part of the table are shown the baselines
(i.e. fine-tuned architectures and using the network as feature extractor)
while in the middle the sequential learning models against which we
compare. In the last part of the table we report, for fairness, the meth-
ods that do not consider a sequential learning setting since they either
train on all the datasets jointly (RA-joint) or have a multi-process step
considering the all tasks (PA-SVD).

From the table we can see that the full form of our model (F) achieves
very high results, being the third best performing method in terms of
S-score, behind only CovNorm and SpotTune and being comparable to
PA. However, SpotTune uses a large amount of parameters (11x) and PA
doubles the parameters of the original model. CovNorm uses a very low
number of parameters, but requires a two-stage pipeline. On the other
hand, our model does not require neither a large number of parameters
(such as SpotTune and PA) nor a two-stage pipeline (as CovNorm)while
achieving results close to the state of the art (215 points below CovNorm
in terms of S-score). Compared to binary mask based approaches, our
model surpasses PiggyBack of more than 600 points, BA2 of 300 and
BAT simple of more than 200. It is worth highlighting that these results
have been achieved without task-specific hyperparameter tuning, differently
from previous works e.g. [214, 215, 140].

Analyzing the Sp score, BAT is the third best performing model, be-
hind BA2 and CovNorm. We highlight however that CovNorm requires
a two-stage pipeline to reduce the amount of parameters needed, while
BA2 is explicitly designed with the purpose of limiting the budget (i.e.
parameters, flops) required by the model.

Ablation Study
In the followingwewill analyze the impact of the various components

of our model. In particular we consider the impact of the parameters k0,
k1, k2, k3 and the surrogate function h̃ on the final results of our model
for the ResNet-50 and DenseNet-121 architectures in the ImageNet-to-
Sketch scenario. Since the architectures contains batch-normalization
layers, we set k0 = 1 for our simple and full versions and k0 = 0 whenwe
analyze the special case [160]. For the other parameterswe adopt various
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Tab. 3.4. Results in terms of S and Sp scores for the Visual Decathlon Challenge.

Method #Par ImN Airc C100 DP DTD GTS Flw Ogl SVHN UCF Score Sp
Feature [214] 1 59.7 23.3 63.1 80.3 45.4 68.2 73.7 58.8 43.5 26.8 544 544
Fine-tune [214] 10 59.9 60.3 82.1 92.8 55.5 97.5 81.4 87.7 96.6 51.2 2500 250
RA[214] 2 59.7 56.7 81.2 93.9 50.9 97.1 66.2 89.6 96.1 47.5 2118 1059
RA-decay[214] 2 59.7 61.9 81.2 93.9 57.1 97.6 81.7 89.6 96.1 50.1 2621 1311
RA-N[215] 2 60.3 61.9 81.2 93.9 57.1 99.3 81.7 89.6 96.6 50.1 3159 1580
DAN [223] 2.17 57.7 64.1 80.1 91.3 56.5 98.5 86.1 89.7 96.8 49.4 2852 1314
PA [215] 2 60.3 64.2 81.9 94.7 58.8 99.4 84.7 89.2 96.5 50.9 3412 1706
MTAN [150] 1.74 63.9 61.8 81.6 91.6 56.4 98.8 81.0 89.8 96.9 50.6 2941 1690
SpotTune [96] 11 60.3 63.9 80.5 96.5 57.1 99.5 85.2 88.8 96.7 52.3 3612 328
CovNorm [140] 1.25 60.4 69.4 81.3 98.8 60.0 99.1 83.4 87.7 96.6 48.9 3713 2970
PB [160] 1.28 57.7 65.3 79.9 97.0 57.5 97.3 79.1 87.6 97.2 47.5 2838 2217
PB ours 1.28 60.8 52.3 80.0 95.1 59.6 98.7 82.9 85.1 96.7 46.9 2805 2191
BA2 [17] 1.03 56.9 49.4 78.1 95.5 55.1 99.4 86.1 88.7 96.9 50.2 3199 3106
BAT (S) [171] 1.29 60.8 51.3 81.9 94.7 59.0 99.1 88.0 89.3 96.5 48.7 3263 2529
BAT (F) 1.29 60.8 52.8 82.0 96.2 58.7 99.2 88.2 89.2 96.8 48.6 3497 2711
PA-SVD[215] 1.5 60.3 66.0 81.9 94.2 57.8 99.2 85.7 89.3 96.6 52.5 3398 2265
RA-joint[214] 2 59.2 63.7 81.3 93.3 57.0 97.5 83.4 89.8 96.2 50.3 2643 1322

choices: either we fix them to a constant in order not take into account
their impact, or we train them, to assess their particular contribution
to the model. The surrogate function we use is the identity function
h̃(x) = x, unless otherwise stated (i.e. with Sigmoid). The results of our
analysis are shown in Tables 3.5 and 3.6.

As the Tables shows, while the BN parameters allow a boost in the
performances of Piggyback, adding k1 to the model does not provide
further gain in performances. This does not happen for the simple
version of our model: without k1 our model is not able to fully exploit
the presence of the binary masks, achieving comparable or even lower
performances with respect to the Piggyback model. We also notice that
a similar drop affecting our Simple version when bias was omitted.

Noticeable, the full versions with k2 = 0 suffer a large decrease in
performances in almost all settings (e.g. ResNet-50 Flowers from 96.7%
to 91.0%), showing that the component that brings the largest benefits to
our algorithm is the addition of the binary mask itself scaled by k2 (i.e.
k2 · M). This explains also the reason why the simple version achieves
a performance similar to the full version of our model. We finally note
that there is a limited contribution brought by the standard Piggyback
component (i.e. k1 · W ◦ M), compared to the new components that we
have introduced in the transformation: in fact, there is a clear drop in
performance in various scenarios (e.g. CUBS, Cars) when we set either
k1 = 0 or k2 = 0, thus highlighting the importance of those components.
Consequently, as k1 is introduced in our Simple model, the boost of
performances is significant such that neither the inclusion of k3, nor
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Tab. 3.5. Impact of the parameters k0, k1, k2 and k3 of our model using the ResNet-50
architectures in the ImageNet-to-Sketch scenario. ✓ denotes a learned parameter, while ∗

denotes [160] obtained as a special case of our model.

Method k0 k1 k2 k3 CUBS CARS Flowers WikiArt Sketch
Piggyback [160] 0 0 0 1 80.4 88.1 93.6 73.4 79.4
Piggyback∗ 0 0 0 1 80.4 87.8 93.1 72.5 78.6
Piggyback∗ with BN 0 0 0 1 82.1 90.6 95.2 74.1 79.4
Piggyback∗ with BN 0 ✓ 0 1 81.9 89.9 94.8 73.7 79.9
BAT (Simple, no bias) 1 0 ✓ 0 80.8 90.3 96.1 73.5 80.0
BAT (Simple) [171] 1 ✓ ✓ 0 82.6 91.5 96.5 74.8 80.2
BAT (Simple with Sigmoid) 1 ✓ ✓ 0 82.6 91.4 96.4 75.2 80.2
BAT (Full, no bias) 1 0 ✓ ✓ 80.7 90.2 96.0 72.0 78.8
BAT (Full, no k2) 1 ✓ 0 ✓ 80.6 87.5 91.0 73.0 78.4
BAT (Full) 1 ✓ ✓ ✓ 82.4 91.4 96.7 75.3 80.2
BAT (Full with Sigmoid) 1 ✓ ✓ ✓ 82.7 91.4 96.6 75.2 80.2
BAT (Full, channel-wise) 1 ✓ ✓ ✓ 82.0 91.0 96.3 74.8 80.0

Tab. 3.6. Impact of the parameters k0, k1, k2 and k3 of our model using the DenseNet-121
architectures in the ImageNet-to-Sketch scenario. ✓ denotes a learned parameter, while ∗

denotes [160] obtained as a special case of our model.

Method k0 k1 k2 k3 CUBS CARS Flowers WikiArt Sketch
Piggyback [160] 0 0 0 1 79.7 87.2 94.3 72.0 80.0
Piggyback∗ 0 0 0 1 80.0 86.6 94.4 71.9 78.7
Piggyback∗ with BN 0 0 0 1 81.4 90.1 95.5 73.9 79.1
Piggyback∗ with BN 0 ✓ 0 1 81.9 90.1 95.4 72.6 79.9
BAT (Simple, no bias) 1 0 ✓ 0 80.4 91.4 96.7 75.0 79.7
BAT (Simple) [171] 1 ✓ ✓ 0 81.5 91.7 96.7 75.5 79.9
BAT (Simple with Sigmoid) 1 ✓ ✓ 0 81.5 91.7 97.0 76.0 79.8
BAT (Full, no bias) 1 0 ✓ ✓ 80.2 91.1 96.5 75.1 79.2
BAT (Full, no k2) 1 ✓ 0 ✓ 79.8 87.2 91.8 73.2 78.1
BAT (Full) [172] 1 ✓ ✓ ✓ 81.7 91.6 96.9 75.7 79.9
BAT (Full with Sigmoid) 1 ✓ ✓ ✓ 82.0 91.7 97.0 76.0 79.9
BAT (Full, channel-wise) 1 ✓ ✓ ✓ 81.4 91.6 96.5 75.5 79.9

considering channel-wise parameters k1 provide further gains. Slightly
better results are achieved in a larger datasets, such as WikiArt, with the
additional parameters giving more capacity to the model, thus better
handling the larger amount of information available in the dataset.

As to what concerns the choice of the surrogate h̃, no particular ad-
vantage has been noted when h̃(x) = σ(x) with respect to the standard
straight-through estimator (h̃(x) = x). This may be caused by the noisy
nature of the straight-through estimator, which has the positive effect of
regularizing the parameters, as shown in previous works [16, 188].

We also note that for DenseNet-121, as opposed to ResNet-50, setting
k1 to zero degrades the performance only in 1 out of 5 datasets (i.e. CUBS)
while the other 4 are not affected, showing that the effectiveness of
different components of the model is also dependent on the architecture
used.
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Parameter Analysis We analyze the values of the parameters k1, k2

and k3 of one instance of our full model in the ImageNet-to-Sketch
benchmark. We use both the architectures employed in that scenario (i.e.
ResNet-50 and DenseNet-121) and we plot the values of k1, k2 and k3 as
well as the percentage of 1s present inside the binary masks for different
layers of the architectures. Together with those values we report the
percentage of 1s for the masks obtained through our implementation of
Piggyback. Both the models have been trained considering task-specific
batch-normalization parameters. The results are shown in Figures 3.3
and 3.4. In all scenarios our model keeps almost half of the masks
active across the whole architecture. Compared to the masks obtained
by Piggyback, there are 2 differences: 1) Piggyback exhibits denser
masks (i.e. with a larger portion of 1s), 2) the density of the masks in
Piggyback tends to decreases as the depth of the layer increases. Both
these aspects may be linked to the nature of our model: by having more
flexibility through the affine transformation adopted, there is less need
to keep active large part of the network, since a loss of information can
be recovered through the other components of the model, as well as
constraining a particular part of the architecture. For what concerns the
value of the parameters k1, k2 and k3 for both architectures k2 and k3 tend
to have larger magnitudes with respect to k1. Also, the values of k2 and
k1 tend to have a different sign, which allows the term k11 + k2M to span
over positive and negative values. We also notice that the transformation
of the weights are more prominent as the depth increases, which is
intuitively explained by the fact that baseline network requires stronger
adaptation to represent the higher-level concepts pertaining to different
tasks. This is even more evident for WikiArt and Sketch due to the
variability that these datasets contain with respect to standard natural
images.

3.3.5. Conclusions

This section presented a simple yet powerful method for sequentially
learning new tasks, given a fixed, pre-trained deep architecture. In
particular, we generalize previous works on multi-domain learning
applying binary masks to the original weights of the network [160]
by introducing an affine transformation that acts upon such weights
and the masks themselves. Our generalization allows implementing a
large variety of possible transformations, better adapting to the specific
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characteristics of each task. These advantages are shown experimentally
on two public benchmarks fully confirm the power of our approach
which fills the gap between the binary-mask based and state-of-the-art
methods on the Visual Decathlon Challenge.

Interesting future directions are extending this approach to several
life-long learning scenarios (from incremental class learning to open-
world recognition) and exploiting the relationship between different task
through cross-task affine transformations, in order to reuse knowledge
obtained from different tasks by the model.

While in this section we considered multi-domain learning, an inher-
ently multi-head problem, single-head incremental learning scenarios
are considered more challenging in the community, due to the more
severe presence of the catastrophic forgetting problem [36]. In the next
section, we will study the problem of incremental class learning in se-
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Fig. 3.3. Percentage of 1s in the binary masks at different layers depth for Piggyback (left)
and our full model (center) and values of the parameters k1, k2, k3 computed by our full
model (right) for all datasets of the Imagenet-to-Sketch benchmark and the ResNet-50
architecture.
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mantic segmentation, a single-head problem mostly unexplored in the
community.
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Fig. 3.4. Percentage of 1s in the binary masks at different layers depth for Piggyback (left)
and our full BAT model (center, ours) and values of the parameters k1, k2, k3 computed
by our full model (right) for all datasets of the Imagenet-to-Sketch benchmark with the
DenseNet-121 architecture.
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3.4. Incremental Learning in Semantic Segmentation 6

In Section 3.3, we focused on the problem of multi-domain learning,
where the goal is to equip a model to tackle multiple tasks at the same
time. Both in our BAT approach and previous works [214, 215, 223, 140]
this is achieved by learning task-specific parameters which are included
in the original pre-trained model. This kind of scenario falls into the
multi-head incremental learning setting (i.e. one network per task/set
of concepts) and it is considered to be an easier problem than the single-
head counterpart [36]. In the single-head scenario, we have a unique
model classifying all semantic concepts together and, since all concepts
share the same output space, this makes the catastrophic forgetting
problem more severe. In this section, we will describe a solution to
a classical single-head scenario, i.e. incremental class learning, for an
unexplored task: semantic segmentation.

Semantic segmentation is a fundamental problem in computer vision.
In the last years, thanks to the emergence of deep neural networks and
to the availability of large-scale human-annotated datasets [64, 309],
the state of the art has improved significantly [152, 40, 307, 146, 305].
Current approaches are derived by extending deep architectures from
image-level to pixel-level classification, taking advantage of Fully Con-
volutional Networks (FCNs) [152]. Over the years, semantic segmen-
tation models based on FCNs have been improved in several ways, e.g.
by exploiting multiscale representations [146, 305], modeling spatial
dependencies and contextual cues [38, 37, 40] or considering attention
models [39].

Still, existing semantic segmentation methods are not designed to
incrementally update their inner classification model when new cat-
egories are discovered. While deep nets are undoubtedly powerful,
it is well known that their capabilities in an incremental learning set-
ting are limited [114]. In fact, deep architectures struggle in updating
their parameters for learning new categories whilst preserving good
performance on the old ones (catastrophic forgetting [175]).

As described in Section 3.2, the problem of incremental learning has
been traditionally addressed in object recognition [144, 118, 36, 216, 106]
and detection [240], but less attention has been devoted to semantic seg-

6 F. Cermelli, M. Mancini, E. Ricci, B. Caputo. Modeling the Background for Incremental
Learning in Semantic Segmentation. IEEE/CVF International Conference on Computer
Vision and Pattern Recognition (CVPR) 2020.
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mentation. Herewe fill this gap, proposing an incremental class learning
(ICL) approach for semantic segmentation. Inspired by previous meth-
ods on image classification [144, 216, 30], we cope with catastrophic
forgetting by resorting to knowledge distillation [102]. However, we
argue (and experimentally demonstrate) that a naive application of pre-
vious knowledge distillation strategies would not suffice in this setting.
In fact, one peculiar aspect of semantic segmentation is the presence of a
special class, the background class, indicating pixels not assigned to any
of the given object categories. While the presence of this class marginally
influences the design of traditional, offline semantic segmentation meth-
ods, this is not true in an incremental learning setting. As illustrated in
Fig. 3.5, it is reasonable to assume that the semantics associated to the
background class changes over time. In other words, pixels associated
to the background during a learning step may be assigned to a specific
object class in subsequent steps or vice-versa, with the effect of exacer-
bating the catastrophic forgetting. To overcome this issue, we revisit the
classical distillation-based framework for incremental learning [144] by
introducing two novel loss terms to properly account for the semantic
distribution shift within the background class, thus introducing the first
ICL approach tailored to semantic segmentation. We name this method
as MiB (Modeling the Background for incremental learning in semantic
segmentation). We extensively evaluate MiB on two datasets, Pascal-
VOC [64] and ADE20K [309], showing that our approach, coupled with
a novel classifier initialization strategy, largely outperform traditional
ICL methods.
To summarize, the contributions described in this section are as follows:

• We study the task of incremental class learning for semantic seg-
mentation, analyzing in particular the problem of distribution shift
arising due to the presence of the background class.

• We propose a new objective function and introduce a specific
classifier initialization strategy to explicitly cope with the evolving
semantics of the background class. We show that our approach
greatly alleviates the catastrophic forgetting, leading to the state
of the art.

• We benchmark MiB over several previous ICL methods on two
popular semantic segmentation datasets, considering different
experimental settings. We hope that our results will serve as a
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Fig. 3.5. Illustration of the semantic shift of the background class in incremental learning
for semantic segmentation. Yellow boxes denote the ground truth provided in the learning
step, while grey boxes denote classes not labeled. As different learning steps have different
label spaces, at step t old classes (e.g. person) and unseen ones (e.g. car) might be labeled
as background in the current ground truth. Here we show the specific case of single class
learning steps, but we address the general case where an arbitrary number of classes is
added. ©2020 IEEE

reference for future works.

3.4.1. Problem Formulation
Before delving into the details of ICL for semantic segmentation, we

first introduce the task of semantic segmentation. Let us denote as X
the input space (i.e. the image space) and, without loss of generality, let
us assume that each image x ∈ X is composed by a set of pixels I with
constant cardinality |I| = N. The output space is defined as YN , with
the latter denoting the product set of N-tuples with elements in a label
space Y . Given an image x the goal of semantic segmentation is to assign
each pixel xi of image x a label yi ∈ Y , representing its semantic class.
Out-of-class pixels can be assigned a special class, i.e. the background
class b ∈ Y . Given a training set T ⊂ X × YN , the mapping is realized
by learning a model fθ with parameters θ from the image space X to
a pixel-wise class probability vector, i.e. fθ : X → IRN×|Y|. The out-
put segmentation mask is obtained as y∗ = {arg maxc∈Y fθ(x)[i, c]}N

i=1,
where fθ(x)[i, c] is the probability for class c in pixel i.

In the ICL setting, training is realized over multiple phases, called
learning steps, and each step introduces novel categories to be learnt. In
other terms, during the tth learning step, the previous label set Y t−1 is
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Fig. 3.6. Overview of MiB . At learning step t an image is processed by the old (top) and
current (bottom) models, mapping the image to their respective output spaces. As in
standard ICLmethods, we apply a cross-entropy loss to learn new classes (blue block) and
a distillation loss to preserve old knowledge (yellow block). In this framework, we model
the semantic changes of the background across different learning steps by (i) initializing
the new classifier using the weights of the old background one (left), (ii) comparing the
pixel-level background ground truth in the cross-entropy with the probability of having
either the background (black) or an old class (pink and grey bars) and (iii) relating the
background probability given by the old model in the distillation loss with the probability
of having either the background or a novel class (green bar). ©2020 IEEE

expanded with a set of new classes C t, yielding a new label set Y t =

Y t−1 ∪ C t. Following the notation in Section 3.1, at learning step t we
are also provided with a training set T t ⊂ X × (C t)N that is used in
conjunction to the previous model fθt−1 : X → IRN×|Y t−1| to train an
updated model fθt : X → IRN×|Y t |. As in standard ICL, we assume
the sets of labels C t that we obtain at the different learning steps to be
disjoint, except for the special void/background class b.

3.4.2. Modeling the Background for Incremental Learning in
Semantic Segmentation

A naive approach to address the ICL problem consists in retraining
the model fθt on each set T t sequentially. When the predictor fθt is
realized through a deep architecture, this corresponds to fine-tuning the
network parameters on the training set T t initializedwith the parameters
θt−1 from the previous stage. This approach is simple, but it leads to
catastrophic forgetting. Indeed, when training using T t no samples from
the previously seen object classes are provided. This biases the new
predictor fθt towards the novel set of categories in C t to the detriment
of the classes from the previous sets. In the context of ICL for image-
level classification, a standard way to address this issue is coupling the
supervised loss on T t with a regularization term, either taking into
account the importance of each parameter for previous tasks [118, 239],
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or by distilling the knowledge using the predictions of the oldmodel fθt−1

[144, 216, 30]. We take inspiration from the latter solution to initialize
the overall objective function of our problem. In particular, we minimize
a loss function of the form:

L(θt) =
1

|T t| ∑
(x,y)∈T t

(
ℓθt

ce(x, y) + λℓθt

kd(x)
)

(3.4)

where ℓce is a standard supervised loss (e.g. cross-entropy loss), ℓkd

is the distillation loss and λ > 0 is a hyper-parameter balancing the
importance of the two terms.

As stated in Sec. 3.4.1, differently from standard ICL settings con-
sidered for image classification problems, in semantic segmentation
we have that two different label sets Cs and Cu share the common
void/background class b. However, the distribution of the background
class changes across different incremental steps. In fact, background
annotations given in T t refer to classes not present in C t, that might
belong to the set of seen classes Y t−1 and/or to still unseen classes i.e.
Cu with u > t (see Fig. 3.5). In the following, we show how we account
for the semantic shift in the distribution of the background class by
revisiting standard choices for the general objective defined in Eq. (3.4).

Revisiting Cross-Entropy Loss. In Eq.(3.4), a possible choice for ℓce is
the standard cross-entropy loss computed over all image pixels:

ℓθt

ce(x, y) = − 1
|I| ∑

i∈I
log qt

x(i, yi) , (3.5)

where yi ∈ Y t is the ground truth label associated to pixel i and qt
x(i, c) =

fθt(x)[i, c].
The problemwith Eq.(3.5) is that the training set T t we use to update

the model only contains information about novel classes in C t. However,
the background class in T t might include also pixels associated to the
previously seen classes in Y t−1. Here we argue that, without explic-
itly taking into account this aspect, the catastrophic forgetting problem
would be even more severe. In fact, we would drive our model to predict
the background label b for pixels of old classes, further degrading the
capability of the model to preserve semantic knowledge of past cate-
gories. To avoid this issue, we propose to modify the cross-entropy loss
in Eq.(3.5) as follows:

ℓθt

ce(x, y) = − 1
|I| ∑

i∈I
log q̃t

x(i, yi) , (3.6)
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where:

q̃t
x(i, c) =





qt
x(i, c) if c ̸= b

∑k∈Y t−1 qt
x(i, k) if c = b .

