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Osteosarcoma (OS) is the most aggressive type of primary solid tumor 
that develops in bone. Whilst conventional chemotherapy can improve 
survival rates, the outcome for patients with metastatic or recurrent 
OS remains poor, so novel treatment agents and strategies are requi-
red. Research into new anticancer therapies has paved the way for the 
utilisation of natural compounds as they are typically less expensive 
and less toxic compared to conventional chemotherapeutics. Pre-
viously published works indicate that Agave exhibits anticancer pro-
perties, however potential molecular mechanisms remain poorly un-
derstood. In the present study, we investigate the anticancer effects of 
Agave leaf extract in OS cells. Here, we observe that Agave inhibits 
cell viability, colony formation, and cell migration, and can induce 
apoptosis in OS cell lines. Moreover, Agave sensitizes OS cells to ci-
splatin (CDDP), to overcome chemoresistance. Considering these ef-
fects, we investigated whether Agave extract modulates the Hippo si-
gnalling pathway, revealing a marked decrease of Yes associated 
protein (YAP) and Tafazzin or WWTR1 (TAZ) mRNA and protein ex-
pression upon treatment. We demonstrate that YAP/TAZ down-regu-
lation inhibits OS cell viability and migration. Furthermore, we reveal 
that the effects of Agave could be partially recapitulated by saponins, 
a class of chemical compounds abundantly expressed by the Agava-
ceae family of plants. We propose an initial mechanism of action in 
which Agave induces YAP/TAZ protein degradation, followed by a 
secondary event whereby Agave inhibits YAP/TAZ transcription, ef-
fectively deregulating nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NF-κB) p65:p50 heterodimers responsible for transcrip-
tional induction of YAP and TAZ. 

Summary 
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1.1. Osteosarcoma: origin and common therapies 

Osteosarcoma (OS) is the most frequent primary tumor affecting bone, 
and typically originates in the extremities of the long bones in the legs 
e.g., femur or tibia, or in arm bones such as the humerus. Less fre-
quently, it develops in the hip bones, shoulders or jaw, and is always 
associated with increasing pain 135; 5. OS shows a bimodal age occur-
rence, arising frequently in children and teens aged 10-16 years and in 
older adults usually over 40. OS originates from mesenchymal 
stem/stromal cells (MSCs) or from the derived osteogenic lineage rep-
resented by the osteoblast cells 112 (Fig. 1). 
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Fig. 1. Bone microenvironment in OS development. MSCs and osteoblasts are the main 
candidates to acquire pro-tumorigenic mutations and to promote OS development. 
Modified from Abarrategi et al., 2016 1. 
 

Many evidences report translocation and genetic mutations with 
cell-of-origin models based frequently on TP53 mutations and/or reti-
noblastoma (Rb) protein down-regulation that occur in MSCs 133; 112. It 
was reported that also bone microevironmental signals, such as bone 
morphogenic protein 2 (BMP2), and calcified substrates could play a 
key role in promoting oncogenic transformation 136. Many groups gen-
erate OS through the inactivation of TP53 and/or Rb genes in Cre-Lox-
based mice models 16; 162 underlining their critical function in regulating 
bone development. Another study suggest that OS could originate also 
from differentiated osteocyte that exhibit constitutive Notch signaling 
activation; moreover, the combined loss of p53 accelerates OS devel-
opment 152. Likewise, in mice osteoblasts the upregulated Hedgehog 
(Shh) signaling, combined with p53 mutations, induce OS develop-
ment 29. Anyway, undifferentiated or osteogenic-committed MSC, and 
human OS samples exhibit common gene signatures supporting both 
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osteogenic or MSC as cell-of-origin for OS onset under proper epige-
netic or microevironmental signals 38.  