(3.7)

Our intuition is that by using Eq.(3.6) we can update the model to
predict the new classes and, at the same time, account for the uncertainty
over the actual content of the background class. In fact, in Eq.(3.6)
the background class ground truth is not directly compared with its
probabilities qt

x(i, b) obtained from the current model fθt , but with the
probability of having either an old class or the background, as predicted by
fθt (Eq.(3.7)). A schematic representation of this procedure is depicted
in Fig. 3.6 (blue block). It is worth noting that the alternative of ignoring
the background pixels within the cross-entropy loss is a sub-optimal
solution. In fact, this would not allow to adapt the background classifier
to its semantic shift and to exploit the information that new images
might contain about old classes.

Revisiting Distillation Loss. In the context of incremental learning,
distillation loss [102] is a common strategy to transfer knowledge from
the old model fθt−1 into the new one, preventing catastrophic forgetting.
Formally, a standard choice for the distillation loss ℓkd is:

ℓθt

kd(x, y) = − 1
|I| ∑

i∈I
∑

c∈Y t−1

qt−1
x (i, c) log q̂t

x(i, c) , (3.8)

where q̂t
x(i, c) is defined as the probability of class c for pixel i given by

fθt but re-normalized across all the classes in Y t−1 i.e.:

q̂t
x(i, c) =




0 if c ∈ C t \ {b}
qt

x(i, c)/ ∑k∈Y t−1 qt
x(i, k) if c ∈ Y t−1 .

(3.9)

The rationale behind ℓkd is that fθt should produce activations close
to the ones produced by fθt−1 . This regularizes the training procedure
in such a way that the parameters θt are still anchored to the solution
found for recognizing pixels of the previous classes, i.e. θt−1.

The loss defined in Eq.(3.8) has been used either in its base form
or variants in different contexts, from incremental task [144] and class
learning [216, 30] in object classification to complex scenarios such as
detection [240] and segmentation [178]. Despite its success, it has a
fundamental drawback in semantic segmentation: it completely ignores
the fact that the background class is shared among different learning
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steps. While with Eq.(3.6) we tackled the first problem linked to the
semantic shift of the background (i.e. b ∈ T t contains pixels ofY t−1), we
use the distillation loss to tackle the second: annotations for background
in T s with s < t might include pixels of classes in C t.

From the latter considerations, the background probabilities assigned
to a pixel by the old predictor fθt−1 and by the current model fθt do not
share the same semantic content. More importantly, fθt−1 might predict
as background pixels of classes in C t that we are currently trying to
learn. Notice that this aspect is peculiar to the segmentation task and it
is not considered in previous incremental learning models. However, in
our setting we must explicitly take it into account to perform a correct
distillation of the old model into the new one. To this extent we define
our novel distillation loss by rewriting q̂t

x(i, c) in Eq.(3.9) as:

q̂t
x(i, c) =




qt
x(i, c) if c ̸= b

∑k∈C t qt
x(i, k) if c = b .

(3.10)

Similarly to Eq.(3.8), we still compare the probability of a pixel belonging
to seen classes assigned by the oldmodel, with its counterpart computed
with the current parameters θt. However, differently from classical dis-
tillation, in Eq.(3.10) the probabilities obtained with the current model
are kept unaltered, i.e. normalized across the whole label space Y t and
not with respect to the subset Y t−1 (Eq.(3.9)). More importantly, the
background class probability as given by fθt−1 is not directly compared
with its counterpart in fθt , but with the probability of having either a new
class or the background, as predicted by fθt (see Fig. 3.6, yellow block).

We highlight that, with respect to Eq.(3.9) and other simple choices
(e.g. excluding b from Eq.(3.9)) this solution has two advantages. First,
we can still use the full output space of the oldmodel to distill knowledge
in the current one, without any constraint on pixels and classes. Second,
we can propagate the uncertainty we have on the semantic content of the
background in fθt−1 without penalizing the probabilities of new classes
we are learning in the current step t.

Classifiers’ Parameters Initialization. As discussed above, the back-
ground class b is a special class devoted to collect the probability that a
pixel belongs to an unknown object class. In practice, at each learning
step t, the novel categories in C t are unknowns for the old classifier fθt−1 .
As a consequence, unless the appearance of a class in C t is very similar
to one in Y t−1, it is reasonable to assume that fθt−1 will likely assign
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pixels of C t to b. Taking into account this initial bias on the predictions of
fθt on pixels of C t, it is detrimental to randomly initialize the classifiers
for the novel classes. In fact a random initialization would provoke a
misalignment among the features extracted by the model (aligned with
the background classifier) and the random parameters of the classi-
fier itself. Notice that this could lead to possible training instabilities
while learning novel classes since the network could initially assign high
probabilities for pixels in C t to b.

To address this issue, we propose to initialize the classifier’s param-
eters for the novel classes in such a way that given an image x and a
pixel i, the probability of the background qt−1

x (i, b) is uniformly spread
among the classes in C t, i.e. qt

x(i, c) = qt−1
x (i, b)/|C t| ∀c ∈ C t, where

|C t| is the number of new classes (notice that b ∈ C t). To this extent,
let us consider a standard fully connected classifier and let us denote
as {ωt

c, βt
c} ∈ θt the classifier parameters for a class c at learning step t,

with ω and β denoting its weights and bias respectively. We can initialize
{ωt

c, βt
c} as follows:

ωt
c =




ωt−1
b if c ∈ C t

ωt−1
c otherwise

(3.11)

βt
c =




βt−1
b − log(|C t|) if c ∈ C t

βt−1
c otherwise

(3.12)

where {ωt−1
b , βt−1

b } are the weights and bias of the background classifier
at the previous learning step. The fact that the initialization defined in
Eq.(3.11) and (3.12) leads to qt

x(i, c) = qt−1
x (i, b)/|C t| ∀c ∈ C t is easy to

obtain from qt
x(i, c) ∝ exp(ωt

b · x + βt
b).

As we will show in the experimental analysis, this simple initializa-
tion procedure brings benefits in terms of both improving the learning
stability of the model and the final results, since it eases the role of the
supervision imposed by Eq.(3.6) while learning new classes and follows
the same principles used to derive our distillation loss (Eq.(3.10)).

3.4.3. Experimental results
3.4.3.1. ICL Baselines

We compare MiB against standard ICL baselines, originally designed
for classification tasks, on the considered segmentation task, thus seg-
mentation is treated as a pixel-level classification problem. Specifically,
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we report the results of six different regularization-basedmethods, three
prior-focused and three data-focused.

In the first category, we chose Elastic Weight Consolidation (EWC)
[118], Path Integral (PI) [300], and Riemannian Walks (RW) [36]. They
employ different strategies to compute the importance of each parameter
for old classes: EWC uses the empirical Fisher matrix, PI uses the learn-
ing trajectory, while RW combines EWC and PI in a unique model. We
choose EWC since it is a standard baseline employed also in [240] and
PI and RW since they are two simple applications of the same principle.
Since these methods act at the parameter level, to adapt them to the
segmentation task we keep the loss in the output space unaltered (i.e.
standard cross-entropy across the whole segmentation mask), comput-
ing the parameters’ importance by considering their effect on learning
old classes.

For the data-focused methods, we chose Learning without forgetting
(LwF) [144], LwF multi-class (LwF-MC) [216] and the segmentation
method of [178] (ILT). We denote as LwF the original distillation based
objective as implemented in Eq.(3.4) with basic cross-entropy and dis-
tillation losses, which is the same as [144] except that distillation and
cross-entropy share the same label space and classifier. LwF-MC is the
single-head version of [144] as adapted from [216]. It is based on multi-
ple binary classifiers, with the target labels defined using the ground
truth for novel classes (i.e. C t) and the probabilities given by the old
model for the old ones (i.e. Y t−1). Since the background class is both
in C t and Y t−1 we implement LwF-MC by a weighted combination of
two binary cross-entropy losses, on both the ground truth and the prob-
abilities given by fθt−1 . Finally, ILT [178] is the only method specifically
proposed for ICL in semantic segmentation. It uses a distillation loss
in the output space, as in our adapted version of LwF [144] and/or
another distillation loss in the features space, attached to the output of
the network decoder. Here, we use the variant where both losses are
employed. As done by [240], we do not compare with replay-based
methods (e.g. [216]) since they violate the standard ICL assumption
regarding the unavailability of old data.

In all tables we report other two baselines: simple fine-tuning (FT)
on each T t (e.g. Eq.(3.5)) and training on all classes offline (Joint). The
latter can be regarded as an upper bound. All results are reported as
mean Intersection-over-Union (mIoU) in percentage, averaged over all
the classes of a learning step and all the steps.
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3.4.3.2. Implementation Details

For all methods we use the Deeplab-v3 architecture [38] with a
ResNet-101 [98] backbone and output stride of 16. Since memory re-
quirements are an important issue in semantic segmentation, we use
in-place activated batch normalization, as proposed in [224]. The back-
bone has been initialized using the ImageNet pre-trained model [224].
We follow [38], training the network with SGD and the same learning
rate policy, momentum and weight decay. We use an initial learning rate
of 10−2 for the first learning step and 10−3 for the followings, as in [240].
We train the model with a batch size of 24 for 30 epochs for Pascal-VOC
2012 and 60 epochs for ADE20K in every learning step. We apply the
same data augmentation of [38] and we crop the images to 512 × 512
during both training and test. For setting the hyper-parameters of each
method, we use the protocol of incremental learning defined in [49],
using 20% of the training set as validation. The final results are reported
on the standard validation set of the datasets.

3.4.3.3. Pascal-VOC 2012

PASCAL-VOC 2012 [64] is a widely used benchmark that includes
20 foreground object classes. Following [178, 240], we define two ex-
perimental settings, depending on how we sample images to build the
incremental datasets. Following [178], we define an experimental pro-
tocol called the disjoint setup: each learning step contains a unique set
of images, whose pixels belong to classes seen either in the current or
in the previous learning steps. Differently from [178], at each step we
assume to have only labels for pixels of novel classes, while the old
ones are labeled as background in the ground truth. The second setup,
that we denote as overlapped, follows what has been done in [240] for
detection: each training step contains all the images that have at least
one pixel of a novel class, with only the latter annotated. It is important
to note a difference with respect to the previous setup: images may now
contain pixels of classes that we will learn in the future, but labeled as
background. This is a more realistic setup since it does not make any
assumption on the objects present in the images.

Following previous works [240, 178], we perform three different
experiments concerning the addition of one class (19-1), five classes
all at once (15-5), and five classes sequentially (15-1), following the
alphabetical order of the classes to split the content of each learning
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Tab. 3.7. Mean IoU on the Pascal-VOC 2012 dataset for the disjoint incremental class
learning scenarios. ©2020 IEEE

19-1 15-5 15-1
Method 1-19 20 all 1-15 16-20 all 1-15 16-20 all
FT 5.8 12.3 6.2 1.1 33.6 9.2 0.2 1.8 0.6
PI [300] 5.4 14.1 5.9 1.3 34.1 9.5 0.0 1.8 0.4
EWC [118] 23.2 16.0 22.9 26.7 37.7 29.4 0.3 4.3 1.3
RW [36] 19.4 15.7 19.2 17.9 36.9 22.7 0.2 5.4 1.5
LwF [144] 53.0 9.1 50.8 58.4 37.4 53.1 0.8 3.6 1.5
LwF-MC [216] 63.0 13.2 60.5 67.2 41.2 60.7 4.5 7.0 5.2
ILT [178] 69.1 16.4 66.4 63.2 39.5 57.3 3.7 5.7 4.2
MiB 69.6 25.6 67.4 71.8 43.3 64.7 46.2 12.9 37.9
Joint 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4

step.

Addition of one class (19-1). In this experiment, we perform two
learning steps: the first in which we observe the first 19 classes, and the
second where we learn the tv-monitor class. Results are reported in Table
3.7 for the disjoint scenario and in Table 3.8 for the overlapped. Without
employing any regularization strategy, the performance on past classes
drops significantly. FT, in fact, performs poorly, completely forgetting
the first 19 classes. Unexpectedly, using PI as a regularization strategy
does not provide benefits, while EWC and RW improve performance of
nearly 15%. However, prior-focused strategies are not competitive with
data-focused ones. In fact, LwF, LwF-MC, and ILT, outperform them by a
large margin, confirming the effectiveness of this approch on preventing
catastrophic forgetting. While ILT surpasses standard ICL baselines, our
model is able to obtain a further boost. This improvement is remarkable
for new classes, where we gain 11% in mIoU, while do not experience
forgetting on old classes. It is especially interesting to compare MiB with
the baseline LwF which uses the same principles of our method but
without modeling the background. Compared to LwF we achieve an
average improvement of about 15%, thus demonstrating the importance
of modeling the background in ICL for semantic segmentation. These
results are consistent in both the disjoint and overlapped scenarios.

Single-step addition of five classes (15-5). In this setting we add, af-
ter the first training set, the following classes: plant, sheep, sofa, train,
tv-monitor. As before, results are reported in Table 3.7 for the disjoint
scenario and in Table 3.8 for the overlapped. Overall, the behavior on
the first 15 classes is consistent with the 19-1 setting: FT and PI suffer a
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Tab. 3.8. Mean IoU on the Pascal-VOC 2012 dataset for the overlapped incremental class
learning scenario.

19-1 15-5 15-1
Method 1-19 20 all 1-15 16-20 all 1-15 16-20 all
FT 6.8 12.9 7.1 2.1 33.1 9.8 0.2 1.8 0.6
PI [300] 7.5 14.0 7.8 1.6 33.3 9.5 0.0 1.8 0.5
EWC [118] 26.9 14.0 26.3 24.3 35.5 27.1 0.3 4.3 1.3
RW [36] 23.3 14.2 22.9 16.6 34.9 21.2 0.0 5.2 1.3
LwF [144] 51.2 8.5 49.1 58.9 36.6 53.3 1.0 3.9 1.8
LwF-MC [216] 64.4 13.3 61.9 58.1 35.0 52.3 6.4 8.4 6.9
ILT [178] 67.1 12.3 64.4 66.3 40.6 59.9 4.9 7.8 5.7
MiB 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7
Joint 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4

large performance drop, data-focused strategies (LwF, LwF-MC, ILT)
outperform EWC and RW by far, while MiB gets the best results, obtain-
ing performances closer to the joint training upper bound. For what
concerns the disjoint scenario, our method improves over the best base-
line of 4.6% on old classes, of 2% on novel ones and of 4% in all classes.
These gaps increase in the overlapped setting where MiB surpasses the
baselines by nearly 10% in all cases, clearly demonstrating its ability to
take advantage of the information contained in the background class.

Multi-step addition of five classes (15-1). This setting is similar to the
previous one except that the last 5 classes are learned sequentially, one
by one. From Table 3.7 and Table 3.8, we can observe that performing
multiple steps is challenging and existing methods work poorly for this
setting, reaching performance inferior to 7% on both old and new classes.
In particular, FT and prior-focused methods are unable to prevent for-
getting, biasing their prediction completely towards new classes and
demonstrating performances close to 0% on the first 15 classes. Even
data-focused methods suffer a dramatic loss in performances in this
setting, decreasing their score from the single to the multi-step scenarios
of more than 50% on all classes. On the other side, MiB is still able to
achieve good performances. Compared to the other approaches, MiB
outperforms all baselines by a large margin in both old (46.2% on the dis-
joint and 35.1% on the overlapped), and new (nearly 13% on both setups)
classes. As the overall performance drop (11% on all classes) shows, the
overlapped scenario is the most challenging one since it does not impose
any constraint on which classes are present in the background.

Ablation Study. In Table 3.9 we report a detailed analysis of our con-
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Tab. 3.9. Ablation study of the proposed method on the Pascal-VOC 2012 overlapped setup.
CE and KD denote our cross-entropy and distillation losses, while init our initialization
strategy. ©2020 IEEE

19-1 15-5 15-1
1-19 20 all 1-15 16-20 all 1-15 16-20 all

LwF [144] 51.2 8.5 49.1 58.9 36.6 53.3 1.0 3.9 1.8
+ CE 57.6 9.9 55.2 63.2 38.1 57.0 12.0 3.7 9.9
+ KD 66.0 11.9 63.3 72.9 46.3 66.3 34.8 4.5 27.2
+ init 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7

Tab. 3.10. Mean IoU on the ADE20K dataset for different incremental class learning
scenarios, adding 50 classes at each step. ©2020 IEEE

100-50 50-50
Method 1-100 101-150 all 1-50 51-100 101-150 all
FT 0.0 24.9 8.3 0.0 0.0 22.0 7.3
LwF [144] 21.1 25.6 22.6 5.7 12.9 22.8 13.9
LwF-MC [216] 34.2 10.5 26.3 27.8 7.0 10.4 15.1
ILT [178] 22.9 18.9 21.6 8.4 9.7 14.3 10.8
MiB 37.9 27.9 34.6 35.5 22.2 23.6 27.0
Joint 44.3 28.2 38.9 51.1 38.3 28.2 38.9

tributions, considering the overlapped setup. We start from the baseline
LwF [144] which employs standard cross-entropy and distillation losses.
We first add to the baseline our modified cross-entropy (CE): this in-
creases the ability to preserve old knowledge in all settings without
harming (15-1) or even improving (19-1, 15-5) performances on the new
classes. Second, we add our distillation loss (KD) to the model. Our
KD provides a boost on the performances for both old and new classes.
The improvement on old classes is remarkable, especially in the 15-1
scenario (i.e. 22.8%). For the novel classes, the improvement is constant
and is especially pronounced in the 15-5 scenario (7%). Notice that this
aspect is peculiar of our KD since standard formulation work only on
preserving old knowledge. This shows that the two losses provide mu-
tual benefits. Finally, we add our classifiers’ initialization strategy (init).
This component provides an improvement in every setting, especially
on novel classes: it doubles the performance on the 19-1 setting (22.1%
vs 11.9%) and triplicates on the 15-1 (4.5% vs 13.5%). This confirms the
importance of accounting for the background shift at the initialization
stage to facilitate the learning of new classes.
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Tab. 3.11. Mean IoU on the ADE20K dataset for a multi-step incremental class learning
scenario, adding 50 classes in 5 steps. ©2020 IEEE

100-10
Method 1-100 100-110 110-120 120-130 130-140 140-150 all
FT 0.0 0.0 0.0 0.0 0.0 16.6 1.1
LwF [144] 0.1 0.0 0.4 2.6 4.6 16.9 1.7
LwF-MC [216] 18.7 2.5 8.7 4.1 6.5 5.1 14.3
ILT [178] 0.3 0.0 1.0 2.1 4.6 10.7 1.4
MiB 31.8 10.4 14.8 12.8 13.6 18.7 25.9
Joint 44.3 26.1 42.8 26.7 28.1 17.3 38.9

3.4.3.4. ADE20K
ADE20K [309] is a large-scale dataset that contains 150 classes. Dif-

ferently from Pascal-VOC 2012, this dataset contains both stuff (e.g. sky,
building, wall) and object classes. We create the incremental datasets
T t by splitting the whole dataset into disjoint image sets, without any
constraint except ensuring a minimum number of images (i.e. 50) where
classes on C t have labeled pixels. Obviously, each T t provides annota-
tions only for classes in C t while other classes (old or future) appear
as background in the ground truth. In Table 3.10 and Table 3.11 we
report the mean IoU obtained averaging the results on two different
class orders: the order proposed by [309] and a random one. In this ex-
periments, we compare MiB with data-focused methods only (i.e. LwF,
LwF-MC, and ILT) due to their gap in performance with prior-focused
ones.

Single-step addition of 50 classes (100-50). In the first experiment, we
initially train the network on 100 classes and we add the remaining 50 all
at once. From Table 3.10 we can observe that FT is clearly a bad strategy
on large scale settings since it completely forgets old knowledge. Using
a distillation strategy enables the network to reduce the catastrophic
forgetting: LwF obtains 21.1% on past classes, ILT 22.9%, and LwF-MC
34.2%. Regarding new classes, LwF is the best strategy, exceeding LwF-
MC by 18.9% and ILT by 6.6%. However, MiB is far superior to all others,
improving on the first classes and on the new ones. Moreover, we can
observe that we are close to the joint training upper bound, especially
considering new classes, where the gap with respect to it is only 0.3%.
In Figure 3.7 we report some qualitative results which demonstrate the
superiority of MiB compared to the baselines.

Multi-step addition of 50 classes (100-10). We then evaluate the per-
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Fig. 3.7. Qualitative results on the 100-50 setting of the ADE20K dataset using different
incremental methods. The image demonstrates the superiority of our approach on both
new (e.g. building, floor, table) and old (e.g. car, wall, person) classes. From left to right:
image, FT, LwF [144], ILT [178], LwF-MC [216], MiB , and the ground-truth. Best viewed
in color. ©2020 IEEE

formance on multiple incremental steps: we start from 100 classes and
we add the remaining classes 10 by 10, resulting in 5 incremental steps.
In Table 3.11 we report the results on all sets of classes after the last
learning step. In this setting the performance of FT, LwF and ILT are
very poor because they strongly suffers catastrophic forgetting. LwF-MC
demonstrates a better ability to preserve knowledge on old classes, at the
cost of a performance drop on new classes. Again, MiB achieves the best
trade-off between learning new classes and preserving past knowledge,
outperforming LwF-MC by 11.6% considering all classes.

Three steps of 50 classes (50-50). Finally, in Table 3.10 we analyze also
the performance on three sequential steps of 50 classes. Previous ICL
methods achieve different trade-offs between learning new classes and
not forgetting old ones. LwF and ILT obtain a good score on new classes,
but they forget old knowledge. On the contrary, LwF-MC preserves
knowledge on the first 50 classes without being able to learn new ones.
MiB outperforms all the baselines by a large margin with a gap of 11.9%
on the best performing baseline, achieving the highest mIoU on every
step. Remarkably, the highest gap is on the intermediate step, where
there are classes that we must both learn incrementally and preserve
from forgetting on the subsequent learning step.
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3.4.4. Conclusions
In this section, we studied the incremental class learning problem

for semantic segmentation, analyzing the realistic scenario where the
new training set does not provide annotations for old classes, leading to
the semantic shift of the background class and exacerbating the catas-
trophic forgetting problem. We address this issue by proposing a novel
objective function and a classifiers’ initialization strategy which allows
our network to explicitly model the semantic shift of the background,
effectively learning new classes without deteriorating its ability to recog-
nize old ones. Results show that MiB outperforms regularization-based
ICL methods by a large margin, considering both small and large scale
datasets. We believe that our problem formulation, our approach and
our extensive comparison with previous methods will encourage fu-
ture works on this novel research topic, especially in the direction of
effectively including the semantic shift in the background class in ICL
models in semantic segmentation.

In Sections 3.3 and Sections 3.4, we focused on the multi-domain
and incremental learning problem respectively, incrementally adding
new semantic task/concepts to a pre-trained model. However, in both
these tasks, the underlying assumption is that the images will contain
only objects we have seen during training or that we can safely consider
as background. A more realistic problem is equipping models with
the ability to not only recognizing semantic concepts and incrementally
learn new ones, but also detecting if an image contains a previously
unseen semantic category. In the next section, we will show how we can
address this problem in the framework of open-world recognition.
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3.5. Open World Recognition 78

In the previous sections, we have discussed how new knowledge in
terms of classification tasks (Section 3.3) and semantic concepts (Section
3.4) can be added to a pre-trained model. In particular, in Section 3.4, we
showed how it is possible to have a model whose output space contains
all the concepts incrementally learned by the model. However, all the
models discussed so-far rely on a simple assumption: all the categories
we are interested in recognize are contained in our output space. This
closed-world assumption (CWA) is unrealistic for agents acting in the
real-world. Indeed it is impossible to capture all existing semantic con-
cepts in a single training set unless we are in a very constrained scenario.
In this section, we take a step forward and we show how we can break
the CWA developing two visual systems able to work in the open world.

To clarify our goal, let us consider the example shown in Fig. 3.8. The
robot has a knowledge base composed by a limited number of classes.
Given an image containing an unknown concept (e.g. banana), we want
the robot to detect it as unknown and being able to add it to its knowledge
base in subsequent learning stages. To accomplish this goal, it is very
important for a robot vision system to have two crucial abilities: (i) it
must be able to recognize already seen concepts and detect unknown
ones (i.e. open set recognition), and (ii) it must be able to extend its
knowledge base with new classes (i.e. incremental learning), without
forgetting the already learned ones and without access to old training
sets, avoiding catastrophic forgetting [175]). While open set recognition
[234, 70, 136] and incremental learning [216, 26, 25, 263] arewell-studied
problems in the literature, few works proposed a solution to solve them
together [15, 50]. Standard approaches for open world recognition
(OWR) equip the nearest class mean (NCM) classification algorithm
with a rejection option based on an estimated threshold. While standard
approaches [15, 50] use shallow features, in this section we take a step
forward, proposing two deep models for open world recognition.

The first model we will discuss builds on recent work by Guerriero et
al. [95] and is (up to our knowledge) the first deep open world recogni-

7 M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, B. Caputo. Knowledge is Never Enough:
Towards Web Aided Deep Open World Recognition. IEEE International Conference on
Robotics and Automation (ICRA) 2019.

8 D. Fontanel, F. Cermelli, M. Mancini, S. Rota Buló, E. Ricci, B. Caputo. Boosting Deep
Open World Recognition by Clustering. IEEE Robotics and Automation Letters 2020.
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Fig. 3.8. In the open-world scenario a robot must be able to classify correctly known
objects, (apple and mug), and detect novel semantic concepts (e.g. banana). When a novel
concept is detected, it should learn the new class from an auxiliary dataset, updating its
internal knowledge. ©2020 IEEE

tion architecture in the literature. This approach couples the flexibility of
non-parametric classification methods, necessary to add incrementally
new classes over time and able to estimate a probability score for each
known class supporting the detection of new classes (Nearest Non Out-
lier, NNO [15]), with the powerful intermediate representations learned
by deep networks. We enable end-to-end training of the architecture
through an online approximate estimate and update function for the
mean prototype representing each known class and for the threshold
allowing to detect novel classes in a life-long learning fashion. We name
this approach DeepNNO (Deep Nearest Non-Outlier)[167].

The second model improves DeepNNO by forcing the deep architec-
ture used as feature extractor to cluster appropriately samples belonging
to the same class, while pushing away samples of other classes. For this
reason, it introduces a global clustering loss term that aims at keeping
closer the features of samples belonging to the same class to their class
centroid. Furthermore, we show how the soft nearest neighbor loss
[230, 74] can be successfully employed as a local clustering loss term in
order to force pair of samples of the same class to be closer in the learned
metric space than relative sample points of other classes. Moreover,
differently from DeepNNO and previous shallow works [15] we avoid
to estimate a global rejection threshold on the model predictions based
on heuristic rules but we (i) define an independent threshold for each
class and (ii) we explicitly learn the thresholds by using a margin-based
loss function which balances rejection errors on samples of a reserved
memory held-out from the training. We name this approach B-DOC
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(B-DOC ) [69].

We evaluate DeepNNO and B-DOC on Core50 [151], RGB-D Object
Dataset [127] and CIFAR-100 [123] datasets, showing experimentally
that DeepNNO outperforms previous OWR methods and B-DOC show
increased effectiveness in both detecting novel classes and adding new
classes to the set of known ones.

The outline of this section is as follows. We start by giving a more
formal definition of the OWR problem (Section 3.5.1) and some prelimi-
naries on the NCM [177, 95] and NNO [15, 50] algorithms which serve
as starting point for our approaches (Section 3.5.2). We then describe
DeepNNO (Section 3.5.2) and B-DOC (Section 3.5.2), showing their
results on the aforementioned benchmarks (Section 3.5.2). We conclude
by providing a perspective toward autonomous visual systems with
preliminary experiments on Web-aided OWR (Section 3.5.6) and the
conclusions (Section 3.5.7).

3.5.1. Problem Formulation
The goal of OWR is producing a model capable of (i) recognizing

known concepts (i.e. classes seen during training), (ii) detecting unseen
categories (i.e. classes not present in any training set used for training
the model) and (iii) incrementally add new classes as new training data
is available. Formally, let us denote as X and Y the input space (i.e.
image space) and the closed world output space respectively (i.e. set
of known classes). Moreover, since our output space will change as we
receive new data containing novel concepts, we will denote as Yt the
set of classes seen after the tth incremental step, with Y0 denoting the
category present in the first training set. Additionally, since we aim to
detect if an image contains an unknown concept, in the following we
will denote as unk the special unknown class, building the output space
as Yt ∪ {unk}. We assume that, at each incremental step, we have access
to a training set Tt = {(xt

1, ct
1), · · · , (xt

Nt
, ct

Nt
)}, with Nt = |Tt|, xt ∈ X ,

and ct ∈ Ct, where Ct is the set of categories contained in the training
set Tt. Note that, without loss of generality, in each incremental step, we
assume to see a new set of classes Ci ∩ Cj = ∅ if i ̸= j. The set of known
classes at step t is computed as Yt = ∪t

i=0Ci and given a sequence of S
incremental steps, our goal is to learn a model mapping input images to
either their corresponding label in YS or to the special class unk. In the
following we will split the classification model into two components:
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a feature extractor f that maps the samples into a feature space and a
classifier g that maps the features into a class label, i.e. g( f (x)) = c with
c ∈ {YS, unk}.

3.5.2. Preliminaries
Standard approaches to tackle theOWRproblemapply non-parametric

classification algorithms on top of learned metric spaces [15, 50]. A
common choice for the classifier g is the Nearest Class Mean (NCM)
[177, 95]. NCM works by computing a centroid for each class (i.e. the
mean feature vector) and assigning a test sample to the closest centroid
in the learned metric space. Formally, we have:

gNCM(x) = arg min
c∈Ct

d( f (x), µc) (3.13)

where d(·, ·) is a distance function (e.g. Euclidean) and µc is the mean
feature vector for class c. The standard NCM formulation cannot be
applied in the OWR setting since it lacks the inherent capability of
detecting images belonging to unknown categories. To this extent, in
[15] the authors extend the NCM algorithm to the OWR setting by
defining a rejection criterion for the unknowns. In this extension, called
Nearest Non-Outlier (NNO), class scores are defined as:

sNNO
c (x) = Z(1 − d( f (x), µc)

τ
), (3.14)

where τ is the rejection threshold and Z is a normalization factor. The
final classification is held-out as:

g(x) =




unk if sNNO
c (x) ≤ 0 ∀c ∈ Yt,

gNCM(x) otherwise.
(3.15)

Following [177], in [15] the features are linearly projected into a metric
space defined by a matrix W (i.e. f (x) = W · x), with W learned on
the first training set T0 and kept fixed during the successive learning
steps. The main limitation of this approach is that new knowledge will
be incorporated in the classifier g without updating the feature extractor
f accordingly. In the next section, we show how the performance of
NNO can be significantly improved by using as f a deep architecture
trained end-to-end in each incremental step.
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3.5.3. Deep Nearest Non-Outlier
The DeepNNO algorithm is obtained from NNO with the following

modifications: (i) the feature extractor function is replaced with deep
representations derived from neural network layers; (ii) an online up-
date strategy is adopted for the mean vectors µc; (iii) an appropriate
loss is optimized using stochastic gradient descent (SGD) methods in
order to compute the feature representations and the associated class
specific means.

First, inspired by the recent work [95], we replace the feature ex-
tractor function f (·) with deep representations derived from a neural
network fθ(·) and define the class-specific probability scores as follows:

sDNNO
c (x) = exp


−1

2
|| fθ(x)− µc||


. (3.16)

Note that, differently from [15], we do not consider explicitly the matrix
W since this is replaced by the network parameters θ. Furthermore, we
avoid to use a clamping function as this could hamper the gradient flow
within the network. This formulation is similar to the NNO version
proposed in [50] which have been showed to be more effective than that
in [15] for online scenarios.

In OWR the classification model must be updated as new samples
arrive. In DeepNNO this translates into incrementally updating the
feature representations fθ(x) and defining an appropriate strategy for
updating the class mean vectors. Given a mini-batch of samples B =

{(x1, c1), . . . , (xb, cb)}, we compute the mean vectors through:

µt+1
c =

nc · µt
c + nc,B · µB

c
nc + nc,B

(3.17)

where nc represents the number of samples belonging to class c seen by
the network until the current update step t, nc,B represents the number
of samples belonging to class c in the current batch and µB

c represents
the current mini-batch mean vector relative to the features of class c.

Given the class-probability scores in DeepNNOwe define the follow-
ing prediction function:

c∗ =




unk if sDNNO
c (x) ≤ ∆ ∀c ∈ Yt

arg maxc∈Yt
sDNNO

c (x) otherwise
(3.18)

where ∆ is a threshold which, similarly to the parameter τ in Eqn.(3.14),
regulates the number of samples that are assigned to a new class. While
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in [15] τ is a user defined parameter which is kept fixed, in this subsec-
tion we argue that a better strategy is to dynamically update ∆ since the
feature extractor function and the mean vectors change during training.
Intuitively, while training the deep network, an estimate of ∆ can be
obtained by looking at the probability score given to the ground truth
class. If the score is higher than the threshold, the value of ∆ can be
increased. Oppositely, the value of the threshold is decreased if the
prediction is rejected. Specifically, given a mini-batch B we update ∆ as
follows:

∆t+1 =
1

t + 1


t · ∆t +

1
CB

∑
c∈Yt

s̄DNNO
c,B


(3.19)

where CB is the number of classes in Yt represented by at least one sam-
ple in B and s̄DNNO

c,B is the weighted average probability score of instances
of class c within the batch. Formally we consider:

s̄DNNO
c,B =

1
ηB,k

b
∑
i=1

wc,i · sDNNO
c (xi) (3.20)

where ηB,k = ∑b
i=1 wc,i is a normalization factor and:

wc,i =




w+ if ci = c ∧ sDNNO
c (xi) > ∆

w− if ci = c ∧ sDNNO
c (xi) ≤ ∆

0 otherwise

(3.21)

where w− and w+ are scalar parameters which allow to assign different
importance to samples for which the scores given to the ground truth
class are respectively rejected or not by the current threshold ∆.

To train the network, we employ standard SGD optimization, mini-
mizing the binary cross entropy loss over the training set:

L =
1
|Tt| ∑

i
ℓCL(xi, ci) (3.22)

where:

ℓCL(xi, ci) = − log sDNNO
ci

(xi)− ∑
c∈Yt

1c ̸=ci log
�
1 − sDNNO

c (xi)


(3.23)

After computing the loss, we use standard backpropagation to update
the network parameters θ. After updating θ, we use the samples of
the current batch to update both the class mean estimates µc and the
threshold ∆, using Eqn.(3.17) and Eqn.(3.19) respectively.
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To allow our model for incremental learning of our deep neural
network, we exploit two additional components. Following standard
rehearsal-based approaches for incremental learning [216, 36, 30], the
first is a memory which stores the most relevant samples of each class
in Yt. The relevance of a sample (x, k) is determined by its distance
dc(x) to the class mean µc i.e. the lower is the distance, the higher is the
relevance of the sample. The memory is used to augment the training
set Tt+1, allowing to update the mean estimates of the classes in Yt as
the network is trained using samples of novel ones. In order to avoid
an unbounded growth, the size of the memory is kept fixed and it is
pruned after each incremental step to make room for instances of novel
classes. The pruning is performed by removing, for each class in Yt, the
instances with lowest relevance.

The second component is a batch sampler which makes sure that a
given ratio of the batch is composed by samples taken from the memory,
independently from the memory size. This allows to avoid biasing
the incremental learning procedure towards novel categories, in the
case their number of samples is much larger than the memory size.
Additionally, we add a distillation loss [102] which act as regularizer
and avoids the forgetting of previously learned features. Denoting as
fYt−1
θ the network trained on the set of known classes, the distillation
loss is defined as:

ℓDS(xi) = || fθ(x)− fYt−1
θ (x)|| (3.24)

The overall loss is thus defined as:

LDNNO =
1
|Tt| ∑

i
(ℓCL(xi, ci) + λℓDS(xi)) (3.25)

where λ is an hyperparameter balancing the contribution of ℓdistill within
L.

3.5.4. Boosting Deep Open World Recognition
Despite its experimental effectiveness (see Section 3.5.5), DeepNNO

has two main drawbacks. First, the learned feature representation f is
not forced to produce predictions clearly localized in a limited region of
the metric space. Indeed, constraining the feature representations of a
given class to a limited region of the metric space allows to have both
more confident predictions on seen classes and producing clearer rejec-
tions also for images of unseen concepts. Second, having an heuristic
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Fig. 3.9. Overview of the B-DOC global to local clustering. The global clustering (left)
pushes sample representations closer to the centroid (star) of the class they belong to. The
local clustering (right), instead, forces the neighborhood of a sample in the representation
space to be semantically consistent, pushing away samples of other classes. ©2020 IEEE

strategy for setting the threshold is sub-optimal with no guarantees on
the robustness of the choice. In the following, we will detail how we
provide solutions to both problems in B-DOC .

To obtain feature representations clearly localized in the metric space
based on their semantic, we propose to use a pair of losses enforcing
clustering. In particular, we use a global termwhich forces the network to
map samples of the same class close to their centroid (Fig.3.9, left) and
a local clustering term which constrains the neighborhood of a sample
to be semantically consistent, i.e. to contain samples of the same class
(Fig.3.9, right). In the following we describe the two clustering terms.

Global Clustering. The global clustering term aims to reduce the dis-
tance between the features of a sample with the centroid of its class. To
model this, we took inspiration from what has been proposed in [177]
and we employ a cross-entropy loss with the probabilities obtained
through the distances among samples and class centroids. Formally,
given a sample x and its class label c, we define the global clustering
term as follows:

ℓGC(x, c) = − log
sB−DOC

c (x)

∑
k∈Yt

sc(x)
. (3.26)
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The class-specific score sc(x) is defined as:

sB−DOC
c (x) =

e−
1
T || fθ(x)−µc ||2

∑
k∈Ct

e−
1
T || fθ(x)−µk ||2

(3.27)

where T is a temperature value which allows us to control the behavior
of the classifier. We set T as the variance of the activations in the feature
space, σ2, in order to normalize the representation space and increase
the stability of the system. During training, σ2 is the variance of the
features extracted from the current batch while, at the same time, we
keep an online global estimate of σ2 that we use at test time. The class
mean vectors µi with i ∈ Yt as well as σ2 are computed in an online
fashion, as in DeepNNO.

Local Clustering. To enforce that the neighborhood of a sample in the
feature space is semantically consistent (i.e. given a sample x of a class c,
the nearest neighbours of f (x) belong to c), we employ the soft nearest
neighbour loss [230, 74]. This loss has been proposed to measure the
class-conditional entanglement of features in the representation space.
In particular, it has been defined as:

ℓLC(x, c,B) = − log

∑
xj∈Bc\{x}

e−
1
T || fθ(x)− fθ(xj)||2

∑
xk∈B\{x}

e−
1
T || fθ(x)− fθ(xk)||2

(3.28)

where T refers to the temperature value, B is the current training batch,
and Bc is the set of samples in the training batch belonging to class c.
Instead of performing multiple learning steps to optimize the value of T
as proposed in [74], we use as T = σ2 as we do in Eq. 3.27.

Intuitively, given a sample x of a class c, a low value of the loss
indicates that the nearest neighbours of f (x) belong to c, while high
values indicates the opposite (i.e. nearest neighbours belong to classes
i ∈ Yt with i ̸= c). Minimizing this objective allows to enforce the
semantic consistency in the neighborhood of a sample in the feature
space.

Knowledge distillation and full objective. As highlighted in the Section
3.5.3, to avoid forgetting old knowledge, we want the feature extractor to
preserve the behaviour learned in previous learning steps. To this extent,
as in DeepNNO, we introduce (i) a memory which stores the most rele-
vant samples for classes in Yt and (ii) a distillation loss which enforces
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Fig. 3.10. Overview of how B-DOC learns the class-specific rejection thresholds. The
small circles represent the samples in the held out set. The dashed circles, having radius
the maximal distance (red), represent the limits beyond which a sample is rejected as a
member of that class. As it can be seen, the class-specific threshold is learned to reduce
the rejection errors. ©2020 IEEE

consistency among the features extracted by f and ones obtained by the
feature extractor of the previous learning step, ft−1. The distillation loss
is computed as in Eq. (3.24). As before, this loss is minimized only for
incremental training steps, hence, only when t > 1. Additionally, we
apply also the same balanced batch sampling scheme of DeepNNO.

Overall, given a batch of samples B = {(x1, c1), · · · , (xb, cb)}, we
train the network to minimize the following loss:

LB−DOC =
1
|B| ∑

(x,c)∈B
ℓGC(x, c) + λ ℓLC(x, c,B) + γ ℓDS(x) (3.29)

with λ and γ hyperparameters weighting the different components.

Learning to detect the unknown. In order to extend the NCM-based
classifier of B-DOC to work on the open set scenario, we explicitly learn
class-specific rejection criterions. As illustrated in Fig. 3.10, for each
class c we define the class-specific threshold as the maximal distance ∆c

for which the sample belongs to c. Under this definition, the B-DOC
classifier is:

g(x) =




unk if d( fθ(x), µc) > ∆c, ∀c ∈ Yt,

argmincd( fθ(x), µc) otherwise
(3.30)

with d(x, y) = 1
σ2 ||x − y||2. Instead of heuristically estimating or fixing

a maximal distance, we explicitly learn it for each class be freezing the
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feature extractor fθ and minimizing the following objective over the
thresholds ∆c:

ℓ∆
MD(x, c) = ∑

k∈Yt

max(0, m · ( 1
σ2 || fθ(x)− µk||2 − ∆k)) (3.31)

where m = −1 if c = k and m = 1 otherwise. The ℓ∆
MD loss leads to

an increase of ∆c if the distance from a sample belonging to the class
c and the class centroid µc is greater than ∆c. Instead, if a sample not
belonging to c has a distance from µc less then ∆c, it increases the value
of ∆c.

Overall, the training procedure of B-DOC is made of two steps: in the
first we train the feature extractor on the training set minimizing Eq. 3.29,
while in the second we learn the distances ∆c on a set of samples which
we held-out from training set. To this extent, we split the samples of the
memory in two parts, one used for updating the feature extractor f and
the centroids µc and the other part for learning the ∆c values.

3.5.5. Experimental results
In this subsection, we first introduce the experimental setting and

the metrics used for the evaluation, then we report results of DeepNNO
and B-DOC , showing ablation studies for each of their components.

Datasets and Baselines. We assess the performance of our models on
three datasets: RGB-D Object [127] Core50 [151] and CIFAR-100 [123].
The RGB-D Object dataset [127] is one of the most used dataset to eval-
uate the ability of a model to recognize daily-life objects. It contains 51
different semantic categories that we split in two parts in our experi-
ments: 26 classes are considered as known categories, while the other
25 are the set of unknown classes. Among the 26 classes, we consider
the first 11 classes as the initial training set and we incrementally add
the remaining classes in 4 steps of 5 class each. As proposed in [127],
we sub-sample the dataset taking one every fifth frame. For the experi-
ments, we use the first train-test split among the original ones defined
by the authors [127]. In each split one object instance from each class is
chosen to be used in the test set and removed from the training set. This
split provides nearly 35,000 training images and 7,000 test images.

Core50 [151] is a recently introduced benchmark for testing continual
learning methods in an egocentric setting. The dataset contains images
of 50 objects grouped into 10 semantic categories. The images have been
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(a) Closed World Without Rejection (b) Closed World With Rejection

(c) Open World Recognition Average (d) Open World Recognition Harmonic
Mean

Fig. 3.11. Comparison of NNO [15], DeepNNO and B-DOC on RGB-DObject dataset [127].
The numbers in parenthesis denote the average accuracy among the different incremental
steps. ©2020 IEEE

acquired on 11 different sequences with varying conditions. Following
the standard protocol described in [151], we select the sequences 3, 7,
10 for the evaluation phase and use the remaining ones to train the
model. Due to these differences in conditions between the sequences,
Core50 represents a very challenging benchmark for object recognition.
As in the RGB-D Object dataset, we split it into two parts: 5 classes are
considered known and the other 5 as unknown. In the known set, the
first 2 classes are considered as the initial training set. The others are
incrementally added 1 class at a time.

CIFAR-100 [123] is a standard benchmark for comparing incremental
class learning algorithms [216]. It contains 100 different semantic cate-
gories. We split the dataset into 50 known and 50 unknown classes and
considering 20 classes as the initial training set. Then, we incrementally
add the remaining ones in steps of 10 classes. We evaluate the perfor-
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(a) Closed World Without Rejection (b) Closed World With Rejection

(c) Open World Recognition Average (d) Open World Recognition Harmonic
Mean

Fig. 3.12. Comparison of NNO [15], DeepNNO and B-DOC on Core50 [151]. The numbers
in parenthesis denote the average accuracy among the different incremental steps. ©2020
IEEE

mance of DeepNNO and B-DOC in the OWR scenario comparing it with
NNO [15], using the simplified implementation in [50]. We further
compare our methods with two standard incremental class learning
algorithms, namely LwF [144] (in the MC variant of [216]) and iCaRL
[216]. Both LwF and iCaRL are designed for the closed world scenario,
thus we use their performances as reference in that setting, without
open-ended evaluation. For each dataset, we have randomly chosen five
different sets of known and unknown classes. After fixing them, we run
the experiments three times for each method. The results are obtained
by averaging the results among each run and order.