Besides p53 and Rb inactivation, OS neoplastic cells show a com-
plex karyotype associated with chromosome instability, copy number 
variations and deregulations of many other signalling pathways such 
as vascular endothelial growth factor-receptor (VEGF-R), transform-
ing growth factor beta (TGFβ), Wnt/β-catenin, Hippo/Yes associated 
protein (YAP), phosphatidylinositol 3 kinase-Akt-mammalian target 
of rapamycin (PI3K-Akt-mTOR), mitogen-activated protein kinases 
(MAPKs) and erythroblastic leukaemia viral oncogene homologues 
(ERBBs) 44; 1. Moreover, many studies report deletions in p16INK4a and 
p19 genetic locus 92, cyclin-dependent kinase 4 (Cdk4), mouse double minute 
2 homolog (Mdm2), cyclins D1 and E amplifications 95; 90; 89 and c-Fos, c-
Jun, c-avian myelocytomatosis viral oncogene homolog (c-Myc) over-
expressions 168; 158; 122. Gene expression data reveal that minichromosome 
maintenance complex component 4 (MCM4), large tumor suppressor 2 
(LATS2), baculoviral IAP repeat-containing protein 2 and 3 (Birc2/3), chap-
eronin containing TCP1 subunit 3 (CCT3), COP9 signalosome subunit 3 
(COPS3) and WW domain containing E3 ubiquitin protein ligase 1 (WWP1) 
mutated gene expressions may play a role in OS pathogenesis 79; 173. In 
addition, ossification factor genes such as MET, twist family BHLH tran-
scription factor 1 (Twist) and adenomatous polyposis coli (APC) are fre-
quently mutated especially in paediatric high-grade patients suggest-
ing an important role in OS outcome 51. Other genetic or epigenetic 
alteration include deletion of protein kinase CAMP-dependent type I reg-
ulatory subunit alpha (PRKAR1A) gene and mutations/overexpressions 
of Runt-related transcription factor 2 (RUNX2) and RecQ helicases LA 
(RECQLA) genes 114; 34, reduced expression of WW domain containing 
oxidoreductase (WWOX) and hypermethylation of hypermethylated in 
cancer 1 (HIC1) gene 129 or loss of heterozygosity of budding uninhib-
ited by benzimidazoles 3 (BUB3) and fibroblast growth factor receptor 
2 (FGFR2) 100. All these observations delineate a very complex muta-
tional genetic background in OS patients suggesting that multiple on-
cogenic pathway deregulations delineate chromosome instability ac-
quired during OS development.  
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Several studies report the isolation of OS cells subpopulation with 
cancer stem cells (CSCs)-like features 110, these cells are able to self-re-
new and sustain tumor formation promoting metastasis and chemo-
resistance 2; 150. These characteristics are due to an increase in DNA re-
pair ability, inhibition of apoptotic signaling, increased levels of 
lysosomal activity and overexpression of ATP-binding cassette (ABC) 
transporters 57; 65. Thus, it is clear that OS-CSCs exhibit peculiar prop-
erties that make them more resistant to therapies and also the bone 
microenvironment may play a role in regulating them self-renewal, 
growth, metastatic potential and drug resistance 5. It is worth to men-
tion that bone is a suitable niche for OS-CSCs because highly vascular-
ized, favouring migration and metastasis of CSCs, because it represent 
an hypoxic environment in which hypoxia-induced signaling can pro-
mote stemness and drug resistance 78; 187, and because it is rich of cal-
cium and growth factors such as BMP, insulin-like growth factor 1 
(IGF1) and FGF that support tumorigenesis 22. 

First line treatment for OS is an intravenous combinational chemo-
therapy (cisplatin (CDDP)/doxorubicin) 1. For patients with localized 
OS, surgical resection is an essential component of the therapy, how-
ever if not feasible, radiation therapy can be used to improve prognosis 
18; 63. As previously described, OS is frequently associated with chemo- 
and radio-resistance due to the presence of CSCs subpopulations and 
also to Hippo/YAP signalling alterations 1; 163. Several ongoing clinical 
trials employ drugs that target cell membrane receptors (i.e. 
Trastuzumab, Cixutumumab, Erlotinib, Sorafenib and Bevacizumab), 
intracellular signaling (i.e. Everolimus and Curcumin) or niche and 
their signaling (i.e. Zolendronic acid, Denosumab and Mifamurtide) 
(reviewed in Abarrategi et al. 1). Moreover, many other drugs are able 
to reduce OS-CSCs subpopulations targeting nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling (i.e. Par-
thenolide), PI3K, TGF-β, AMP-activated protein kinase 
(AMPK)/mTOR signaling (i.e. Metformin), Wnt and Notch1 signaling 
(i.e. Salinomycin and Diallyl trisulfide), histone deacetylase (i.e. Vori-
nostat) or can stimulate macrophage phagocytosis (i.e. Anti-CD47 an-
tibody) (reviewed in Abarrategi et al. 1). However, whilst the overall 
survival rate for OS has increased, the five-year survival rate for pa-
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tients with metastatic or recurrent disease has essentially remained un-
changed at approximately 20% 6; 67 highlighting the urgent need to de-
velop new and more efficacy anticancer strategies.   