Networks architectures and training protocols. We use a ResNet-18
architecture [98] for all the experiments. For RGB-D Object dataset and
Core50, we train the network from scratch on the initial classes for 12
epochs and for 4 epochs in the incremental steps. For CIFAR-100, instead,
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(a) Open World Recognition Average (b) Open World Harmonic Mean

Fig. 3.13. Comparison of NNO [15], DeepNNO and B-DOC on CIFAR-100 dataset [123].
The numbers in parenthesis denote the average accuracy among the different steps. ©2020
IEEE

we set the epochs to 120 for the initial learning stage and to 40 for each
incremental step. In the case of NNO we use the features extracted
from the pre-trained network to compute the class-specific mean vectors
of novel categories, but we do not update the weight matrix W and
the threshold parameter τ, as in [15]. For DeepNNO we use an initial
learning rate of 1.0 in all settings, for B-DOCwe use a learning rate of 0.1
for the RGB-D Object dataset and CIFAR-100, and 0.01 for Core50, with
a batch size of 128 for RGB-D Object dataset and of 64 for CIFAR-100
and Core50. We train the networks using SGD with momentum 0.9 and
a weight decay of 10−3 on all datasets. We resize the images of RGB-D
Object dataset to 64 × 64 pixels, the ones of CIFAR-100 to 32x32 and the
images of Core50 to 128× 128 pixels. We perform random cropping and
mirroring for all the datasets. In all experiments, we set λ = 1, w+ = 1
and w− = 3 for DeepNNO, while λ = γ = 1 for B-DOC . For both
methods we consider a fixed size memory of 2000 samples, constructing
each batch by drawing 40% of the instances from the memory. Note that,
in B-DOC 20% of the samples present in the memory are never seen
during training, but are used only to learn the class-specific threshold
values ∆c. For this set of held-out samples, we also perform color jittering
varying brightness, hue and saturation.

MetricsWe use 3 standard metrics for comparing the performances of
OWR methods. For the closed world we show the global accuracy with
and without rejection option. Specifically, in the closed world without
rejection setting, the model is tested only on the known set of classes,
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excluding the possibility to classify a sample as unknown. This scenario
measures the ability of the model to correctly classify samples among
the given set of classes. In the closed world with rejection scenario, in-
stead, the model can either classify a sample among the known set of
classes or categorize it as unknown. This scenario is more challenging
than the previous one because samples belonging to the set of known
classes might be misclassified as unknowns. For the open world we use
the standard OWR metric defined in [15] as the average between the
accuracy computed on the closed worldwith rejection scenario and the ac-
curacy computed on the open set scenario (i.e. the accuracy on rejecting
samples of unknown classes). Since the latter metric creates biases on
the final score (i.e. a method rejecting every sample will achieve a 50%
accuracy), we introduced the OWR-H as the harmonic mean between
the accuracy on open set and the closed world with rejection scenarios
to mitigate this bias.

3.5.5.1. Quantitative results

We report the results on the RGB-DObject dataset in Fig. 3.11. Consid-
ering the closed world without rejection, reported in Fig. 3.11a. This sce-
nario is used to asses the ability of a method to learn novel classes while
preserving old knowledge, without considering the open-set scenario.
As a first observation, we note that both our deep methods outperform
NNO by a large margin (i.e. 9.2% DeepNNO and 14.8% B-DOC in accu-
racy on average), showing the importance of end-to-end trained deep
representations for OWR. Remarkably, B-DOC outperforms DeepNNO
by 5.6% of accuracy on average. The reason for the improvement comes
from the introduction of the global and local clustering loss terms, which
allows the model to better aggregate samples of the same class and to
better separate them from samples of other classes. Comparing our
models with the incremental class learning approaches LwF and iCaRL,
we can see that both of them are highly competitive, surpassing LwF
with a large gap while being either comparable (B-DOC ) or slightly
inferior (DeepNNO) with the more effective iCaRL. We believe these
are remarkable results given that the main goal of our models is not to
purely extend their knowledge over time with new concepts.

For what concerns the comparison on the closed world with rejection,
shown in Fig. 3.11b, again DeepNNO and B-DOC surpass NNO in
terms of performance. However, the results of B-DOC are remarkable,
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demonstrating how it is achieves higher confidence on the known classes,
being able to reject a lower number of known samples. In particular,
B-DOC is more confident on the first incremental steps, and obtains, on
average, an accuracy of 10.3% more than DeepNNO.

The findings are confirmed also onOWRmetrics. Again, bothDeepNNO
andB-DOC surpassNNO, showing the importance of end-to-end trained
representations and updated thresholds in achieving a higher perfor-
mance, even in the presence of unknowns. Even on the OWRmetrics,
B-DOC surpasses DeepNNO. From the results of OWR, reported in
Fig. 3.11c, we see that B-DOC reaches performance similar to DeepNNO
in the first steps, while it outperforms it in the latest ones. However, con-
sidering the OWR-H (Fig. 3.11d), B-DOC is better in all the incremental
steps. This is because its learned rejection criterion, coupled with the
clustering losses, allows B-DOC to achieve a better trade-off between the
accuracy of open set and closed world with rejection. Overall, B-DOC
improves on average by 4.8% and 5.2% with respect to DeepNNO in
the OWR and OWR-H metrics respectively. We will provide a deeper
analysis on the rejection criterion of DeepNN and B-DOC with ablation
studies in the next subsections.

In Fig. 3.12 we report the results on the Core50 [151] dataset. Simi-
larly to the RGB-D Object dataset, DeepNNO and B-DOC achieve very
competitive results with respect to incremental class learning algorithms
designed for the closed world scenario, with B-DOC remarkably outper-
forming iCaRL by 4.7% of accuracy in the last incremental step. Similarly,
B-DOC achieves a superior performance in both closed world, without
and with rejection option with respect to the other OWR algorithms, out-
performing NNO by 13.01% and DeepNNO by 7.74% on average in the
first (Fig. 3.12a) and by more than 10% for both NNO and DeepNNO in
the latter (Fig. 3.12b). In particular, it is worth noting how the challenges
of Core50 (i.e. train and test acquisitions under different conditions)
does not allow DeepNNO and NNO to properly model the confidence
threshold, rejecting most of the sample of the known classes. Indeed, by
including the rejection option the accuracy drops to 27.2% and 26.3%
respectively for DeepNNO and NNO, while B-DOC reaches an average
accuracy of 38.0%.

In Fig. 3.12c and Fig. 3.12d, we report the OWR performances (stan-
dard and harmonic) on Core50. While DeepNNO surpasses the per-
formance of NNO in both metrics (5.4% in standard OWR and 3.1% in
OWR-H), B-DOC performs even better, outperforming DeepNNO by
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Fig. 3.14. CIFAR-100 results in the closed
world scenario. ©2019 IEEE
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Fig. 3.15. CIFAR-100: open world perfor-
mances varying the number of known and
unknown classes. ©2019 IEEE

3.4% and 7.2% in average respectively in standard OWR and OWR-H
metrics, confirming the effectiveness of the clustering losses and the
learned class-specific maximal distances.

Finally, in Fig. 3.13 we report the results on the CIFAR-100 dataset in
terms of the OWR (Fig. 3.13a) and OWR-Hmetrics (Fig. 3.13b). Even in
this benchmark, confirms the finding of previous analysis: end-to-end
trained methods with updated thresholds (DeepNNO and B-DOC )
are more effective than shallow methods (NNO). Similarly to previous
analyses, B-DOC outperforms, on average both DeepNNO and NNO,
with lower performances only in the initial training stage. However, in
the incremental learning steps B-DOC clearly outperforms bothmethods,
demonstrating its ability to learning and recognizing in an open-world
without forgetting old classes. The relative gaps are still remarkable.
DeepNNO improves over NNO by 6.3% and 4% in OWR and OWR-H
metrics respectively. However, in the incremental steps, the average
improvement of B-DOC over NNO are of 10% in both OWR and OWR-
H metrics, while over DeepNNO are of 2% for the OWR and 4.5% for
the OWR-H metric.

3.5.5.2. Ablation study of DeepNNO
DeepNNO improves over NNO by introducing two main aspects:

end-to-end trained deep representations with an updated rejection
threshold, and a distillation loss to preserve old knowledge. In the
following we analyze in detail the reasons behind the improvement of
DeepNNO with respect to NNO on the CIFAR-100 dataset, focusing
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first on the importance of learning deep representations with updated
thresholds and then on the impact of the distillation loss.

Deep representation and updated threshold. We start by performing ex-
periments in the closed world scenario, i.e. measuring the performances
considering only the set of known classes. In particualr, we compare the
performance of DeepNNO with NNO and DeepNNO without rejection
option (i.e. DeepNNO-no rejection). The latter baseline method is the
upper bound of DeepNNO in terms of performances in the closed world,
since it does not reject any instance of known classes (i.e. it does not
identify samples of known classes as unknowns). This baseline is used
to demonstrate the validity of the method in Eq. (3.19) for setting the
threshold ∆. The results are shown in Fig. 3.14 where the numbers
between parenthesis denote the average accuracy among the different
incremental steps. From Fig. 3.14 it is possible to draw two observations.
First, there is a large gap between the performances of DeepNNO and
NNO, with our model outperforming its non-deep counterpart by more
than 16% on average and by more than 20% after all the incremental
steps.

The improved performance of DeepNNO can be ascribed to the
fact that, by dynamically updating the learned feature representations,
DeepNNO is able to better adapt the learned classifier to novel seman-
tic concepts. Second, DeepNNO achieves results close to DeepNNO
without rejection. This indicates that, thanks to the proposed approach
for setting the threshold ∆, DeepNNO only rarely identifies samples of
known classes as belonging to an unknown category. We believe this is
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mainly due to the introduction of the different weighting factors w− and
w+ while updating ∆. This observation is confirmed by results shown
in Fig. 3.16 which analyzes the effect of varying w− with w+ fixed to
1. As w− decreases, the accuracy decreases as well, due to the higher
value reached by ∆ which leads to wrongly reject many samples, clas-
sified as instances of unknown classes. We want to highlight however
that for more complex and realistic scenario, the threshold obtained by
DeepNNO does not generalize as well and more the more principled
strategy of B-DOC results more effective, as we will show in the next
subsection.

As a second experiment, we compare the performances of DeepNNO
and NNO in the open world recognition scenario varying the number of
known and unknown classes. The results are shown in Fig. 3.15, from
which it is easy to see that DeepNNO outperforms its non-deep coun-
terpart by a large margin. In fact, in this scenario, our model achieves
a standard OWR accuracy 9% higher than standard NNO on average,
considering 50 unknown classes. Moreover, this margin increases dur-
ing the training: after all the incremental steps our model outperforms
NNO by a margin close to 15%. It is worth noting that the advantages
of our model are independent on the number of unknown classes, since
DeepNNO constantly outperforms NNO in all settings.

Distillation loss. Another important component of DeepNNO is the
distillation loss. This loss guarantees the right balance between learning
novel concepts and preserving old features. To analyze its impact, in
Fig. 3.17 we report the performances of DeepNNO in the closed world
scenario for different values of λ. From the figure it is clear that, without
the regularization effect of the distillation loss, the accuracy significantly
drops. On the other hand, a high value of λ leads to poor performances
and low confidence on the novel categories. Properly balancing the
contribution of classification and distillation loss the best performance
can be achieved. The use of the distillation loss is thus crucial for limiting
the catastrophic forgetting, as previously verified in [144, 216].

3.5.5.3. Ablation study of B-DOC
B-DOC ismainly built on three components, i.e. global clustering loss

(GC), local clustering loss (LC) and the learned class-specific rejection
thresholds. In the following we analyze the contribution of each of them.
We start from the two clustering losses and then we compare the choice
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Method Known Classes OWR
11 16 21 26 [20] H

GC 66.0 57.3 58.6 53.3 58.8 58.7
LC 64.1 56.0 57.9 56.4 58.6 58.4
Triplet 62.1 54.9 54.8 49.5 55.4 55.4
GC + LC 67.7 59.6 59.5 57.3 61.0 60.8

Tab. 3.12. Ablation study of B-DOC on the global (GC), local clustering (LC) and Triplet
loss on the OWRmetric. The right column shows the average OWR-H over all steps. ©2020
IEEE

Method Class Multi Known Unknown Diff.specific stage
DeepNNO 84.4 98.8 14.4

B-DOC
✓ 83.0 98.6 15.6

✓ 4.4 26.9 22.6
✓ ✓ 27.4 65.2 37.8

Tab. 3.13. Rejection rates of different techniques for detecting the unknowns. The results
are computed using the same feature extractor on the RGB-D Object dataset. ©2020 IEEE

we made for the rejection with other common choices.

Global and local clustering. In Table 3.12we compare the two clustering
terms considering the open world recognition metrics in the RGB-D
Object dataset. By analyzing the two loss terms separately we see that,
on average, they show similar performance. In particular, using only the
global clustering (GC) term we achieve slightly better performance on
the first three incremental steps, while on the fourth the local clustering
(LC) term is better. However, the best performance on every step is
achieved by combining the global and local clustering terms (GC + LC).
This demonstrates that the two losses provide different contributions,
being complementary to learn a representation space which properly
clusters samples of the same classes while better detecting unknowns.

Lastly, since the B-DOC loss functions and triplet loss [11] share
the same objective, i.e. building a metric space where samples sharing
the same semantic are closer then ones with different semantics, we
report in Table 3.12 also the results achieved by replacing our loss terms
with a triplet loss [11]. As the Table shows, the triplet loss formulation
(Triplet) fails in reaching competitive results with respect to our full
objective function in Eq. (3.29), with a gap of more than 5% in both
standard OWR metric and OWR harmonic mean. Notably, it achieves
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lower results also with respect to all of the loss terms in isolation and the
superior performances of LC confirm the advantages of SNNL-based
loss functions with respect to triplets, as shown in [74].

Detecting the Unknowns. In Table 3.13 we report a comparison of dif-
ferent strategies to reject samples on the RGB-D Object dataset [127]. In
particular, using the same feature extractor, we compare the proposed
method to learn the class-specific maximal distances (i.e. Eq. (3.31))
with three baselines: (i) the online update strategy ofDeepNNO(Eq. (3.19)),
(ii) we learn class-specific maximal distances but during training (i.e.
without our two-stage pipeline) and (iii) we learn a single maximal dis-
tance which applies to all classes using our two-stage training strategy.

The comparison is performed considering the difference of the rejec-
tion rates on the known and unknown samples. For the known class
samples, we report the percentage of correctly classified samples in the
closed-world that are rejected when the rejection option is included.
We intentionally remove the wrongly classified samples since we want
to isolate rejection mistakes from classification ones. On the unknown
samples, we report the open-set accuracy, i.e. the percentage of rejected
samples among all the unknown ones. In the third column, we report
the difference among the open-set accuracy and the rejection rate on
known samples. Ideally, the difference should be as close as possible to
100%, since we want a 100% rejection rate on unknown class samples
and 0% on the known class ones.

From the table, we can see that the highest gap is achieved by the
class-specific maximal distance with the two-stage pipeline we pro-
posed, which rejects 27.4% of known class samples and 65.2% on the
unknown ones. The gap with the other strategies is remarkable. Using
the two stage-pipeline but a class-generic maximal distance leads to a
low rejection rate, both on known and unknown samples, achieving
a difference of 22.6%, which is 15.2% less than using a class-specific
distance. On the other hand, estimating the confidence threshold as pro-
posed in DeepNNO or without our two-stage pipeline provides a very
high rejection rate, both on known and unknown classes, which lead
to a difference of 14.4% and 15.6% for DeepNNO and the single-stage
strategy respectively, the lowest two among the four strategies. In fact,
computing the thresholds using only the training set biases the rejection
criterion on the overconfidence that the method has acquired on this set.
Consequently, this makes the model considering the different test data

3.	 Recognizing New Semantic Concepts 191



164 Towards Recognizing New Semantic Concepts in New Visual Domains

 Incremental 
Learning

 

DeepNNO Novel
?

Yes

Label 
Retrieval

Image collection

Fig. 3.18. Overview of the open world recognition task within a robotic platform. Given
an image of an object, a classification algorithm assigns to it a class label. If the object is
recognized as novel, the object label and relative are obtained through external resource
(e.g. a human and/or the Web). Finally, the images are used to incrementally updated the
knowledge base of the robot. ©2019 IEEE

distribution (caused by e.g. different object instances) as a source for
rejection even if the actual concept present in the input is known. Using
the two-stage process we can overcome this bias, tuning the rejection
criterion on unseen data on which the model cannot be overconfident.

3.5.6. Towards Autonomous Visual Systems: Web-aided OWR

The OWR frameworks considered so far assumes the existence of
an ’oracle’, providing annotated images for each new class. In a robotic
scenario, this has been often translated into having a human in the loop,
with the robot asking for images and labels. This scenario somehow
limits the autonomy of a robot system, that without the presence of a
teacher, would find itself stuck when detecting a new object. Moreover,
especially in robotics applications, this assumption is highly unrealistic
since: i) the labels of samples of unknown categories are, by defini-
tion, unknown; ii) images of the unknown classes for incrementally
updating the model are usually unavailable, since it is impossible to
have a pre-loaded database containing all possible classes existing in the
real world. In the last part of this section we want to describe a simple
general pipeline to address the aforementioned issues with first pilot
experiments showing its possible application.

We start by considering the problem of retrieving the correct label of
an unknown object. To this extent, we exploit standard search tools used
by humans. First, once an object is recognized as unknown, we query
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Fig. 3.19. CIFAR-100: performances ofWeb-
aided OWR in the open world scenario,
with 50 unknown classes. ©2019 IEEE
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Fig. 3.20. Core50 dataset: performances
of Web-aided OWR in the open world sce-
nario, with 5 unknown classes. ©2019 IEEE

the Google Image Search engine9 to retrieve the closest keyword to the
current image. Obviously the retrieved labelmight not be correct e.g. due
to low resolution of the image or a non canonical pose of the object. We
tackle this issue through an additional human verification step, leaving
the investigation of this problem to futureworks. As subsequent step, we
use the retrieved keyword to automatically download images from the
web. These weakly-annotated and noisy images represent new training
data for the novel category which can be used to incrementally train the
deep network. Fig. 3.18 shows an overview of our pipeline. Interestingly,
this simple framework mimics the human ability to learn not only from
situated experiences, but also from visual knowledge externalized on
artifacts (e.g. like drawings), or indeed Web resources.

We conduct a first series of preliminary experiments, using web-
images in the incremental learning steps of DeepNNO, to validate the
feasibility of this pipeline. The results of our experiments are shown
in Fig. 3.19 for CIFAR-100 and in Fig. 3.20 for Core50. As expected,
considering images from the Web instead of images from the datasets
lead to a decrease in terms of performance. However, the accuracy of
the Web-based DeepNNO is still good, especially when compared with
its non-deep counterpart.

On theCIFAR-100 experimentswe achieve a remarkable performance,
with Web DeepNNO outperforming NNO by 3.5% on average and by
more than 5% after all the incremental steps, with respect to the stan-
dard OWR metric. We highlight that these results have been achieved

9 https://images.google.com/
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Fig. 3.21. Qualitative results of deployment of DeepNNO on a robotic platform. The
robot recognizes an object as unknown (i.e. the red hammer, bottom) and adds it to the
knowledge base through the incremental learning procedure (top right). ©2019 IEEE

exploiting only noisy and weakly labeled Web images, without any fil-
tering procedure or additional optimization constraints. On the Core50
experiments, the gap Between DeepNNO and NNO is lower, as shown
in Fig, 3.12c and 3.12d and this impacts also the results of theWeb-based
version of DeepNNO, achieving a modest improvement with respect
to NNO. We ascribe this behavior to the fact that there is a large ap-
pearance gap between Core50 images gathered in an egocentric setting
and Web images, thus both the rejection threshold and the semantic
centroids of new classes are not able to well model the underline data
distribution, with deteriorated final results. We believe that this issue
can be addressed in future works by e.g. imposing some constraints
on the quality of downloaded images and by coupling DeepNNO with
domain adaptation techniques [203, 28, 166, 169] in order to reduce the
domain shift between downloaded images and training data.

To validate the applicability of the pipeline in a real scenario, we
tested the Web-aided version of DeepNNO by integrating it into a visual
object detection framework and running it on a Yumi 2-armmanipulator
equipped with a Kinect. We have used the Faster-RCNN framework
in [219] with the ResNet-101 architecture [99] as backbone. We pre-
trained the network on the COCO dataset [147], after replacing the
standard fully-connected classifier with the proposed DeepNNO. We
performed an open world detection experiment by placing multiple
objects (known andunknowns) in theworkspace of the robot. Whenever
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a novel object is detected, the robot tries to get the corresponding label
from Google Image Search, using the cropped image of the unknown
object. In case the label is not correct, a human operator cooperates with
the robot and provides the right label. The provided label is used by
the robot to automatically download the images associated to the novel
class from the Web sources. These images and the original one where
the object has been detected in the workspace, are then used to update
the classification model.

Figure 3.21 shows a qualitative result associated to our experiment.
The robot was able to correctly detect the red hammer as unknown, add
it in its knowledge base and recognize it in subsequent learning steps.
10 Despite the simplicity of the workspace, we want to highlight that the
robot was able to recognize the hammer without any explicitly labeled
training data for the class of interest.

We want to point out that here we are not claiming that our frame-
work is incorporating new knowledge into a visual robotic system in
a completely autonomous and fully effective way. Indeed (i) the hu-
man verification step on the retrieved keyword is necessary and (ii)
web supervision [57, 41] requires to address challenges such as noisy
labels [193] and domain shift [287], which we did not take into account.
Nevertheless, we still believe our experiments show how our pipeline
is a feasible starting point which is worth exploring in future research
directions toward autonomous learners in the real world.

3.5.7. Conclusions
In this section, we presented two approaches to tackle the open

world recognition problem in robot vision. We base our approaches on
an NCM classifier built on top of end-to-end trainable deep features
(DeepNNO), and we further boost the OWR performances of this frame-
work by training the deep architecture to minimize a global to local
semantic clustering loss (B-DOC ) which allows reducing distances of
samples of the same class in the feature space while separating them
from points belonging to other classes, better detecting unknown con-
cepts. In B-DOC we also avoid heuristic estimates of a rejection criterion
for detecting unknowns by explicitly learning class-specific distances
beyond which a sample is rejected. Quantitative and qualitative analysis
on standard recognition benchmarks shows the efficacy of the proposed

10 A full example is available in the supplementary material of [167].
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approaches and choices, outperforming the previous state-of-the-art
OWR algorithm. Finally, we also showed preliminary experiments with
a simple pipeline for allowing the robot to autonomously learn new se-
mantic concepts, without the aid of an oracle providing it with a training
set containing the desired target classes.