1.2. The Hippo pathway 

The Hippo pathway is an evolutionarily conserved signalling pa-
thway that plays a key role in development, stem cell maintenance, 
regeneration, cancer onset, and chemoresistance 56; 163; 185; 166 (Fig. 2). It 
interacts with many other signaling pathways creating a complex net-
work in which YAP and its paralog TAZ are emerging as a critical node 
integrating and decoding both oncogenic and tumor suppressor inputs 
64 (Fig. 2).   

 
 

Fig. 2. Hippo pathway regulators and regulation. Hippo signalling integrates different 
inputs signalling (on the left) and regulates several processes (on the right). Modified 
from Ferraiuolo et al., 2016 56. 

Hippo signaling was first discovered in Drosophila melanogaster and 
human orthologue counterparts exhibit almost the same functions. 
The Hippo kinase cassette comprises the tumor suppressor proteins 
Mammalian Sterile-20 family Serine-Threonine kinases 1 and 2 
(Mst1/2) that phosphorylate the adaptor protein Salvador 1 (Sav1) 153, 
also termed WW45, the Large tumor suppressor 1 and 2 (Lats1/2) AGC 
family kinases 175 and the Mps one binder kinase activator-like A and 
B (MOBKL1A and MOBKL1B) also known as Mob1. Mst1/2 activate 
Lats1/2 by phosphorylation, the interaction between Lats1/2 and Mob1 
is necessary for Lats1/2 activation. This interaction is enhanced by 
Mst1/2 phosphorylation of Mob1. Mst1/2 kinase activity is enhanced 
through interaction with Sav1 175. Thus, Mst1/2 and Lats1/2 trigger a 
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kinase cascade regulated by Sav1 and Mob1 and phosphorylate the 
oncogenic Hippo transducers YAP and TAZ resulting in their cyto-
plasmic retention and/or protein degradation 190 (Fig. 3). In response to 
cell density, YAP and TAZ phosphorylation at Ser127 and Ser89 re-
spectively creates a 14-3-3 binding site and consequent YAP/TAZ cy-
toplasmic retention and inhibition. Thus, cell density-dependent acti-
vation of the Hippo pathway is involved in the cell contact inhibition 
190. Moreover, Lats1/2 can phosphorylate YAP at Ser381 triggering a 
consequent phosphorylation by the Casein kinase 1 delta/epsilon 
(CK1δ/ε) at an additional residue. This event generates a “phospho-
degron” signal (conserved also in TAZ which is phosphorylated at 
Ser311) inducing the recruitment of the E3 ubiquitin ligase SCFβ-TRCP 
and consequentially YAP ubiquitin-mediated proteasome degradation 
190 (Fig. 3). Since YAP and TAZ lack a DNA binding domain, they in-
teract through their WW domains with various DNA-binding tran-
scription factors including TEA domain family members/Transcrip-
tion enhancer factors (TEADs/TEFs), β-catenin, RUNX1/2 and Smads 
to drive transcription of their oncogenic target genes 176; 189; 68. YAP/TAZ 
can function also as transcriptional co-repressors for the tumor sup-
pressor genes DDIT4 and TRAIL recruiting the Nucleosome remodel-
ling deacetylase (NuRD) histone complex onto the promoters of se-
lected genes 75 (Fig. 3).  
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Fig. 3. The Hippo pathway. The core kinases induce YAP/TAZ cytoplasmic retention or 
protein degradation. When activated, YAP/TAZ translocate into the nucleus and interact 
with different transcription factors activating or repressing transcription of target genes. 
Modified from Ferraiuolo et al., 2017 55. 

YAP and TAZ chief functions are to regulate cell proliferation, in-
vasion, stem cell maintenance, and epithelial to mesenchymal transi-
tion (EMT) 44; 56. Interestingly, the Hippo pathway has been shown to 
cooperate with p53 signalling to induce apoptosis, DNA damage re-
pair, and senescence in response to genotoxic stress as previously re-
viewed 55. Dysregulation of Hippo signalling and YAP/TAZ overex-
pression or hyperactivation are reported in many types of human 
cancers including metastatic osteosarcomas, brain tumors (meningio-
mas, schwannomas, and acoustic neuromas), hepatocellular carci-
noma (HCC), bile duct tumors, mesothelioma, lung, colon, and breast 
cancers 64; 185. This leads to increased cell proliferation, acquisition of 
cancer stem cell features, EMT and metastasis formation, inhibition of 
senescence, reduced apoptosis and drug resistance 64. Invasion and 
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metastasis are common in advanced solid tumors and are responsible 
for the majority of deaths from cancer. Loss of cell polarity promotes 
YAP/TAZ activation in a positive feed-forward loop inducing EMT 
and metastasis formation 41. Increasing cell survival and reduced cell 
death are mediated by YAP/TAZ transcriptional up-regulation of anti-
apoptotic B cell lymphoma 2 (Bcl-2) family members, cIAP1/2 anti-
apoptotic proteins, c-Myc, connective tissue growth factor (CTGF) and 
cysteine-rich angiogenic inducer 61 (CRY61) targets 120. Moreover, 
YAP overexpression can suppress anoikis cell death induced by an-
chorage-dependent cells detaching, promoting dissemination of in-
vading cells and inducing metastasis formation; loss of E-cadherin 
(linked to EMT) function might also induce YAP/TAZ activation in 
metastatic cells 180. YAP/TAZ genes are amplified and localized prefer-
entially in the nucleus of several tumors: lung, pancreas, esophagus, 
gastric, skin, colon, prostate, liver, ovarian and mammary gland carci-
nomas, medulloblastomas, gliomas, and oral squamous-cell carcino-
mas 120; 64; 185. Recently it was demonstrated that YAP could regulate 
non-coding RNAs biogenesis associated with cancer. In detail, at low 
cell density, nuclear YAP binds to and sequesters a regulatory protein 
of the micro-RNA (miRNA)-processing machinery, p72. This leads to 
widespread miRNA suppression in cells and tumors with concomitant 
c-Myc post-transcriptional induction 108. In lung cancer, YAP elicits its 
oncogenic activity sustaining the aberrant expression of the MCM7 
gene and its hosted miR-25, 93, and 106 cluster 88. Moreover, nuclear 
YAP/TAZ elicit cytoplasm Dicer processing of miRNA precursors 
(pre-miRNAs) 30. In liver cancer, YAP/RUNX2 complex binds to the 
promoter of the tumor suppressor long non-coding (lncRNA) pseudo-
gene metallothionein 1D pseudogene (MT1DP) inhibiting its expres-
sion. Down-regulation of MT1DP enhances forkhead box protein A1 
(FoxA1) activity with consequent induction of the oncogenic factor al-
pha-fetoprotein (AFP), a classic liver cancer biomarker 182. It is also re-
ported that YAP up-regulates lncRNA metastasis associated lung ade-
nocarcinoma transcript 1 (MALAT1) expression at both transcriptional 
and post-transcriptional level encouraging proliferation and enhanc-
ing cell migration 164. Another two lncRNAs have been investigated in 
colon and renal cancers. YAP cooperates with β-catenin in colon tu-
morigenesis, also activating the transcription of the lncRNA RNA 
component of mitochondrial RNA processing endoribonuclease 

Agave negatively regulates YAP and TAZ in osteosarcoma cell lines18



20 AGAVE NEGATIVELY REGULATES YAP AND TAZ IN OSTEOSARCOMA CELL LINES 

(RMRP) involved in ribosomal RNA processing 123. The LncARSR and 
YAP axis form a feed-forward loop in renal cancer carcinomas (RCCs) 
in which, forced expression of lncARSR, enhances tumor renal initiat-
ing cells and is associated with a poor prognosis in patients 128.    