Future works will further investigate webly supervised approaches
with the goal of pushing the envelope in life-long learning of autonomous
systems. In particular, when training images are autonomously retrieved
from the Web, they come with inherent noisy labeling (e.g. wrong se-
mantic) and domain shift (e.g. white backgrounds). Attacking all these
problems would allow active visual systems to get closer to full auton-
omy. In an intermediate direction, it would be interesting to analyze
the OWR problem in an active learning context [199], letting the robot
decide when to ask for human help for either collecting data or label
new concepts.

This section concludes our line of works on incrementally injecting
new knowledge in a pre-trained deep model under various scenarios,
with (ICL) or without (multi-domain learning) shared output spaces
with old knowledge, and with (ICL, multi-domain learning) or without
(OWR) closed-world assumption. Additionally, we identified problems
(e.g. semantic shift of the background class) and posed challenges (web-
aided OWR) not tackled in the community. Nevertheless, differently
from Chapter 2, here we consider the training and test distributions to
belong to be equal, without any domain shift problem. On the other
hand, differently from the techniques presented in Chapter 2, this chap-
ter described techniques that allow modifying the output space of a
pre-trained architecture. In the next chapter, we will merge these two
worlds together, describing the first method capable of recognizing un-
seen semantic concepts in unseen visual domains.
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4. Towards Recognizing Unseen Categories in
Unseen Domains

While in the previous chapters we considered methods extending a pretrained
model either to new input distributions or to new semantic concepts, an open
research question is whether we can address the two problems together, producing
a deep model able to recognize new semantic concepts (i.e. addressing the
semantic shift) in possibly unseen domains (i.e. addressing the domain shift).
In this chapter, we start analyzing howwe canmerge these two worlds, providing
a first attempt in this direction in an offline but quite extreme setting. In
particular, we considered a scenario where, during training, we are given
a set of images of multiple domains and semantic categories and our goal
is to build a model able to recognize images of unseen concepts, as in zero-
shot learning (ZSL), in unseen domains, as in domain-generalization (DG).
This novel problem, which we called ZSL under DG (ZSL+DG), poses novel
research questions going beyond the ones posed by the DG and ZSL problems
if taken in isolation. For instance, similarly to DG, we can rely on the fact
that the multiple source domains permit to disentangle semantic and domain-
specific information. However, differently from DG, we have no guarantee that
the disentanglement will hold for the unseen semantic categories at test time.
Moreover, while in ZSL it is reasonable to assume that the learned mapping
between images and semantic attributes will generalize also to test images of
the unseen concepts, in ZSL+DG we have no guarantee that this will happen
for images of unseen domains. In Section 4.1 we provide a formal definition
of the problem, while in Sec. 4.2 we review the related works in the zero-shot
learning literature and domain generalization. In Section 4.3 we provide a first
solution to this problem by designing a curriculum strategy based on the mixup
[301] algorithm. In particular, we use mixup both at the input and feature level
to simulate the domain shift and semantic shift the network will encounter at
test time. Experiments show how this approach is effective in both ZSL, DG,
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and the two tasks together, producing one of the first attempts for recognizing
unseen categories in unseen domains.
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4.1. Problem statement

Overview. As highlighted in Chapter 1, most existing deep visual mod-
els are based on the assumptions that (a) training and test data come
from the same underlying distribution, i.e. domain shift, and (b) the set
of classes seen during training constitute the only classes that will be
seen at test time, i.e. semantic shift. These assumptions rarely hold in
practice and, in addition to depicting different semantic categories, train-
ing and test imagesmay differ significantly in terms of visual appearance
in the real world.

Up to now, we have presented approaches that tackle these prob-
lems in isolation. In particular, in Chapter 2, we have considered the
case where training and test distribution changes, addressing the do-
main shift problem, starting from the assumption of having target data
available (Section 2.4), and removing it in the more complex domain
generalization (Section 2.5), continuous (Section 2.6) and predictive
domain adaptation (Section 2.7). However, in all the works we assumed
the output space to be constant after the initial training stage and shared
between training and test times.

On the other hand, in Chapter 3, we considered the case where the
semantic space of a model is extended over time, as new training data
arrives, but without the presence of the domain shift problem. In fact,
while in Multi-Domain Learning (Section 3.3), a single model is asked
to tackle different classification tasks in different visual domains, we
have full supervision in each of the domains, and no unseen domain is
received at test time. Similarly, in Incremental Learning (Section 3.4)
and Open World Recognition (Section 3.5), we consider a single data
distribution during all training steps and little to no shift at test time.

In this chapter we focus on a different problem, considering the two
shifts occurring jointly at test time. In particular, our goal is recognizing
new semantic categories in new domains, without any of the categories
and domains being present in our initial training set. In terms of the
domain shift, we will consider the problem from a DG perspective (i.e.
data of the target domain are not present during training while multiple
sources are available). For the semantic shift, we will consider the prob-
lem as Zero-Shot Learning (ZSL) [278]. In ZSL, the goal is to recognize
objects unseen during training given no data but external information
about the novel classes provided in forms of semantic attributes [130],
visual descriptions [2] or word embeddings [179]. We consider this
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Fig. 4.1. Our ZSL+DG problem. During training we have images of multiple categories
(e.g. elephant,horse) and domains (e.g. photo, cartoon). At test time, we want to recognize
unseen categories (e.g. dog, giraffe), as in ZSL, in unseen domains (e.g. paintings), as in
DG, exploiting side information describing seen and unseen categories.

problem because allows us to decouple semantic and domain shift, with-
out considering other problems (e.g. catastrophic forgetting, see Section
3.2). Moreover, we will start by considering a ZSL scenario (i.e. at test
time we want to recognize only unseen classes) and not the generalized
ZSL one [278] (where both seen and unseen categories must be recog-
nized) because this allows us to sidestep the inherent bias our model
would have on seen classes, focusing solely on the domain and semantic
shifts.

To clarify the setting, let us consider the case depicted in Fig. 4.1. A
system trained to recognize elephants and horses from realistic images
and cartoons might be able to recognize the same categories in another
visual domain, like art paintings (Fig. 4.1, bottom) or it might be able to
describe other quadrupeds in the same training visual domains (Fig. 4.1,
top). On the other hand, how to deal with the case where new animals
are shown in a new visual domain is not clear. We want to remark that,
while the one of Fig. 4.1 is a toy example, the need for a holistic approach
jointly recognizing unseen categories in unseen domains comes from
the large variability of the real world itself. Since it is impossible to
construct a training set containing such variability, we cannot train a
model to be robust to all the possible environments and semantic inputs
it might encounter. Addressing these two problems together, allows our
models to be more robust to these variabilities. Applications, where
we need such robustness, are countless. For example, given a robot
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manipulation task we cannot forecast a priori all the possible conditions
(e.g. environments, lighting) it will be employed in. Moreover, wemight
have data only for a subset of objects we want to recognize while only
descriptions for the others.

To our knowledge, our work [162] is the first attempt to answer this
question, proposing a method that is able to recognize unseen semantic
categories in unseen domains. In particular, our goal is to jointly tackle
ZSL and DG (see Fig.4.1). ZSL algorithms usually receive as input a
set of images with their associated semantic descriptions, and learn the
relationship between an image and its semantic attributes. Likewise,
DG approaches are trained on multiple source domains and at test time
are asked to classify images, assigning labels within the same set of
source categories but in an unseen target domain. Here we want to
address the scenario where, during training, we are given a set of images
of multiple domains and semantic categories and our goal is to build a model
able to recognize images of unseen concepts, as in ZSL, in unseen domains, as
in DG.

To achieve this, we need to address challenges usually not present
when these two classical tasks, i.e. ZSL and DG, are considered in isola-
tion. For instance, while in DG we can rely on the fact that the multiple
source domains permit to disentangle semantic and domain-specific
information, in ZSL+DGwe have no guarantee that the disentanglement
will hold for the unseen semantic categories at test time. Moreover, while
in ZSL it is reasonable to assume that the learned mapping between
images and semantic attributes will generalize also to test images of
the unseen concepts, in ZSL+DG we have no guarantee that this will
happen for images of unseen domains.

To overcome these issues, during training we simulate both the se-
mantic and the domain shift we will encounter at test time. Since explic-
itly generating images of unseen domains and concepts is an ill-posed
problem, we sidestep this issue and we synthesize unseen domains and
concepts by interpolating existing ones. To do so, we revisit the mixup
[301] algorithm as a tool to obtain partially unseen categories and do-
mains. Indeed, by randomly mixing samples of different categories we
obtain new samples which do not belong to a single one of the available
categories during training. Similarly, by mixing samples of different
domains, we obtain new samples which do not belong to a single source
domain available during training.

Under this perspective, mixing samples of both different domains and
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classes allows to obtain samples that cannot be categorized in a single
class and domain of the one available during training, thus they are
novel both for the semantic and their visual representation. Since higher
levels of abstraction contain more task-related information, we perform
mixup at both image and feature level, showing experimentally the need
for this choice. Moreover, we introduce a curriculum-based mixing
strategy to generate increasingly complex training samples. We show
that our CuMix (Curriculum Mixup for recognizing unseen categores
in unseen domains) model obtains state-of-the-art performances in both
ZSL and DG in standard benchmarks and it can be effectively applied
to the combination of the two tasks, recognizing unseen categories in
unseen domains.1

To summarize, the contributions of this chapter are: (i) We introduce
the ZSL+DG scenario, a first step towards recognizing unseen categories
in unseen domains. (ii) We describe CuMix , the first holistic method
able to address ZSL, DG, and the two tasks together. Our method is
based on simulating new domains and categories during training by
mixing the available training domains and classes both at image and fea-
ture level. The mixing strategy becomes increasingly more challenging
during training, in a curriculum fashion. (iii) Through our extensive
evaluations and analysis, we show the effectiveness of CuMix in all three
settings: namely ZSL, DG and ZSL+DG.

Problem statement. In this chapter, we will considered the ZSL+DG
problem. Differently from the incremental learning methods presented
in 3, here we assume that our new semantic concepts is not available
in the form of a training set, but is contained in a semantic descriptor
which we receive at test time. Using the semantic descriptors for training
classes, we can learn how to match visual features, generalizing their
available during training, we can match In the ZSL+DG problem, the
goal is to recognize unseen categories (as in ZSL) in unseen domains (as
in DG). Formally, let X denote the input space (e.g. the image space),
Y the set of possible classes and D the set of possible domains. During
training, we are given a set S = {(xi, yi, di)}n

i=1 where xi ∈ X , yi ∈ Y s

and di ∈ Ds. Note that Y s ⊂ Y and Ds ⊂ D and, as in standard DG,
we have multiple source domains (i.e. Ds = ∪m

j=1dj, with m > 1) with
different distributions i.e. pX (x|di) ̸= pX (x|dj), ∀i ̸= j. For simplicity,

1 The code is available at https: // github. com/ mancinimassimiliano/ CuMix
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in this section we assume to have exact knowledge about the domain
label of each sample.

In the ZSL+DG problem, the goal is to recognize unseen categories
(as in ZSL) in unseen domains (as in DG). Formally, let X denote the
input space (e.g. the image space), Y the set of possible classes and
D the set of possible domains. During training, we are given a set
S = {(xi, yi, di)}n

i=1 where xi ∈ X , yi ∈ Y s and di ∈ Ds. Note that
Y s ⊂ Y and Ds ⊂ D and, as in standard DG, we have multiple source
domains (i.e. Ds = ∪m

j=1dj, with m > 1) with different distributions i.e.
pX (x|di) ̸= pX (x|dj), ∀i ̸= j. Given S our goal is to learn a function
h mapping an image x of domains Du ⊂ D to its corresponding label
in a set of classes Yu ⊂ Y . Note that in standard ZSL, while the set
of train and test domains are shared, i.e. Ds ≡ Du, the label sets are
disjoint i.e. Y s ∩ Yu ≡ ∅, thus Yu is a set of unseen classes. On the
other hand, in DG we have a shared output space, i.e. Y s ≡ Yu, but
a disjoint set of domains between training and test i.e. Ds ∩ Du ≡ ∅,
thus Du is a set of unseen domains. Since the goal of our work is to
recognize unseen classes in unseen domains, we unify the settings of
DG and ZSL, considering both semantic- and domain shift at test time
i.e. Y s ∩ Yu ≡ ∅ and Ds ∩Du ≡ ∅.
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4.2. Related Works
In this section, we review related works in ZSL, and works trying to

perform DA and/or DG with techniques linked to the mixup algorithm
which serves as the base for our method. We will also describe works
addressing ZSL under domain shift and/or DG with different semantic
spaces, highlighting the differences with our setting.

Zero-Shot Learning (ZSL). Traditional ZSL approaches attempt to learn
a projection function mapping images/visual features to a semantic em-
bedding space where classification is performed. This idea is achieved
by directly predicting image attributes e.g. [130] or by learning a lin-
ear mapping through margin-based objective functions [1, 2]. Other
approaches explored the use of non-linear multi-modal embeddings
[276], intermediate projection spaces [303, 304] or similarity-based in-
terpolation of base classifiers [34]. Recently, various methods tackled
ZSL from a generative point of view considering Generative Adversarial
Networks [279], Variational Autoencoders (VAE) [235] or both of them
[281]. While none of these approaches explicitly tackled the domain
shift, i.e. visual appearance changes among different domains/datasets,
various methods proposed to use domain adaptation technique, e.g. to
refine the semantic embedding space, aligning semantic and projected
visual features [235] or, in transductive scenarios, to cope with the inher-
ent domain shift existing among the appearance of attributes in different
categories [119, 75, 76]. For instance, in [235] a distance among visual
and semantic embedding projected in the VAE latent space is minimized.
In [119] the problem is addressed through a regularised sparse coding
framework, while in [75] a multi-view hypergraph label propagation
framework is introduced.

Recently, works have considered also coupling ZSL and DA in a trans-
ductive setting. For instance, in [312] a semantic guided discrepancy
measure is employed to cope with the asymmetric label space among
source and target domains. In the context of image retrieval, multiple
works addressed the sketch-based image retrieval problem [294, 61],
even across multiple domains. In [257] the authors proposed a method
to perform cross-domain image retrieval by training domain-specific
experts. While these approaches integrated DA and ZSL, none of them
considered the more complex scenario of DG, where no target data are
available.

Simulating the Domain Shift for Domain Generalization. As high-
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lighted in Section 2.2, multiple research efforts have been recently de-
voted into addressing the domain generalization problem. Here we will
recall some of them that are linked to the idea behind of the approach
we will present in the next section. For a more detailed overview of DG
works, we ask the reader to refer to Section 2.2.

In particular, since we mix samples to simulate new domains, our
approach is linked with data and feature augmentation strategies for
DG [238, 268, 267]. Among them, we can distinguish two main cate-
gories: adversarial-based [238, 268, 310, 311], trying to simulate novel
domains through adversarial perturbations of the original input, and
data augmentation-based [267], which determines which augmenta-
tions to perform in order to improve the generalization capabilities of
the model. Differently from these methods, we will specifically employ
mixup to perturb input and feature representations.

Similarly, the fact that mixed samples are made increasingly more
difficult during training, has a link with episodic strategies for domain
generalization, such as [135]. In [135], the authors describe a DG pro-
cedure which is based on multiple domain-specific and one domain-
agnostic networks. During training, a domain-specific feature extractor
receives as input images of different domains (i.e. with a different distri-
butions) that the domain agnostic predictor is asked to correctly classify.
Vice-versa, the domain-agnostic feature extractor must learn to extract
features which even a domain-specific classifier of a different domain
(with respect to the one of the input image) should correctly classify. In
this way, the domain-agnostic components learn to cope with domain
shift in their inputs, similarly to what they will experience at test time.
In our method, we will not require domain-specific components, but
we will simulate the domain shift by gradually increasing the challenge
posed by the mixed samples.

Recently, works have considered mixup in the context of domain
adaptation [285] to e.g. reinforce the judgments of a domain discrim-
ination. However, we employ mixup from a different perspective i.e.
simulating semantic and domain shift we will encounter at test time. To
this extent, we are not aware of previous methods using mixup for DG
and ZSL.

Finally, works have recently considered the heterogeneous domain
generalization (HDG) problem [135, 143]. The goal of HDG is to train
a feature extractor able to produce useful representations for novel do-
mains and novel categories [143]. The novel domains have their specific
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output space (as in MDL, see Section 3.3). Despite data of novel do-
mains and classes are not present during the feature extractor training
phase, data of the novel domains are required to train a classifier for the
new domains/categories on top of the agnostic feature extractor. Our
ZSL+DG is different since we assume that a model is trained once and
uses side information (e.g. word embeddings) to classify unseen cate-
gories in unseen domains at the test time, without any training samples
for new domains and categories.
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4.3. Recognizing Unseen Categories in Unseen Domains2
4.3.1. Preliminaries

From the definitions of Section 4.1, we recall that our goal is to learn
a function h mapping an image x of unseen domains Du ⊂ D to its
corresponding label in a set of unseen classes Yu ⊂ Y .

In the followingwe divide the function h into three parts: f , mapping
images into a feature space Z , i.e. f : X → Z , g going from Z to
a semantic embedding space E , i.e. g : Z → E , and an embedding
function ω : Y t → E where Y t ≡ Y s during training and Y t ≡ Yu

at test time. Note that ω is a learned classifier for DG while it is a
fixed semantic embedding function in ZSL, mapping classes into their
vectorized representation extracted from external sources. Given an
image x, the final class prediction is obtained as follows:

y∗ = argmaxyω(y)⊺g( f (x)). (4.1)

In this formulation, f can be any learnable feature extractor (e.g. a deep
neural network), while g any ZSL predictor (e.g. a semantic projection
layer, as in [277] or a compatibility function among visual features and
labels, as in [1, 2]). The first solution to address the ZSL+DG problem
could be training a classifier using the aggregation of data from all
source domains. In particular, for each sample we could minimize a loss
function of the form:

LAGG(xi, yi) = ∑
y∈Y s

ℓ(ω(y)⊺g( f (xi)), yi) (4.2)

with ℓ an arbitrary loss function, e.g. the cross-entropy loss. In the
following, we show how we can use the input to Eq. (4.2) to effectively
recognize unseen categories in unseen domains.

4.3.2. SimulatingUnseenDomains andConcepts throughMixup
The fundamental problem of ZSL+DG is that, during training, we

have neither access to visual data associated to categories in Yu nor
to data of the unseen domains Du. One way to overcome this issue in
ZSL is to generate samples of unseen classes by learning a generative
function conditioned on the semantic embeddings in W = {ω(y)|y ∈
Y s} [279, 281]. However, since no description is available for the unseen

2 M. Mancini, Z. Akata, E. Ricci, B. Caputo. Towards Recognizing Unseen Categories in
Unseen Domains. European Computer Vision Conference (ECCV) 2020.
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Fig. 4.2. Our CuMix Framework. Given an image (bottom, horse, photo), we randomly
sample one image from the same (middle, photo) and one from another (top, cartoon)
domain. The samples are mixed through ϕ (white blocks) both at image and feature
level, with their features and labels projected into the embedding space E (by g and ω
respectively) and there compared to compute the final objective. Note that ϕ varies during
training (top part), changing the mixing ratios in and across domains.

target domain(s) in Du, this strategy is not feasible in ZSL+DG. On the
other hand, previous works on DG proposed to synthesize images of
unseen domains through adversarial strategies of data augmentation
[268, 238]. However, these strategies are not applied to ZSL since they
cannot easily be extended to generate data for unseen semantic categories
Yu.

To circumvent this issue, we introduce a strategy to simulate, during
training, novel domains and semantic concepts by interpolating from
the ones available in Ds and Y s. Simulating novel domains and classes
allows to train the network to cope with both semantic- and domain
shift, the same situation our model will face at test time. Since explicitly
generating inputs of novel domains and categories is a complex task,
in this section we propose to achieve this goal, by mixing images and
features of different classes and domains, revisiting the popular mixup
[301] strategy.

In practice, given two elements ai and aj of the same space (e.g.
ai, aj ∈ X ), mixup [301] defines a mixing function φ as follows:

φ(ai, aj) = λ · ai + (1 − λ) · aj (4.3)

with λ sampled from a beta distribution, i.e. λ ∼ Beta(β, β), with β

an hyperparameter. Given two samples (xi, yi) and (xj, yj) randomly
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drawn from a training set T , a new loss term is defined as:

LMIXUP((xi, yi), (xj, yj)) = LAGG(φ(xi, xj), φ(ȳi, ȳj)) (4.4)

where ȳi ∈ ℜ|Y s | is the one-hot vectorized representation of label yi.
Note that, when mixing two samples and label vectors with φ, a single
λ is drawn and applied within φ in both image and label spaces. The
loss defined in Eq.(4.4) forces the network to disentangle the various
semantic components (i.e. yi and yj) contained in the mixed inputs (i.e.
xi and xj) plus the ratio λ used to mix them. This auxiliar task acts as
a strong regularizer that helps the network to e.g. being more robust
against adversarial examples [301]. Note however that the function φ

creates input and targets which do not represent a single semantic con-
cept in T but contains characteristics taken from multiple samples and
categories, synthesising a new semantic concept from the interpolation
of existing ones.

For recognizing unseen concepts in unseen domains at test time, we
revisit φ to obtain both cross-domain and cross-semantic mixes during
training, simulating both semantic- and domain shift. While simulating
the semantic shift is a by-product of the original mixup formulation,
here we explicitly revisit φ in order to perform cross-domain mixups.
In particular, instead of considering a pair of samples from our training
set, we consider a triplet (xi, yi, di), (xj, yj, dj) and (xk, yk, dk). Given
(xi, yi, di), the other two elements of the triplet are randomly sampled
from S , with the only constraint that di = dk, i ̸= k and dj ̸= di. In this
way, the triplet contains two samples of the same domain (i.e. di) and a
third of a different one (i.e. dj). Then, our mixing function ϕ is defined
as follows:

ϕ(ai, aj, ak) = λai + (1 − λ)(γaj + (1 − γ)ak) (4.5)

with γ sampled from a Bernoulli distribution γ ∼ B(α) and a repre-
senting either the input x or the vectorized version of the label y, i.e.
ȳ. Note that we introduced a term γ which allows to perform either
intra-domain (with γ = 0) or cross-domain (with γ = 1) mixes.