 
1.2.1. Hippo signaling in osteogenic differentiation  
and osteosarcoma development 
 

Hippo signaling plays a key role in bone tissue homeostasis. Oste-
ogenic differentiation is regulated by the transcription factor RUNX2 
that induces the expression of osteoblast-specific genes such as oste-
ocalcin 70. It was demonstrated that TAZ binds to RUNX2 working as 
transcriptional co-activator. Indeed, osteogenesis is promoted by TAZ 
overexpression and inhibited in TAZ knocking down conditions 70. 
TAZ overexpression in mice models induces increased bone for-
mation, higher bone mineral density, higher expression of osteocalcin, 
alkaline phosphatase (ALP), Sp7 transcription factor, also called os-
terix, and obviously RUNX2 177. Moreover, TAZ could be activated by 
Wnt/β-catenin pathway resulting in TAZ dephosphorylation and nu-
clear translocation with consequent induction of osteogenic differenti-
ation 23. YAP involvement in osteogenic differentiation is more com-
plex as YAP function both as activator and repressor for RUNX2 under 
specific conditions 184; 50. 

Many studies report that aberrations in Hippo signaling are im-
portant in OS development. In particular, YAP, Ras-association do-
main family proteins (RASSFs), neurofibromin 2 (NF2) and Mob1 mu-
tations are involved. RASSFs and NF2 are upstream regulators of the 
Hippo pathway and act as tumor suppressors activating the Hippo ki-
nases 125; 17. RASSF5 and RASSF10 are frequently hypermethylated and 
down-regulated at protein levels resulting in OS development associ-
ated with distal metastasis 132; 192. NF2 mutations are associated with 
neurofibromatosis type 2 disease but also with meningioma, schwan-
nomas and OS in 63% of cases 99. Mob1 down-regulation induces OS 
formation in mice models 115 and aberrant mitosis in in vitro experi-
ments 69. YAP protein is overexpressed in OS tissue compared to nor-
mal one and its expression correlate with tumor staging 188. In murine 
OS cell lines, YAP and TAZ are overexpressed and primarily localized 
into the nucleus 131, moreover, YAP suppression induces RUNX2, Cyc 
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D1 and matrix metallopeptidase 9 (MMP-9) down-regulation as well 
as reduced cell proliferation, migration and tumor growth in murine 
xenografts 178 and transgenic mice models 29. It was demonstrated that 
Sox2 transcription factor overexpression is responsible of YAP upreg-
ulation. Indeed, Sox2 represses NF2 and Kibra activators of the Hippo 
kinases leading to enriched YAP expression and osteosphere for-
mation in vitro 15.      

1.3. The NF-κB pathway 

 NF-κB family of transcription factors are key regulators of immune 
development, immune responses, inflammation, differentiation, sur-
vival and cancer 103. NF-κB signalling is activated by inflammatory 
stimuli or ribo- and geno-toxic stresses (NF-κB essential modulator 
(NEMO, also known IκB kinase γ (IKKγ))-dependent pathway, canon-
ical signalling) or via sensing developmental stimuli (NEMO-inde-
pendent pathway, non-canonical signalling) 103. These pathways con-
trol NF-κB dynamic constitutively or in response to different stimuli 
regulating the entire expression programs 144. Upstream regulators are 
tumor necrosis factor receptor (TNF-R), toll-like receptor (TLR), inter-
leukin receptor 1 (IL-1R), developmental signals, genotoxic and ribo-
toxic stresses that regulate NF-κB expression, processing of NF-κB pre-
cursors or NF-κB activation 116; 52; 72; 9. 

NF-κB family members act as homo- or hetero-dimers of different 
subunits: p65 (or RelA), RelB, p50 (obtained from p105 precursor), p52 
(produced from p100 precursor), and cRel; as monomers are unstable 
and quickly degraded. Thus, NF-κB dimer formation and repertoire 
are dynamic and change depending on different cell type during cell 
differentiation and development 8. NF-κB monomers RelB and cRel are 
differentially expressed, whereas p65 is ubiquitously expressed and 
plays a crucial role in inducing the transcription of all NF-κB subunits 
21; 8. Some NF-κB monomers must be processed before working as tran-
scription factors. This is the case of p50 and p52 that are released after 
cleavage of p105 and p100 precursors respectively 179. The strongest 
binding affinities between NF-κB monomers exist between p65:p50 
hetero-, and p50:p50 and p65:p65 homo-dimers 157. NF-κB p65:p50 and 
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p65:p65 complexes are transcriptional activators, whereas p50:p50 di-
mers function as inhibitors 13. NF-κB dimers are unstable and rapidly 
degraded, especially for p65, if activating stimuli stop 137; 97. Different 
stimuli activate canonical or non-canonical signalling. 

The canonical signaling is mediated by the scaffold protein NEMO. 
In the absence of stimuli, NF-κB is inactivated and sequestered in the 
cytoplasm through the binding to the inhibitor of kappa B proteins 
(IκBα/β/ε/δ); in the presence of inflammation (i.e. TNF and IL-1 pro-
duction), NEMO interacts with the activated IκB kinases (IKKα/β) that 
phosphorylate IκBs, promoting their proteasomal degradation and 
NF-κB release. In detail, NEMO contains an ubiquitin binding domain 
that allows IKKα/β non-degradative ubiquitination (K63-linked) as 
marker of inflammation and directs IKKα/β-dependent phosphoryla-
tion of IκBs on specific serines, leading them to ubiquitination and pro-
teasomal degradation 141. Thus, NF-κB becomes activated and translo-
cates into the nucleus to promote transcription of its target genes such 
as inflammatory cytokines (i.e. IL-6 and IL-8), inducible nitric oxide 
synthase (iNOS) and cyclooxygenases (i.e. COX-2) 31 (Fig. 4). NF-κB 
can also transcribe directly IκBα/β/ε or p100 that bind to IκBδ promot-
ing NF-kB cytoplasm retention. These mechanisms represent two 
auto-regulatory negative feedback loops that prevent activation in re-
sponse to transient stimuli and poise the system for reactivation status 
102, or attenuate persistent signals and sequential stimulations 143. NF-
κB is also regulated by genotoxic and ribotoxic stresses that induce 
NEMO activation and IκBs degradation promoting NF-κB activation, 
nuclear translocation and transcription of its target genes 94; 117.  Non-
canonical signaling is activated by developmental stimuli that pro-
mote NF-κB-inducing kinase (NIK) and IKKα stabilization and accu-
mulation 45; 149. NIK exerts a dual function: it activates IKKα by phos-
phorylation inducing IκBδ degradation and release of NF-κB, this 
results in the activation of inflammatory or developmental responses 
depending on the existing NF-κB dimer repertoire 14; moreover, NIK 
promotes a late response inducing p100 processing and so p52:RelB 
heterodimers formation 87 (Fig. 4).  
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p65:p65 complexes are transcriptional activators, whereas p50:p50 di-
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Fig. 4. NF-κB signaling. NF-κB can be activated by inflammatory stimuli, geno- or ribo-
toxic stresses (canonical pathway, NEMO-dependent) or via developmental signals 
(non-canonical pathway, NEMO-independent). Modified from Viennois et al., 2013 161. 

NF-κB signalling is aberrantly regulated and frequently activated 
during onset and progression of several cancer types to promote in-
flammation and angiogenesis 37, cancer cell survival 48, migration 73, 
chemo- and radio-resistance and is associated with poor patient prog-
nosis 193; 171. Indeed, NF-κB promotes cell proliferation by upregulating 
cyclins D1, D2, D3, E and c-Myc and induces the expression of proteins 
involved in invasion (i.e. intercellular adhesion molecule 1 (ICAM-1), 
E-selectin, MMPs) and angiogenesis (i.e. VEGF) in many tumors such 
as breast cancer and colorectal cancer as reviewed in Dolcet et al. 48. 
Many lymphomas and leukemias present constitutively active NF-κB 
proteins produced by translocation chromosome mutations 101; 24. 
Moreover, are also reported IκBα loss-of-function mutations in blad-
der, breast, colon, ovarian, pancreatic, prostate carcinomas and mela-
noma cancers 130 and cRel, p52, p65 and p50 nuclear accumulation in 
breast and nasopharyngeal carcinomas 39; 134; 154. In detail, p65 nuclear 
localization and activity is frequently increased in cancer and is asso-
ciated with worsening tumor progression and metastases in cervical 
squamous cell carcinomas and gastric cancer 140; 113.  