To learn a feature extractor f and a semantic projection layer g robust
to domain- and semantic shift, we propose to use ϕ to simulate both
samples and features of novel domains and classes during training.
Namely, we simulate the semantic- and domain shift at two levels, i.e.
image and class levels. Given a sample (xi, yi, di) ∈ S we define the
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following loss:

LM-IMG(xi, yi, di) = LAGG(ϕ(xi, xj, xk), ϕ(ȳi, ȳj, ȳk)). (4.6)

where (xi, yi, di),(xj, yj, dj),(xk, yk, dk) are randomly sampled from S ,
with di = dk and dj ̸= dk. The loss term in Eq. (4.6) enforces the fea-
ture extractor to effectively process inputs of mixed domains/semantics
obtained through ϕ. Inspired by [264], we design an additional loss
acting at the classification level, by enforcing the semantic consistency
of mixed features in E . This loss term is defined as:

LM-F(xi, yi, di) = ∑
y∈Y s

ℓ

(
ω(y)⊺g

(
ϕ( f (xi), f (xj), f (xk))

)
, ϕ(ȳi, ȳj, ȳk)

)

(4.7)
where, as before, (xj, yj, dj), (xk, yk, dk) ∼ S , with di = dk, i ̸= k and
dj ̸= dk and ℓ is a generic loss function e.g. the cross-entropy loss. This
second loss term forces the classifier ω and the semantic projection layer
g to be robust to features with mixed domains and semantics.

While we can simply use a fixed mixing function ϕ, as defined in
Eq. (4.5), for Eq. (4.6) and Eq. (4.7), we found that it is more beneficial
to devise a dynamic ϕ which changes its behaviour during training, in a
curriculum fashion. Intuitively, minimizing the two objectives defined
in Eq.(4.6) and Eq.(4.7) requires our model to correctly disentangle the
various semantic components used to form the mixed samples. While
this is a complex task even for intra-domain mixes (i.e. when only the
semantic is mixed), mixing samples across domains makes the task
even harder, requiring to isolate also domain-specific factors. To effec-
tively tackle this task, we choose to act on the mixing function ϕ. In
particular, we want our ϕ to create mixed samples with progressively
increased degree of mixing both with respect to content and domain, in
a curriculum-based fashion.

During training we regulate both α (weighting the probability of
cross-domain mixes) and β (modifying the probability distribution of
themix ratio λ), changing the probability distribution of themixing ratio
λ and of the cross-domain mix γ. In particular, given a warm-up step of
N epochs and being s the current epoch we set β = min( s

N βmax, βmax)),
with βmax as hyperparameter, while α = max(0,min( s−N

N , 1). As a
consequence, the learning process ismade of three phases, with a smooth
transition among them. We start by solving the plain classification task
on a single domain (i.e. s < N,α = 0,β = s

N βmax,). In the subsequent
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step (N ≤ s < 2N) samples of the same domains are mixed randomly,
with possibly different semantics (i.e. α = s−N

N , β = βmax). In the third
phase (s ≥ 2N), we mix up samples of different domains (i.e. α = 1),
simulating the domain shift the predictor will face at test time. Figure
4.2, shows a representation of how ϕ varies during training (top, white
block).

Final objective. The full training procedure, is represented in Figure
4.2. Given a training sample (xi, yi, di), we randomly draw other two
samples, (xj, yj, dj) and (xk, yk, dk), with di = dk, i ̸= k and dj ̸= di, feed
them to ϕ and obtain the first mixed input. We then feed xi, xj, xk and
the mixed sample through f , to extract their respective features. At this
point we use features extracted from other two randomly drawn samples
(in the figure, and just for simplicity, xj and xk with same mixing ratios
λ and γ), to obtain the feature level mixed features needed to build
the objective in Eq.(4.7). Finally, the features of xi and the two mixed
variants at image and feature level, are fed to the semantic projection
layer g, which maps them to the embedding space E . At the same time,
the labels in Y s are projected in E through ω. Finally, the objectives
defined in Eq.(4.2),Eq.(4.6) and Eq.(4.7) functions are then computed
in the semantic embedding space. Our final objective is:

LCuMIX(S) = |S|−1 ∑
(xi ,yi ,di)∈S

LAGG(xi, yi)+ ηILM-IMG(xi, yi, di)+ ηFLM-F(xi, yi, di)

(4.8)
with ηI and ηF hyperparameters weighting the importance of the two
terms. As ℓ(x, y) in both LAGG, LM-IMG and LM-F, we use the standard
cross-entropy loss, even if any ZSL objective can be applied. Finally,
we highlight that the optimization is performed batch-wise, thus also
the sampling of the triplet considers the current batch and not the full
training set S . Moreover, while in Figure 4.2 we show for simplicity that
the same samples are drawn for LM-IMG and LM-F, in practice, given a
sample, the random sampling procedure of the other two members of
the triplet is held-out twice, one at the image level and one at the feature
level. Similarly, the sampling of the mixing ratios λ and cross domain
factor γ of ϕ is held-out sample-wise and twice, one at image level and
one at feature level. As in Eq. (4.3), λ and γ are kept fixed across mixed
inputs/features and their respective targets in the label space.

Discussion. Wepresent similarities between our CuMix frameworkwith
DG and ZSL methods. In particular, presenting the classifier with noisy
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Fig. 4.3. ZSL results on CUB, SUN, AWA and FLO datasets with ResNet-101 features.

features extracted by a non-domain specialist network, has a similar goal
as the episodic strategy for DG described in [135]. On the other hand,
here we sidestep the need to train domain experts by directly presenting
as input to our classifier features of novel domains that we obtain by
interpolating the available sources samples. Our method is also linked
to mixup approaches developed in DA [285]. Differently from them, we
usemixup to simulate unseen domains rather then to progressively align
the source to the given target data.

Our method is also related to ZSL frameworks based on feature
generation [279, 281]. While the quality of our synthesized samples is
lower since we do not exploit attributes for conditional generation, we
have a lower computational cost. In fact, during training we simulate the
test-time semantic shift without generating samples of unseen classes.
Moreover, we do not require additional training phases on the generated
samples or the availability of unseen class attributes to be available
beforehand.

4.3.3. Experimental results
4.3.3.1. Datasets and implementation details

We assess CuMix in three scenarios: ZSL, DG and the proposed
ZSL+DG setting.

ZSL. We conduct experiments on four standard benchmarks: Caltech-
UCSD-Birds 200-2011 (CUB) [271], SUN attribute (SUN) [204], Ani-
mals with Attributes (AWA) [130] and Oxford Flowers (FLO) [192].
CUB contains 11,788 images of 200 bird species, with 312 attributes,
SUN 14,430 images of 717 scenes annotated with 102 attributes, and
AWA 30,475 images of 50 animal categories with 85 attributes. Finally,
FLO is a fine-grained dataset of flowers, containing 8,189 images of 102
categories. As semantic representation, we use the visual descriptions of
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[217], following [279, 277]. For each dataset, we use the train, validation
and test split provided by [278]. In all the settings we employ features
extracted from the second-last layer of a ResNet-101 [98] pre-trained on
ImageNet as image representation. For CuMix , we consider f as the
identity function and as g a simple fully connected layer, performing
our version of mixup directly at the feature level while applying our
alignment loss in the embedding space. All hyperparameters have been
set following [278].

DG. We perform experiments on the PACS dataset [133]with 9,991 im-
ages of 7 semantic classes in 4 different visual domains, art paintings,
cartoons, photos and sketches. For this experiment we use the standard
train and test split defined in [133], with the same validation protocol.
We use as base architecture a ResNet-18 [98] pre-trained on ImageNet.
For our model, we consider f to be the ResNet-18 while g to be the iden-
tity function. We use the same training hyperparameters and protocol
of [135].

ZSL+DG. Since no previous work addressed the problem of ZSL+DG,
there is no benchmark on this task. As a valuable benchmark, we choose
DomainNet [206], a recently introduced dataset formulti-source domain
adaptation [206] with a large variety of domains, visual concepts and
possible descriptions. It contains approximately 600’000 images from
345 categories and 6 domains, clipart, infograph, painting, quickdraw, real
and sketch.

To convert this dataset from aDA to a ZSL scenario, we need to define
an unseen set of classes. Since CuMix uses a network pre-trained on
ImageNet [225], the set of unseen classes can not contain any of the
classes present in ImageNet following the good practices in [280]. We
build our validation + test set with 100 classes that contain at least 40
images per domain and that has no overlap with ImageNet. We reserve
45 of these classes for the unseen test set, matching the number used in
[257], and the remaining 55 classes for the unseen validation set. The
remaining 245 classes are used as seen classes during training.

We set the hyperparameters of each method by training on all the
images of the seen classes on a subset of the source domains and vali-
dating on all the images of the validation set from the held-out source
domain. After the hyperparameters are set, we retrain the model on
the training set, i.e. 245 classes, and validation set, i.e. 55 classes, of a
total number of 300 classes. Finally, we report the final results on the
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45 unseen classes. As semantic representation we use word2vec embed-
dings [179] extracted from the Google News corpus and L2-normalized,
following [257]. For all the baselines and our method, we employ as
base architecture a ResNet-50 [98] pre-trained on ImageNet, using the
same number of epochs and SGD with momentum as optimizer, with
the same hyperparameters of [257].

4.3.3.2. Results

ZSL. In the ZSL scenario, we choose as baselines standard inductive
methods plusmore recent approaches. In particularwe report the results
of ALE [1], SJE [2], SYNC [34], GFZSL [265] and SPNet [277]. ALE [1]
and SJE [2] are linear compatibility methods using a ranking loss and
the structural SVM loss respectively. SYNC [34] learns a mapping from
the feature space and the semantic embedding space by means of phan-
tom classes and a weighted graph. GFZSL [265] employs a generative
framework where each class-conditional distribution is modeled as a
multivariate Gaussian. Finally, SPNet [277] learns a semantic projection
function from the feature space through the image embedding space by
minimizing the standard cross-entropy loss.

Our results grouped by datasets are reported in Figure 4.3. Our
model achieves performance either superior or comparable to the state
of the art in all benchmarks but AWA. We believe that in AWA learning
a better alignment between visual features and attributes may not be
as effective as improving the quality of the visual features. Especially,
although the names of the test classes do not appear in the training set
of ImageNet, for AWA being a non-fine-grained dataset, the information
content of the test classes is likely represented by the ImageNet training
classes. Moreover, for non-fine-grained datasets, finding labeled training
data may not be as challenging as it is in fine-grained datasets. Hence,
we argue that zero-shot learning is of higher practical interest in fine-
grained settings. Indeed CuMix is effective in fine-grained scenarios (i.e.
CUB, SUN, FLO) where it consistently outperforms the state-of-the-art
approaches.

These results show that our model based on mixup achieves competi-
tive performances on ZSL by simulating the semantic shift the classifier
will experience at test time. To this extent, our approach is the first
to show that mixup can be a powerful regularization strategy for the
challenging ZSL setting.
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Tab. 4.1. Domain Generalization accuracies on PACS with ResNet-18.

AGG DANN MLDG CrossGrad MetaReg JiGen Epi-FCR CuMix
Target [78] [134] [238] [10] [27] [135]
Photo 94.9 94.0 94.3 94.0 94.3 96.0 93.9 95.1
Art 76.1 81.3 79.5 78.7 79.5 79.4 82.1 82.3
Cartoon 73.8 73.8 77.3 73.3 75.4 75.3 77.0 76.5
Sketch 69.4 74.3 71.5 65.1 72.2 71.4 73.0 72.6
Average 78.5 80.8 80.7 80.7 77.8 80.4 81.5 81.6

DG.The second series of experiments consider the standardDG scenario.
Here we test our model on the PACS dataset using a ResNet-18 architec-
ture. As baselines for DG we consider the standard model trained on
all source domains together (AGG), the adversarial strategies in [78]
(DANN) and [238], the meta learning-based strategy MLDG [134] and
MetaReg [10]. Moreover we consider the episodic strategy presented in
[135] (Epi-FCR).

As shown in Table 4.1, our model achieves competitive results compa-
rable to the state-of-the-art episodic strategy Epi-FCR [135]. Remarkable
is the gain obtainedwith respect to the adversarial augmentation strategy
CrossGrad [238]. Indeed, synthesizing novel domains for domain gen-
eralization is an ill-posed problem, since the concept of unseen domain
is hard to capture. However, with CuMix we are able to simulate in-
puts/features of novel domains by simply interpolating the information
available in the samples of our sources. Despite containing information
available in the original sources, our approach produces a model more
robust to domain shift.

Another interesting comparison is against the self-supervised ap-
proach JiGen [27]. Similarly to [27] we employ an additional task to
achieve higher generalization abilities to unseen domains. While in [27]
the JigSaw puzzles [194] are used as a secondary self-supervised task,
here we employ the mixed samples/features in the same manner. The
improvement in the performances of CuMix highlights that recognizing
the semantic of mixed samples acts as a more powerful secondary task
to improve robustness to unseen domains.

Finally, it is worth noting that CuMix performs a form of episodic
training, similar to Epi-FCR [135]. However, while Epi-FCR considers
multiple domain-specific architectures (to simulate the domain experts
needed to build the episodes), we require a single domain agnostic
architecture. We build our episodes by making the mixup among im-
ages/features of different domains increasingly more drastic. Despite
not requiring any domain experts, CuMix achieves comparable perfor-

4.	 Towards Recognizing Unseen Categoriesin Unseen Domains 215



188 Towards Recognizing New Semantic Concepts in New Visual Domains

Tab. 4.2. Ablation on PACS dataset with ResNet-18 as backbone.

LAGG LM-IMG LM-F Curriculum Art Cartoon Photo Sketch Avg.
✓ 76.1 73.8 94.9 69.4 78.5
✓ ✓ 78.4 72.7 94.7 59.5 76.3
✓ ✓ 81.8 76.5 94.9 71.2 81.1
✓ ✓ ✓ 82.7 75.4 95.4 71.5 81.2
✓ ✓ ✓ ✓ 82.3 76.5 95.1 72.6 81.6

mances to Epi-FCR, showing the efficacy of our strategy to simulate
unseen domain shifts.

Ablation study. In this section, we ablate the various components of
CuMix. Weperformed the ablation on the PACS benchmark forDG, since
this allows us to show how different choices act on the generalization to
unseen domains. In particular, we ablate the following implementation
choices: 1) mixing samples at the image level, feature level or both
2) impact of our curriculum-based strategy for mixing features and
samples.

As shown in Table 4.2, mixing samples at feature level produces a
clear gain on the results with respect to the baseline, while mixing sam-
ples only at image level can even harm the performance. This happens
particularly in the sketch domain, where mixing samples at feature level
produces a gain of 2% while at image level we observe a drop of 10%
with respect to the baseline. This could be explained by mixing samples
at image level producing inputs that are too noisy for the network and
not representative of the actual shift experienced at test time. Mixing
samples at feature level instead, after multiple layers of abstractions,
allows to better synthesize the information contained in the different
samples, leading to more reliable features for the classifier. Using both
of them we obtain higher results in almost all domains.

Finally, we analyze the impact of the curriculum-based strategy for
mixing samples and features. As the table shows, adding the curriculum
strategy allows to boost the performances for the most difficult cases
(i.e. sketches) producing a further accuracy boost. Moreover, applying
this strategy allows to stabilize the training procedure, as demonstrated
experimentally.

ZSL+DG. On the proposed ZSL+DG setting we use the DomainNet
dataset, training on five out of six domains and reporting the average
per-class accuracy on the held-out one. We report the results for all
possible target domains but one, i.e. real photos, since our backbone has
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Tab. 4.3. ZSL+DG scenario on the DomainNet dataset with ResNet-50 as backbone.

Method Clipart Infograph Painting Quickdraw Sketch Avg.
SPNet 26.0 16.9 23.8 8.2 21.8 19.4
mixup+SPNet 27.2 16.9 24.7 8.5 21.3 19.7
Epi-FCR+SPNet 26.4 16.7 24.6 9.2 23.2 20.0
CuMix 27.6 17.8 25.5 9.9 22.6 20.7

been pre-trained on ImageNet, thus the photo domain is not an unseen
one. Since no previous methods addressed the ZSL+DG problem, in
this section we consider simple baselines derived from the literature of
both ZSL and DG. The first baseline is a standard ZSL model without
any DG algorithm (i.e. the standard AGG): as ZSL method we consider
SPNet [277]. The second baseline is a DG approach coupled with a ZSL
algorithm. To this extent we select the state-of-the-art Epi-FCR as the
DG approach, coupling it with SPNet. As reference, we also evaluate
the performance of standard mixup coupled with SPNet.

As shown in Table 4.3, CuMix achieves competitive performances
in ZSL+DG setting when compared to a state-of-the-art approach for
DG (Epi-FCR) coupled with a state-of-the-art one for ZSL (SPNet), out-
performing this baseline in almost all settings but sketch and, in average
by almost 1%. Particularly interesting are the results on the infograph
and quickdraw domains. These two domains are the ones where the
shift is more evident as highlighted by the lower results of the baseline.
In these scenarios, our model consistently outperforms the competi-
tors, with a remarkable gain of more than 1.5% in average accuracy per
class with respect to the ZSL only baseline. We want to highlight also
that DomainNet is a challenging dataset, where almost all standard DA
approaches are ineffective or can even lead to negative transfer [206].
CuMix however is able to overcome the unseen domain shift at test
time, improving the performance of the baselines in all scenarios. Our
model consistently outperforms SPNet coupled with the standardmixup
strategy in every scenario. This demonstrates the efficacy of the choices
in CuMix for revisiting mixup in order to recognize unseen categories in
unseen domains.

4.3.4. Conclusions
In this section, we proposed the novel ZSL+DG scenario. In this

setting, during training, we are given a set of images ofmultiple domains
and semantic categories and our goal is to build amodel able to recognize
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unseen concepts, as in ZSL, in unseen domains, as in DG. To solve this
problem we design CuMix, the first algorithm which can be holistically
and effectively applied to DG, ZSL, and ZSL+DG. CuMix is based on
simulating inputs and features of new domains and categories during
training by mixing the available source domains and classes, both at
image and feature level. Experiments on public benchmarks show the
effectiveness of CuMix, achieving state-of-the-art performances in almost
all settings in all tasks. Future works might investigate alternative data-
augmentation schemes in the ZSL+DG setting as well as the use of novel
formulations of the mixing functions. Moreover, it would be interesting
to extend CuMix to the more realistic Generalized-ZSL scenario, where
the model must recognize both seen and unseen categories.
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5.1. Summary of contributions
In this thesis, we analyzed the capability of deep neural networks to
generalize to unseen input distributions and to include knowledge not
present in their initial training set, with the final goal of building deep
models able to recognize new/unseen categories in unseen visual do-
mains.

In Chapter 2, we started by analyzing the problem from a perspective
of the input the network receives, considering scenarios where train-
ing (source) and test (target) output spaces do not change but their
input distribution does. In particular, in Section 2.4 we considered the
problem of latent domain discovery in domain adaptation. In this set-
ting, we assume the availability of unlabeled target data during training
and that either source or target domains (or both) are a mixture of
multiple latent domains. In this context, we proposed the first deep
neural network able to work in this scenario. Our architecture is made
of two main components, namely novel multi-domain alignment lay-
ers (mDA) and a domain prediction branch. The mDA layers perform
batch-normalization (BN) [109], extending previous works on domain
adaptation [28, 29, 142], through weighted statistics, computed using
the domain probabilities extracted by the domain prediction branch. The
domain prediction branch relies on the assumption that similar inputs
should produce similar activations, and it is trained through a simple
entropy-loss, without requiring any domain label. Our results show
that our framework can successfully enable the deep model to discover
latent domains and outperform standard single-source methods.

As a second step, we removed the assumption of having target data
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available during training by considering the domain generalization (DG)
scenario (Section 2.5). Here we build on the idea that improvements on
the performances of aDGmodel can be achieved bymodeling the similar-
ity of a target sample to the available source domains. We thus develop
a simple extension to the latent domain discovery framework which
makes use of domain labels (if available) and of the domain prediction
branch at test time, to decide which of the source domains should con-
tribute more in the final decision. In particular, we use domain-specific
BN layers, weighting their activations using the similarity that the target
sample has with the source domains. Experiments on robotics scenarios
show the effectiveness of the approach in multiple place categorization
benchmarks under various domain shifts (e.g. light conditions, seasons,
environments) with and without the presence of domain labels (Section
2.5.2). Subsequently, we extend this solution to levels of the network
different from BN layers. In particular, we consider merging the acti-
vation of domain-specific classifiers at test time, with their importance
weighted again by the similarity of a target sample to the source do-
mains. We also explore the use of different kinds of merging strategies,
balancing domain-specific features with domain-agnostic ones. Results
show the effectiveness of the approach against domain generalization
baselines in standard benchmarks (Section 2.5.4).

While DG is one of the domain adaptation scenario where target
data are not present, other settings can be considered, depending on
the amount of information we have about our target domain. Studying
other aspects of the problem, in Section 2.6 we focused on the continuous
domain adaptation scenario, where a single source domain is available
during training (without any target data) and adaptation must be per-
formed exploiting the incoming stream of target samples at test time,
without access to the original training set. In this context, we develop
an extension to the domain alignment layers [28, 29, 142] to tackle this
problem. In particular, we show how updating the statistics of BN layers
using the incoming stream of target data can be a simple yet effective
strategy for tackling this problem. We assess the performance of our
model, ONDA, on a robotic object classification task, collecting and
releasing a dataset for studying this unexplored problem, containing
multiple objects in various acquisition conditions.

Finally, we considered the predictive domain adaptation (PDA) sce-
nario where, during training, we have a single labeled source domain
and multiple unlabeled auxiliary domains, each of them with a descrip-
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tion (i.e. metadata) attached. The goal of this problem is to build a
model able to address the classification task in the target domain by
using just the target-specific metadata. We develop the first deep learn-
ing model for this problem, AdaGraph (Section 2.7), which builds on a
graph, where each node is a domain with attached its domain-specific
parameters, and its edge is the distance among the metadata of the two
connected domains. At test time, given the target domain metadata, we
obtain the target-specific parameters through a weighted combination
of its closest nodes in the graph. Due to their simplicity and the easi-
ness of linearly combining them, we use domain-specific BN layers as
domain-specific parameters. To improve the estimated target statistics,
we also incorporate a continuous domain adaptation strategy into the
framework, extending the previously described ONDA algorithm. Ex-
periments show how our model outperforms standard PDA approaches,
with the continuous update strategy being surpassing state-of-the-art
approaches in continuous domain adaptation.

In Chapter 3, wemoved to the problem of extending the output space
of a pre-trained architecture to new semantic categories. We started by
analyzing the problem of multi-domain learning, where the goal is to
add new (classification) tasks to a pre-trained model without harming
the performance on old tasks andwith as few task-specific parameters as
possible. Our contribution (Section 3.3) has been showing how affinely
transformed task-specific binary masks applied to the original network
weights can allow a network to learn multiple models with (i) perfor-
mances close to networks fine-tuned for the specific tasks and (ii) with
very little overhead in terms of the number of parameters required for
each task. We assess the performance of our model on the challenging
Visual Domain Decathlon, showing performance comparable with more
complicated/multi-stages state-of-the-art approaches.

In Section 3.4, we focused on a different problem, incremental class
learning. In this task, we want to add new knowledge to a pre-trained
model without having access to the original training set, thus addressing
the catastrophic forgetting problem. We analyzed this task in semantic
segmentation discovering how the performance of standard incremental
learning algorithms is hampered by the change of the semantic of the
background class in different learning steps, a problemwhich we named
the background shift. Indeed, in a given learning step, the background
might contain pixels of classes learned in previous steps as well as pixels
of classes we will learn in future ones. We showed how a simple modifi-
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cation of standard cross-entropy and distillation losses, taking explicitly
into account the different meaning of the background across different
learning steps and coupled with an ad-hoc initialization procedure, can
effectively address both catastrophic forgetting and background shift,
even in large-scale scenarios (e.g. ADE-20k).

In the final section of Chapter 3, we studied a more challenging prob-
lem, open-world recognition (OWR). In this task, we must not only
be able to add new concepts to a pre-trained model, but also to detect
unknown concepts if received as inputs. In this scenario, we developed
DeepNNO (Section 3.5.3), the first end-to-end trainable model in OWR,
extending standard non-parametric algorithms [15] with losses and
training schemes preventing catastrophic forgetting. We then showed
how clustering-based objectives and trainable class-specific rejection
thresholds can further boost the performances of deep OWRmodel (Sec-
tion 3.5.4). The experiments on standard datasets and robotics scenarios
showed the efficacy of the two approaches and the importance of each
design choice. Moreover, we described and tested a simple pipeline for
Web-aided OWR, where knowledge about new classes is not given by an
external ’oracle’ but automatically retrieved from web queries (Section
3.5.6). We believe our algorithms and our web-based pipeline consti-
tute a first meaningful step towards autonomously learning real-world
agents.

Finally, in Chapter 4, we merged the two worlds, analyzing whether
it is possible to build a model recognizing unseen classes in unseen
domains. In particular, we described the problem of Zero-Shot Learning
(ZSL) under Domain Generalization (DG), where, during training, we
are given images of a set of classes in multiple source domains and, at
test time, we are asked to recognize different, unseen categories depicted
in unseen visual domains. In this scenario, we must learn how to map
images into a semantic embedding space of class descriptions (e.g. word
embeddings) making sure that the mapping generalizes both to unseen
semantic classes (addressing the semantic shift problem) and to unseen
domains (addressing the domain shift problem). We developed the
first simple solution to this problem based on mixup [301]. In particular,
our idea was to simulate the shifts we will encounter at test time by
simulating samples (and features) of new domains and/or categories
by mixing the domains and classes available at training time. Moreover,
we made the mixes increasingly more challenging during training by
increasing both the probability of having a highmixing ratio and of cross-
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domain mixing. Our approach, named CuMix, showed remarkable
results on ZSL, DG, and the proposed ZSL+DG, being not only the first
holistic approach for ZSL and DG but also the first model that effectively
recognizes unseen categories in unseen domains.
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5.2. Open problems and future directions
While in this thesis we studied how to build deep learning models

generalizing to either new visual domains (Chapter 2) or new semantic
concepts (Chapter 3) or both (Chapter 4), multiple problems remain
to be addressed and multiple directions to be explored towards having
visual systems recognizing new semantic concepts in arbitrary visual
domains.

Starting with the proposed solutions, for each of the proposed algo-
rithms, we briefly discussed possible immediate extensions as well as
interesting research directions worth to be explored. For instance, in
Chapter 2 we discussed multiple solutions involving domain-specific pa-
rameters whose activations are merged by using the weights obtained a
domain prediction branch. For all these solutions, it might be interesting
to investigate how to strengthen the domain classifier. For instance, one
can avoid the use of a domain-specific classifier but rely on the distances
of the activations from the various domain-specific distributions (e.g.
statistics of BN layers) as a measure of domain similarity. On the other
hand, stronger clustering objectives could be applied as objectives for
the domain prediction branch to strengthen the discovering of the latent
domains. Moreover, it would be interesting to investigate if the algo-
rithms of Chapter 2 can be extended to use parameters beyond standard
BN layers, as preliminary experiments with classifiers in Section 2.5.4.
To this extent, also the affinely transformed binary masks of Section
3.3 can be a good starting point for having simple and easy to combine
domain-specific parameters.

When tackling Predictive DAwithAdaGraph (Section 2.7), we assign
to each domain a node in our graph. However, the current formulation
has two main drawbacks. First, it is not scalable if the set of possible
metadata descriptors increases; second it considers all the metadata
equally important for addressing the domain shift problem. Future
works might explore different strategies for including metadata-specific
information as well as modeling the importance of the different meta-
data components. For instance, a possible solution could be to employ
domain-specific alignment layers per each metadata group (e.g. view-
point, year of production) and learning how to optimally recombine
their activations for the final prediction.

Other interesting research directions can be drawn from the works in
Chapter 3. For instance, the first question is whether the multi-domain
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algorithm presented in Section 3.3 can be applied to other scenarios (e.g.
incremental class learning) and even to tackle the domain shift problem
(e.g. PDA, DG). In the latter case, one can use one binary-mask per
network parameter per domain, combining them at test time based on
the target domain metadata (PDA) or similarity to the source domains
(DG). Another interesting question is whether the model can exploit the
relationships among the single task/domains through side connections,
in such a way that each task/domain benefits from the others.

For what concerns incremental learning in semantic segmentation, it
would be interesting to quantify the background shift and understand-
ing whether the different kinds of shift (e.g. background containing old
classes vs background containing classes we will learn in the future)
require more specific solutions than the general one we designed in
Section 3.4. On the other hand, it would be interesting to verify if the
effectiveness of our MiB algorithm (or simple extensions) generalizes to
other problems where the semantic of the background is uncertain, such
as incremental learning in object detection [240] and instance segmenta-
tion [207] as well as non-incremental tasks such as weakly-supervised
semantic segmentation [13], generalized zero-shot learning [277], and
dataset merging [58].

In OWR, an interesting future work would be to quantify the robust-
ness of OWR algorithms to the domain shift. In this context, we could
verify how much their capabilities of detecting unknowns and recogniz-
ing known concepts are affected by changes in the input distributions.
Moreover, a very important research direction would be improving the
various components of the web-based pipeline sketched in Section 3.5.6.
For instance, we could develop a tool for automatic and robust labeling
of the detected unknowns. Moreover, we could design algorithms for
filtering the noisy web images retrieved and/or dealing with both noisy
labels and domain shift while learning the new categories. We believe
the latter being a promising direction towards having robotics visual
systems learning fully autonomously from the environment they interact
with.

Finally, inChapter 4.3, we introduce a new research problem (ZSL+DG)
and algorithm (CuMix) with the aim of encouraging the community
towards developing models tackling both domain and semantic shift
together. However, we believe that our ZSL+DG problem is just the
beginning of this journey. Indeed, in principle, we would like the se-
mantic space of our models to consider both seen and unseen categories
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(as in Generalized ZSL [278]) in arbitrary domains, while requiring the
minimum number of source domains possible (even just one, as recent
works in single-source domain generalization [268, 267, 212]). More-
over, we might receive data for new classes over time, as in incremental
learning. In this case, we would like our model to recognize old seen,
new seen, and still unseen categories at test time. This would require our
model to address both semantic shift, with the relative bias among the
set of classes (as in GZSL), the catastrophic forgetting problem [71] and
related ones, such as our identified background shift. Moreover, if the
data for the new classes come from new domains, we want our model
to also address the domain shift problem. Despite that with CuMix and
ZSL+DG we focused on a subset of these problems, We believe that
the contributions of Chapter 4 and the findings of this thesis, will push
researchers into exploring ways to overcome both domain and semantic
shift together, towards building visual algorithms able to cope with the
large and unpredictable variability of the real world.
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A.1. Latent Domain Discovery
A.1.1. mDA layers formulas
From Section 2.4, we have the output of our mDA layer denoted by

yi = mDA(xi, wi; µ̂, σ̂) = ∑
d∈D

wi,dx̂i,d, (A.1)

where, for simplicity:

x̂i,d =
xi − µ̂d√

σ̂2
d + ϵ

, (A.2)

and the statistics are given by

µ̂d =
b
∑
i=1

ŵi,dxi,

σ̂2
d =

b
∑
i=1

ŵi,d(xi − µ̂d)
2,

(A.3)

where ŵi,d = wi,d/ ∑b
j=1 wj,d.

From the previous equations we can derive the partial derivative
of the loss function with respect to both the input xi and the domain
assignment probabilities wi,d. Let us denote ∂L

∂yi
the partial derivative of

the loss function L with respect to the output yi of the mDA layer. We
have:

∂x̂i,d

∂σ̂2
d∗

= −1d=d∗
1
2
(xi − µ̂d∗) · (σ̂2

d∗ + ϵ)−
3
2 ,

∂x̂i,d

∂µ̂d∗
= −1d=d∗(σ̂

2
d∗ + ϵ)−

1
2 ,

(A.4)
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and
∂σ̂2

d
∂xi

= 2 ŵi,d · (xi − µ̂d),
∂µ̂d
∂xi

= ŵi,d. (A.5)

Thus, the partial derivative of L w.r.t. the input xi is:

∂L
∂xi∗

= ∑
d∈D

wi∗ ,d√
σ̂2

d + ϵ

[
∂L

∂yi∗
− Ad − x̂i∗ ,dBd

]
, (A.6)

where:

Ad =
b
∑
i=1

ŵi,d
∂L
∂yi

,

Bd =
b
∑
i=1

ŵi,dx̂i,d
∂L
∂yi

.

(A.7)

For the domain assignment probabilities wi,d we have:

∂µ̂d
∂ŵi,d∗

= 1d=d∗xi, (A.8)

∂σ̂2
d

∂ŵi,d∗
= 1d=d∗(xi − µ̂d)

2, (A.9)

∂ŵi,d

∂wi∗ ,d∗
= 1d=d∗

1i=i∗ ∑b
j=1 wj,d − wi,d

(∑b
j=1 wj,d)2

. (A.10)

Thus, the partial derivative of L w.r.t. wi,d is:

∂L
∂wi∗ ,d

= x̂i∗ ,d

(
∂L

∂yi∗
− Ad

)
− 1

2

(
x̂2

i∗ ,d −
σ2

d
σ2

d + ϵ

)
Bd, (A.11)

where Ad and Bd are defined as in (A.7).

A.1.2. Training loss progress
In this section, we plot the losses as the training progresses for the

Digits-five experiments. The plots are shown in Figure A.1. For both
MNIST-m and SVHN, the classification loss smoothly decreases, while
the domain loss first decreases and then stabilizes around a fixed value.
This is a consequence of the introduced balancing term on the domain
assignments, which enforces the entropy to be low for the assignment
of a single sample, but high for the assignments averaged across the
entire batch. In Figures A.2 and A.3 we plot the single components of the
classification and domain loss respectively. For the semantic part (Figure
A.2), both the entropy loss on target sample and the cross-entropy loss
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Fig. A.1. Digits-five: plots of the domain (orange) and classification (blue) losses during
the training phase. ©2019 IEEE
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Fig. A.2. Digits-five: plots of the cross-entropy loss on source samples (orange) and
entropy loss on target sample (blue) for the semantic classifier during the training phase.
©2019 IEEE

on source samples decrease smoothly. For the domain assignment part
(Figure A.3), we can see how the entropy loss on single samples rapidly
decreases, while the average batch assignment keeps an high entropy,
as expected. We highlight that when SVHN is used as target, the source
domains are a bit closer to each other in appearance, thus the average
batch entropy has a slightly lower value (i.e. the assignments are less
balanced) with respect to the MNIST-m as target case.

Finally, it is worth noticing that the domain loss reaches a stable value
earlier than the classification components. This is a design choice, since
we want to learn a semantic predictor on stable and confident domain
assignments.

A.	 Recognition across New Visual Domains 229



202 Towards Recognizing New Semantic Concepts in New Visual Domains

0 20 40 60 80 100

Training progress %

0.0

0.5

1.0

1.5

2.0

2.5

L
o
s
s

domain entropy sample

domain entropy avg.

(a) MNIST-m as target

0 20 40 60 80 100

Training progress %

0.0

0.5

1.0

1.5

2.0

2.5

L
o
s
s

domain entropy sample

domain entropy avg.

(b) SVHN as target

Fig. A.3. Digits-five: plots of the entropy loss on single sample (blue) and on the average
batch assignments (orange) for the domain classifier during the training phase. ©2019
IEEE

Tab. A.1. PACS dataset: comparison of different methods using the ResNet architecture.
The first row indicates the target domain, while all the others are considered as sources.
The numbers in parenthesis indicate the results using a target validation set for model
selection.

Method Sketch Photo Art Cartoon Mean
ResNet [98] 60.1 92.9 74.7 72.4 75.0
DIAL [29] 66.8 (71.3) 97.0 (97.4) 87.3 (87.5) 85.5 (87.0) 84.2 (85.8)
mDA 70.7 (75.2) 97.0 (97.3) 87.4 (87.7) 86.3 (87.2) 85.4 (86.9)
Multi-source DA 71.6 (78.1) 96.6 (97.2) 87.5 (88.7) 87.0 (87.4) 85.7 (87.9)

A.1.3. Additional Results on PACS
A crucial problem in domain adaptation rarely addressed in the

literature is how to tune model hyper-parameters. In fact, setting the
hyper-parameters values based on the performance on the source do-
main is sub-optimal, due to the domain shift. Furthermore, assuming
the presence of a validation set for the target domain is not realistic
in practice [183]: in unsupervised domain adaptation we only assume
the presence of a set of unlabelled target data. Despite recent research
in this direction [183], there is no clear solution to this problem in the
literature. This problem is more severe in our case, since it is not trivial
to define a validation set for the latent domain discovery problem, due
to the assumption that multiple source and target domains are mixed.

Nonetheless, for the sake of completeness, we analyze the perfor-
mances of our model and the baselines if we assume the presence of a
target validation set to perform model selection. We consider the PACS
dataset, in both the single and multi-target scenarios. The results are
reported in parenthesis in Table A.1 and in Table A.2. While both our
model and the baselines obviously benefit from the validation set, the
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Tab. A.2. PACS dataset: comparison of different methods using the ResNet architecture
on the multi-source multi-target setting. The first row indicates the two target domains.
The numbers in parenthesis indicate the results using a target validation set for model
selection. ©2019 IEEE

Method Photo-Art Photo-Cartoon Photo-Sketch Art-Cartoon Art-Sketch Cartoon-Sketch Mean
ResNet [98] 71.4 84.2 81.4 62.2 70.3 54.2 70.6
DIAL [29] 86.7 (87.5) 86.5 (87.1) 86.8 (88.2) 77.1 (78.7) 72.1 (74.2) 67.7 (70.4) 79.5 (81.0)
mDA 87.2 (87.7) 88.1 (88.5) 88.7 (89.7) 77.7 (79.6) 81.3 (82.2) 77.0 (79.3) 83.3 (84.5)
Multi-source/ 87.7 (88.8) 88.9 (89.8) 86.8 (88.3) 79.0 (79.5) 79.8 (82.2) 75.6 (79.1) 83.0 (84.6)target DA

overall trends remain the same, with our model achieving higher perfor-
mances with respect to the baseline and close to the multi-source upper
bound. Notice that a validation set is especially beneficial in the case
of consistent domain shift: for instance, all the methods increase their
results by almost 5% in Table A.1 when Sketch is the target domain.

As a final note, we underline that the use of a validation set on the
target domain for unsupervised domain adaptation is not a common
practice in the community, thus these results can be regarded as an
upper bound with respect to our model.
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A.2. Predictive Domain Adaptation
A.2.1. Metadata Details

CompCars. For the experiments with the CompCars dataset [292],
we have two domain information: the car production year and the
viewpoint. We encode the metadata through a 2-dimensional integer
vector where the first integer encodes the year of production (between
2009 and 2014) and the second the viewpoint. While encoding the
production year is straightforward, for the viewpoint we use the same
criterion adopted in [293], i.e. we encode the viewpoint through integers
between 1-5 in the order: Front, Front-Side, Side, Rear-Side, Rear.

Portraits. For the experiments with the Portraits dataset [82], we have
again two domain information: the year and the regionwhere the picture
has been taken. To allow for a bit more precise geographical information
we encode the metadata through a 3-dimensional integer vector.

As for the CompCars dataset, the first integer encodes the decade of
the image (8 decades between 1934 and 2014), while the second and third
the geographical position. For the geographical position we simplify
the representation through a coarse encoding involving 2 directions:
est-west (from 0 to 1) and north-south (from 0 to 3). In particular we
assign the following value pairs ([north-south, east-west]): Mid-Atlantic
→ [0, 1],Midwestern → [0, 2], New England → [0, 0], Pacific → [0, 3] and
Southern → [1, 1]. Each component of the vector has been normalized in
the range 0-1.

A.2.2. Additional Analysis
A.2.2.1. ResNet-18 on CompCars

Here we apply AdaGraph to the ResNet-18 architecture in the Comp-
Cars dataset [292]. As for the other experiments, we apply AdaGraph by
replacing each BN layer of the network with its GBN counterpart.

The network is initialized with the weights of the model pretrained
on ImageNet. We train the network for 6 epochs on the source dataset,
employing Adam as optimizer with a weight decay of 10−6 and a batch-
size of 16. The learning rate is set to 10−3 for the classifier and 10−4

for the rest of the network and it is decayed by a factor of 10 after 4
epochs. We extract domain-specific parameters by training the network
for 1 epoch on the union of source and auxiliary domains, keeping
the same optimizer and hyperparameters. The batch size is kept to
16, building each batch with elements of a single pair production year-
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Tab. A.3. CompCars dataset [292]. Results with ResNet-18 architecture. ©2019 IEEE

Method Avg. Accuracy
Baseline 56.8
AdaGraph 65.1
Baseline + Refinement 65.3
AdaGraph + Refinement 66.7
DA upper bound 66.9

viewpoint belonging to one of the domains available during training
(either auxiliary or source).

The results are shown in Table A.3. As the table shows, AdaGraph
largely increases the performance of the Baseline model. Coherently
with previous experiments, our refinement strategy is able to further
increase the performances of AdaGraph, filling almost entirely the gap
with the DA upper bound.

A.2.2.2. Performances vs Number of Auxiliary Domains
In this section, we analyze the impact of varying the number of

available auxiliary domains on the performances of our model. We
employ the ResNet-18 architecture on the Portraits dataset, with the
same setting and set of hyperparameters described in the experimental
section. However, differently from the previous experiments, we vary
the number of available auxiliary domains, from 1 to 38. We repeat
the experiments 20 times, randomly sampling the available auxiliary
domains each time.

The results are shown in Figure A.4. As expected, increasing the
number of auxiliary domains leads to an increase in the performance
of the model. In general, as we have more than 20 domains available,
the performance of our model are close to the DA upper bound. While
these results obviously depend on the relatedness between the auxiliary
domains and the target, the plots show that having a large set of auxiliary
domainsmay not be strictly necessary for achieving good performances.
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Fig. A.4. Portraits dataset: performances of AdaGraph with respect to the number of
auxiliary domains available for different source-target pairs. The years reported in the
captions indicate the starting year of source and target decades. ©2019 IEEE

Towards Recognizing New Semantic Concepts in New Visual Domains234



B.	 Recognizing New Semantic ConceptsB. Recognizing New Semantic Concepts

B.1. Incremental Learning in Semantic Segmentation
B.1.1. How should we use the background?
As highlighted in Section 3.4, an important design choice for incremental
learning in semantic segmentation is how to use the background. In
particular, since the background class is present both in old and new
classes, it can be considered either in the supervised cross-entropy loss,
in the distillation component or in both. For our MiB method and all
the baselines (LwF [144], Lwf-MC [216], ILT [178]), we considered the
latter case (i.e. background in both). However, a natural question arises
on how different choices for the background would impact the final
results. In this section we investigate this point.

We start from the LwF-MC [216] baseline, since it is composed of
multiple binary classifiers and allows to easy decouple modifications
on the background from the other classes. We then test two variants:

• LwF-MC-D ignores the background in the classification loss, using
as target for the background the probability given by fθt−1 .

• LwF-MC-C ignores the background in the distillation loss, using
only the supervised signal from the ground-truth.

In Table B.1 and B.2 we report the results of the two variants for the
overlapped scenarios of the Pascal VOC dataset and the 50-50 scenario
of ADE20K respectively. Together with the two variants, we report the
results of our method (MiB), the offline training upper-bound (Joint)
and the LwF-MC version employed in Section 3.4.3.1 which uses the
background in both binary cross-entropy and distillation, blending the
two components with a hyper-parameter.
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Tab. B.1. Comparison of different implementations of LwF-MC on the Pascal-VOC 2012
overlapped setup. ©2020 IEEE

19-1 15-5 15-1
Method 1-19 20 all 1-15 16-20 all 1-15 16-20 all
LwF-MC-C 44.6 17.6 43.2 41.6 42.2 41.8 4.4 8.6 5.4
LwF-MC 64.4 13.3 61.9 58.1 35.0 52.3 6.4 8.4 6.9
LwF-MC-D 71.3 3.6 68.0 73.7 21.0 60.5 41.1 3.1 31.6
MiB 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7
Joint 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4

As the tables show, the three variants of Lwf-MC exhibit different
trade-offs among learning new knowledge and remembering the past
one. In particular, LwF-MC-C learns very well new classes, being always
the most performing variant on the last incremental step. However, it
suffers a significant drop in the old knowledge, showing its inability to
tackle the catastrophic forgetting problem.

LwF-MC-D shows the opposite trend. It maintains very well the
old knowledge, being the best variant in old classes for every setting.
However, it is very intransigent [36] i.e. it is not able to correctly learn
new classes, thus obtaining the worst performances on them.

As expected, LwF-MCwhich considers the background in both cross-
entropy and distillation achieves a trade-off among learning new knowl-
edge, as in LwF-MC-C, while preserving the old one, as in LwF-MC-D.

As the tables show, our MiB approach models the background more
effectively, achieving the best trade-off among learning new knowledge
and preserving old concepts. In particular, our method is the best by a
margin in all scenarios for the new classes, while for old ones it is either
better or comparable to the performance of the intransigent LwF-MC-D
method. The only scenarios where it shows lower performances are
the multi-step ones. Indeed in these scenarios, the multiple learning
episodes make preserving old knowledge harder, and an intransigent
method is less prone to forgetting since it is biased to old classes. How-
ever, the intransigence is not the right solution if the number of old and
new classes are balanced, as in the 50-50 scenario of ADE20k, since the
overall performances will be damaged.

B.1.2. Per class results on Pascal-VOC 2012
From Table B.3 to B.8, we report the results for all classes of the Pascal-

VOC 2012 dataset. As the tables show, MiB achieves the best results in
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Tab. B.2. Comparison of different implementations of LwF-MC on the 50-50 setting of the
ADE20K dataset. ©2020 IEEE

Method 1-50 51-100 101-150 all
LwF-MC-C 8.0 7.2 19.3 11.5
LwF-MC 27.8 7.0 10.4 15.1
LwF-MC-D 39.1 10.9 6.7 18.7
MiB 35.5 22.2 23.6 27.0
Joint 51.1 38.3 28.2 38.9

Tab. B.3. Per Class Mean IoU on 19-1 setting of Pascal-VOC 2012 disjoint setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-19 all
FT 11.9 2.1 1.1 11.6 4.8 6.9 13.5 0.2 0.0 3.8 14.4 0.5 1.5 4.7 0.0 15.8 2.8 1.8 13.5 12.3 5.8 6.2
PI [300] 22.3 1.9 3.4 4.9 2.1 10.6 8.5 0.1 0.1 3.1 12.8 0.2 3.8 4.6 0.0 10.0 5.0 1.1 8.5 14.1 5.4 5.9
EWC [118] 50.7 7.7 21.0 24.1 21.8 35.8 43.9 11.6 2.0 27.0 21.1 23.0 18.7 19.4 1.5 27.8 41.5 5.6 37.4 16.0 23.2 22.9
RW [36] 45.8 5.3 15.1 22.8 17.8 28.9 40.9 7.5 1.3 22.4 20.3 14.5 13.7 16.3 0.8 25.3 31.8 4.8 33.3 15.7 19.4 19.2
LwF [144] 28.1 40.5 53.1 38.8 47.4 46.4 63.6 83.5 35.8 60.1 48.8 76.5 65.3 67.1 83.2 50.2 61.2 42.5 14.2 9.1 53.0 50.8
LwF-MC [216] 79.4 41.3 75.6 47.9 51.0 69.6 75.4 78.5 35.1 66.6 49.0 72.7 73.8 71.6 84.9 57.5 67.7 42.7 56.8 13.2 63.0 60.5
ILT [178] 83.7 40.8 80.8 59.1 58.4 77.6 82.4 82.3 38.9 81.7 50.8 84.8 86.6 81.0 83.3 56.4 82.2 43.8 57.5 16.4 69.1 66.4
MiB 78.0 40.5 85.7 51.6 64.4 79.1 77.8 89.9 39.2 82.3 55.4 86.2 82.7 72.2 83.6 56.6 86.2 45.1 65.0 25.6 69.6 67.4
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 77.4 77.4

the majority of classes (i.e. at least 14/20 in the 19-1 scenarios, 13/20
in the 15-5 and 16/20 in the 15-1 ones) being either the second best or
comparable to the top two in all the others. Remarkable cases are the
ones where we learn classes that are either similar in appearance (e.g.
bus and train) or appear in similar contexts (e.g. sheep and cow): for
those pairs, our model outperforms the competitors by a margin in both
old classes (i.e. bus and cow in the 15-5 and 15-1 scenarios) and new
ones (i.e. sheep and train). These results show the capability of MiB to
not only learn new knowledge while preserving the old one, but also to
learn discriminative features for difficult cases during different learning
steps.
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Tab. B.4. Per Class Mean IoU on 19-1 setting of Pascal-VOC 2012 overlapped setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-19 all
FT 23.7 1.9 1.5 9.3 6.9 16.9 8.5 0.0 0.0 9.5 5.3 0.1 2.9 8.8 0.0 15.1 1.0 0.7 16.0 12.9 6.8 7.1
PI [300] 33.1 4.1 3.6 10.5 8.4 14.7 13.3 0.0 0.1 2.4 4.7 0.1 3.3 7.9 0.0 14.7 0.8 2.7 17.8 14.0 7.5 7.8
EWC [118] 60.7 14.8 21.2 33.8 36.9 54.4 45.6 2.6 1.4 33.0 13.3 19.1 23.8 39.2 2.2 34.6 21.8 6.4 47.1 14.0 26.9 26.3
RW [36] 57.5 12.1 15.4 29.6 32.9 50.7 40.0 1.3 0.8 30.7 10.7 12.6 18.6 32.9 0.8 30.7 17.5 5.5 42.7 14.2 23.3 22.9
LwF [144] 36.6 35.1 62.0 32.9 47.5 31.6 51.5 77.9 36.5 67.7 44.3 71.4 68.6 66.2 82.2 49.6 58.7 41.1 11.9 8.5 51.2 49.1
LwF-MC [216] 67.2 37.9 77.8 40.6 57.0 54.5 77.4 88.4 37.2 76.8 49.1 83.4 82.3 71.0 85.2 55.6 81.9 46.0 54.9 13.3 64.4 61.9
ILT [178] 87.2 39.0 80.6 53.5 57.0 80.3 76.0 74.3 37.6 81.1 44.6 83.1 84.4 81.6 82.4 54.5 82.7 38.9 56.1 12.3 67.1 64.4
MiB 78.1 36.2 86.8 49.4 72.7 80.8 78.2 90.8 38.3 82.0 51.9 86.7 82.8 76.9 83.8 58.8 84.4 45.7 68.5 22.1 70.2 67.8
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 77.4 77.4

Tab. B.5. Per Class Mean IoU on 15-5 setting of Pascal-VOC 2012 disjoint setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-15 16-20 all
FT 6.1 0.0 0.2 8.3 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 24.6 24.3 36.2 32.5 50.2 1.1 33.6 9.2
PI [300] 8.8 0.0 0.2 10.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 25.6 24.7 34.3 34.1 52.0 1.3 34.1 9.5
EWC [118] 58.8 4.1 56.4 46.2 44.4 4.3 67.4 3.6 2.3 14.8 10.3 12.4 51.6 20.4 2.9 28.8 32.2 35.6 35.5 56.3 26.7 37.7 29.4
RW [36] 51.1 1.5 36.9 42.9 27.5 2.1 47.4 1.1 1.2 6.1 5.3 3.1 31.2 10.5 1.0 27.7 29.8 35.7 34.7 56.6 17.9 36.9 22.7
LwF [144] 63.1 40.1 72.4 52.1 67.0 6.7 80.3 84.2 31.1 5.7 51.3 82.0 75.0 79.4 85.6 35.3 27.1 37.0 37.0 50.5 58.4 37.4 53.1
LwF-MC [216] 78.1 42.3 78.9 62.1 78.6 47.3 84.6 89.1 35.0 26.2 50.5 86.6 77.6 84.9 86.0 35.0 35.2 40.8 49.2 45.9 67.2 41.2 60.7
ILT [178] 79.4 42.0 80.5 63.9 80.4 12.8 86.0 90.2 30.7 6.7 53.3 83.2 73.0 80.7 85.0 36.9 29.9 36.8 38.3 55.7 63.2 39.5 57.3
MiB 84.4 39.4 87.5 65.2 77.8 61.0 86.0 90.9 35.3 60.3 53.0 88.2 80.4 82.4 85.3 28.7 46.0 34.7 54.4 52.7 71.8 43.3 64.7
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 79.1 72.6 77.4

Tab. B.6. Per Class Mean IoU on 15-5 setting of Pascal-VOC 2012 overlapped setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-15 16-20 all
FT 13.4 0.1 0.0 15.6 0.8 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 30.9 21.6 32.8 34.9 45.1 2.1 33.1 9.8
PI [300] 7.8 0.0 0.0 12.9 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 33.2 22.2 33.2 36.1 42.0 1.6 33.3 9.5
EWC [118] 67.3 12.8 50.5 52.9 35.0 24.7 41.7 1.2 1.0 9.8 5.7 3.7 42.9 15.4 0.6 31.8 26.3 32.1 42.0 45.0 24.3 35.5 27.1
RW [36] 61.2 6.7 33.8 48.1 24.4 9.3 22.3 0.3 0.5 3.5 0.2 1.1 31.8 6.4 0.1 32.1 25.8 31.9 38.7 45.9 16.6 34.9 21.2
LwF [144] 64.5 40.2 72.8 56.9 57.3 9.5 82.6 88.6 33.2 8.9 48.4 81.9 75.0 78.2 84.9 34.7 27.8 33.1 39.6 48.0 58.9 36.6 53.3
LwF-MC [216] 60.6 38.9 74.7 41.6 67.2 10.8 81.4 88.8 38.7 4.3 47.4 82.2 69.9 78.9 85.8 28.4 28.5 34.1 36.4 47.8 58.1 35.0 52.3
ILT [178] 77.4 40.3 78.9 61.9 78.7 53.5 86.1 88.7 33.8 15.9 51.1 83.2 80.2 79.8 85.0 39.5 30.9 31.0 49.3 52.6 66.3 40.6 59.9
MiB 86.6 39.3 88.9 66.1 80.8 86.6 90.1 92.5 38.0 64.6 56.4 89.6 80.5 86.5 85.7 30.2 52.9 31.3 73.2 59.5 75.5 49.4 69.0
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 79.1 72.6 77.4

Tab. B.7. Per Class Mean IoU on 15-1 setting of Pascal-VOC 2012 disjoint setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-15 16-20 all
FT 0.3 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 0.2 1.8 0.6
PI [300] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 8.6 0.0 1.8 0.4
EWC [118] 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 7.3 7.0 7.4 0.3 4.3 1.3
RW [36] 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 8.1 10.5 8.2 0.2 5.4 1.5
LwF [144] 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 0.0 1.9 8.2 7.9 0.8 3.6 1.5
LwF-MC [216] 0.0 6.3 0.8 0.0 1.1 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.2 0.0 59.0 0.0 9.5 2.9 11.9 11.0 4.5 7.0 5.2
ILT [178] 3.7 0.0 2.9 0.0 12.8 0.0 0.0 0.1 0.0 0.0 21.2 0.1 0.4 0.6 13.6 0.0 0.0 11.6 8.3 8.5 3.7 5.7 4.2
MiB 53.6 38.9 53.6 17.7 62.7 36.5 71.2 60.1 1.1 35.2 8.1 57.6 55.0 62.1 79.4 10.2 14.2 11.9 18.2 10.1 46.2 12.9 37.9
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 79.1 72.6 77.4

Tab. B.8. Per Class Mean IoU on 15-1 setting of Pascal-VOC 2012 overlapped setup. ©2020
IEEE

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv 1-15 16-20 all
FT 2.6 0.0 0.0 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.2 0.2 1.8 0.6
PI [300] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 9.1 0.0 1.8 0.5
EWC [118] 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 7.3 7.0 7.4 0.3 4.3 1.3
RW [36] 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.7 11.2 6.3 0.0 5.2 1.3
LwF [144] 3.7 0.1 0.0 2.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 9.0 0.0 0.0 1.6 8.9 8.8 1.0 3.9 1.8
LwF-MC [216] 0.0 7.2 5.2 0.0 25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.3 56.2 0.0 4.9 0.2 8.6 28.2 6.4 8.4 6.9
ILT [178] 20.0 0.0 3.2 6.3 2.3 0.0 0.0 0.0 0.3 5.1 19.0 0.0 9.1 0.0 8.7 0.0 0.0 21.0 9.9 8.1 4.9 7.8 5.7
MiB 31.3 25.4 26.7 26.9 46.1 31.0 63.6 52.8 0.1 11.0 9.4 52.4 41.2 28.1 80.7 17.6 13.1 15.3 15.3 6.2 35.1 13.5 29.7
Joint 90.2 42.2 89.5 69.1 82.3 92.5 90.0 94.2 39.2 87.6 56.4 91.2 86.8 88.0 86.8 62.3 88.4 49.5 85.0 78.0 79.1 72.6 77.4
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B.1.3. Validation protocol and hyper-parameters
In this work, we follow the protocol of [49] for setting the hyper-

parameters in continual learning. The protocol works in three steps and
does not require any data of old tasks. First, we split the training set of
the current learning step into train and validation sets. We use 80% of
the data for training and 20% for validation. Note that the validation set
contains only labels for the current learning step.

Second, we set general hyper-parameters values (e.g. learning rate)
as the ones achieving the highest accuracy in the new set of classes with
the fine-tuned model. Since we tested multiple methods, we wanted to
ensure fairness in terms of hyper-parameters used, without producing
biased results. To this extent, this step is held out only once starting from
the fine-tuned model and fixing the hyper-parameters for all the meth-
ods. In particular, we set the learning rate as 10−3 for the incremental
steps in all datasets and settings.

As a final step, we set the hyper-parameters specific of the continual
learning method as the highest values (to ensure minimum forgetting)
with a tolerated decay on the performance on the new classes with re-
spect to the ones achieved by the fine-tuned model (to ensure maximum
learning). We set the tolerated decay as 20% of the original perfor-
mances, exploring hyper-parameters values of the form A · 10B, with
A ∈ {1, 5} and B ∈ {−3, . . . , 3}. We perform this validation procedure
in the first learning step of each scenario, keeping the hyper-parameters
fixed for the subsequent ones. Since this procedure is costly, we perform
it only for the Pascal-VOC dataset, keeping the hyper-parameters for
the large-scale ADE20k. As a result, for the prior focused methods, we
obtain a weight of 500 for EWC [118] and PI [300] and 100 for RW [36]
in all scenarios. For the data-focused methods we obtain a weight of 100
for the distillation loss of LwF [144], 10 for the one in LwF-MC [216]
and 100 for both distillation losses in ILT [178], in all settings. For our
MiB method, we obtain a distillation loss weight of 10 for all scenarios
except for the 15-1 in Pascal VOC, where the weight is set to 100.
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C.1. Recognizing Unseen Categories in Unseen Domains
C.1.1. Hyperparameter choices
In this section, we will provide additional details on the hyperparameter
choices and validation protocols, not included in Section 4.3.

ZSL. For each dataset, we use the train, validation and test split provided
by [278]. In all the settings we employ features extracted from the
second-last layer of a ResNet-101 [98] pretrained on ImageNet as image
representation,without end-to-end training. ForCuMix , we consider f as
the identity function and as g a simple fully connected layer, performing
the mixing directly at the feature-level while applying our alignment
loss in the embedding space (i.e. LM-IMG and LM-F coincide in this case
and are applied only once.) All hyperparameters have been set dataset-
wise following [278], using the available validation sets. For all the
experiments, we use SGD as optimizer with an initial learning rate equal
to 0.1, momentum equal to 0.9, a weight-decay set to 0.001 for all settings
but AWA, where is set 0. The learning-rate is downscaled by a factor of
ten after 2/3 of the total number of epochs and N = 30. In particular,
for CUB and FLO we train our model for 90 epochs, setting βmax = 0.8
and ηI = ηF = 10.0 for CUB, and βmax = 0.4 and ηI = ηF = 4.0 for
FLO. For AWA, we train our network for 30 epochs, with βmax = 0.2
and ηI = ηF = 1.0. For SUN, we train our network for 60 epochs, with
βmax = 0.8 and ηI = ηF = 10. In all settings, the batch-size is set to 128.

DG. We use as base architecture a ResNet-18 [98] pretrained on Ima-
geNet. For our model, we consider f to be the ResNet-18, g to be the
identity function and ω will be a learned, fully-connected classifier. We
use the same training hyperparameters and protocol of [135], setting
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βmax = 0.6, ηI = 0.1, ηF = 3 and N = 10.

ZSL+DG. For all the baselines and our method we employ as base ar-
chitecture a ResNet-50 [98] pretrained on ImageNet, using SGD with
momentum as optimizer, with a learning rate of 0.001 for the ZSL classi-
fier and 0.0001 for the ResNet-50 backbone, a weight decay of 5 · 10−5

and momentum 0.9. We train the models for 8 epochs (each epoch
counted on the smallest source dataset), with a batch-size containing
24 sample per domain. We decrease the learning rates by a factor of
10 after 6 epochs. For our model, we consider the backbone as f and a
simple fully-connected layer as g. We set N = 2, ηI = 10−3 for all the
experiments, while βmax in {1, 2} and ηF in {0.5, 1, 2} depending on the
scenario.

C.1.2. ZSL+DG: analysis of additional baselines
In Table 4.3, we showed the performance of our method in the new

ZSL+DG scenario on the DomainNet dataset [206], comparing it with
three baselines: SPNet [277], simple mixup [301] coupled with SPNet
and SPNet coupled with EpiFCR [135], an episodic-based method for
DG. We reported the results of these baselines to show 1) the perfor-
mance of a state-of-the-art ZSL method (SPNet), 2) the impact of mixup
alone (mixup+SPNet) and 3) the results obtained by coupling state-
of-the-art models for DG and for ZSL together (EpiFCR+SPNet). We
chose SPNet and EpiFCR as state-of-the-art references for ZSL and DG
respectively because they are very recent approaches achieving high
performances on their respective scenarios.
In this section, we motivate our choices by showing that other base-

lines of ZSL and DG achieve lower performances in this new scenario.
In particular we show the performances of two standard ZSL methods,
ALE [1] and DEVISE [73] and a standard DG/DA method, DANN [78].
We choose DANN since it is a strong baseline for DG on residual archi-
tectures, as shown in [135]. As in Section 4.3, we show the performances
of the ZSL methods alone, ZSL methods coupled with DANN, and with
EpiFCR. For all methods, we keep the same training hyperparameters,
tuning only the method-specific ones. The results are reported in Ta-
ble C.1. As the table shows, CuMix achieves superior performances
even compared to these additional baselines. Moreover, these baselines
achieve lower results than the EpiFCR method coupled with SPNet,
as expected. It is also worth highlighting how coupling ZSL methods
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Tab. C.1. ZSL+DG scenario on the DomainNet dataset with ResNet-50 as backbone.

Method Target Domain
DG ZSL clipart infograph painting quickdraw sketch avg.

-
DEVISE [73] 20.1 11.7 17.6 6.1 16.7 14.4

ALE [1] 22.7 12.7 20.2 6.8 18.5 16.2
SPNet [277] 26.0 16.9 23.8 8.2 21.8 19.4

DANN [78]
DEVISE [73] 20.5 10.4 16.4 7.1 15.1 13.9

ALE [1] 21.2 12.5 19.7 7.4 17.9 15.7
SPNet [277] 25.9 15.8 24.1 8.4 21.3 19.1

EpiFCR [135]
DEVISE [73] 21.6 13.9 19.3 7.3 17.2 15.9

ALE [1] 23.2 14.1 21.4 7.8 20.9 17.5
SPNet [277] 26.4 16.7 24.6 9.2 23.2 20.0

CuMix 27.6 17.8 25.5 9.9 22.6 20.7

with DANN for DG achieves lower performances than the ZSL methods
alone in this scenario. This is in line with the results reported in [206],
where standard domain alignment-based methods are shown to be not
effective in the DomainNet dataset, leading also to negative transfer in
some cases [206].

Finally, we want to highlight that coupling EpiFCR with any of the
ZSL baselines, is not a straightforward approach, but requires to actually
adapt this method, re-structuring the losses. In particular, we substitute
the classifier originally designed for EpiFCR with the classifier specific
of the ZSL method we apply on top of the backbone. Moreover, we addi-
tionally replace the classification loss with the loss devised for the partic-
ular ZSL method. For instance, for EpiFCR+SPNet, we use as classifier
the semantic projection network, using the cross-entropy loss in [277]
as classification loss. Similarly, for EpiFCR+DEVISE and EpiFCR+ALE,
we use as classifier a bi-linear compatibility function [278] coupled with
a pairwise ranking objective [73] and with a weighted pairwise ranking
objective [1] respectively.

C.1.3. ZSL+DG: ablation study
In order to further investigate our design choices on the ZSL+DG

setting, we conducted experiments on a challenging scenario where
we consider just two domains as sources, i.e. Real and Painting. The
results are shown in Table C.2. On average our model improves SPNet
by 2% and SPNet + Epi-FCR by 1.1%. Our approach without curriculum
largely outperforms standard image-level mixup [301] (more than 2%).
Applying mixup at both feature and image level but without curriculum
is effective but achieves still lower results with respect to our CuMix
strategy (as in Tab. 2). Interestingly, if we apply the curriculum strategy
but switching the order of semantic and domain mixing (CuMix re-
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Tab. C.2. Results on DomainNet dataset with Real-Painting as sources and ResNet-50 as
backbone.

Method/Target Clipart Infograph Sketch Quickdraw Avg.
SPNet 21.5±0.6 14.1±0.2 17.3±0.3 4.8±0.4 14.4
Epi-FCR+SPNet 22.5±0.5 14.9±0.7 18.7±0.6 5.6±0.4 15.4
MixUp img only 21.2±0.4 14.0±0.7 17.3±0.3 4.8±0.1 14.3
MixUp two-level 22.7±0.3 16.5±0.4 19.1±0.4 4.9±0.3 15.8
CuMix reverse 22.9±0.3 15.8±0.2 18.2±0.3 4.8±0.5 15.4
CuMix 23.7±0.3 17.1±0.2 19.7±0.3 5.5±0.3 16.5

Tab. C.3. ZSL results.

Method CUB SUN AWA1 FLO
ALE [1] 54.9 58.1 59.9 48.5
SJE [2] 53.9 53.7 65.6 53.4
SYNC [34] 56.3 55.6 54.0 -
GFZSL [265] 49.3 60.6 68.3 -
SPNet [277] 56.5 60.7 66.2 -
Baseline 52.4 58.2 62.5 58.4
CuMix 60.4 62.4 64.0 59.7

verse), this achieves lower performances with respect to CuMix, which
considers domain mixing harder than semantic ones. This shows that,
in this setting, it is important to correctly tackle intra-domain semantic
mixing before including inter-domain ones.

C.1.4. ZSL results
In this section, we report the ZSL results of Figure 4.3 in tabular form.

The results are shown in Table C.3. Here, we also report the results of a
baseline which uses just the cross-entropy loss term (similarly to [277]),
without the mixing term employed in our CuMix method. As the table
shows, our baseline is weak, performing belowmost of the ZSLmethods
in all scenarios but FLO. However, adding our mixing strategy allows
to boost the performances in all scenarios, achieving state-of-the-art
performances in most of them. We also want to highlight that in Table
C.3, as in Figure 4.3, we do not report the results of methods based on
generating features of unseen classes for ZSL [279, 281]. This choice is
linked to the fact that these methods can be used as data augmentation
strategies to improve the performances of any ZSL method, as shown in
[279]. While using them can improve the results of all the baselines as
well as CuMix , this falls out of the scope of our work.
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Despite being the leading paradigm in computer vision,  deep 
neural networks are inherently limited by the visual and se-
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