Developmental stimuli  
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1.3.1. NF-κB pathway deregulation in OS development 
 
NF-κB signaling alterations are involved in OS pathogenesis and 

progression, in particular many studies report that NF-κB upregula-
tion induces proliferation, metastasis and chemoresistance in OS pa-
tients. Zinc finger E-box binding protein 1 (ZEB1) is a transcription fac-
tor involved in NF-κB and iNOS activation in OS cells with consequent 
increase in cell proliferation and invasion 174. NF-κB activation in-
duces chemoresistance and it was demonstrated that polyphenols 
could inhibit IKKα/β activation and thus NF-κB nuclear translocation 
with consequent apoptosis induction in Saos-2 cell line 62. Moreover, 
OS shows a radioresistant subpopulation that induces relapse and me-
tastasis following treatment. It was demonstrated that targeting NF-
κB with parthenolide treatment could re-sensitize OS cell population 
to radiotherapy inducing cell death 194. Many other studies report that 
down-regulating NF-κB signaling directly (i.e. thymoquinone, tetra-
methylpyrazine, aspirin, celastrol, tetrandrine and amentoflavone 
treatments) 124; 165; 84; 183; 93; 121 or indirectly 151; 91; 191; 66; 54; 
186; 181, results in reduced proliferation, invasiveness and chemo- and 
radio-resistances. Moreover, NF-κB induction promotes transcription 
of target genes involved in migration 167; 86 and down-regulates the 
tumor suppressor miR-506 71.  

1.4. Agave natural extracts properties 

Agaves species are succulent monocotyledons that belong to 
the Agavaceae family which form distinctive rosettes and flower 
spikes. Most Agaves consist of rosettes of thick, hard, rigid but succu-
lent leaves often with marginal teeth and usually with a lethally sharp 
terminal spine. Leaves contains carbohydrates (in particular inulin is 
known to reduces cholesterol and glycaemia), mineral salts and oligo-
elements (i.e. Fe3+, Mg2+ and Ca2+), the alkaline serine protease EC 3.4, 
flavones and saponins 32; 145. Agave is widely employed in Tequila pro-
duction (from Agave tequilana) 27, as drought-tolerant biofuels feed-
stock 83 and for steroidal hormone synthesis 42 but exhibits also antimi-
crobial 43, anti-helminthic 19, anti-inflammatory 58, anti-tumoral 109, 
neuroprotective 148 and prebiotic 26 properties. The use of medical 
plants in medicine is practised across time immemorial. In Caribbean 
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traditional medicine, Agave intermixta has been used as anti-tubercu-
lotic, anti-arthritic and anti-carcinogenic agent 138 and it was demon-
strated to exert a mitotic inhibiting effect over 24h of treatment in plant 
and mammalian cancer cells 138. Hexanic non-toxic fraction (riches of 
saponins content and in particular of hecogenin and tigogenin) from 
Agave sisalana, exerts anti-inflammatory and analgesic properties in 
acute and chronic mice models reducing oedema extension through 
myeloperoxidase (MPO) inhibition and pain through probably inhib-
iting neutrophil infiltration 49. A. sisalana contains also a phenol and 
flavonoid fraction that inhibits IL-2 and interferon-γ (INF-γ) release 
thus reducing inflammation and proliferation of mononuclear cells in 
human peripheral blood 33. Agave tequilana lignin exhibits photoprotec-
tion properties, so it was conjugated with zinc oxide nanoparticles to 
increase the sun protection factor in sunscreens. Indeed, it was demon-
strated that lignin nanoparticles increase absorption in the UVB and 
UVC spectra 61. Fructans obtained from A. tequilana exert a metabolic 
action decreasing serum glucose and triglyceride levels in mice models 
and thus preventing weight gain, diabetes and liver steatosis 98. An-
other study reports that are saponins responsible of this metabolic ef-
fect. In detail, authors demonstrate that saponins can reduce weight, 
fat mass, serum glucose, insulin, LDL-cholesterol levels and hepatic 
lipid levels in mice models. Furthermore, saponins increase fatty acid 
oxidation, mitochondrial activity in skeletal muscle and promote gut 
microbiota proliferation 80. Fructans from A. angustifolia are rich in 
garbs component (in particular fructooligosaccharides and inulin) that 
increase saccharolytic fermentation in proximal and distal colon exert-
ing a prebiotic function that prevent colon cancer 7.  

1.5. Saponins compounds and properties 

Saponins are amphipathic polycyclic aglycones (hydrophobic) at-
tached to one or more sugar side chains (hydrophilic) characterized by 
their strong foam-forming properties in aqueous solutions. The agly-
cone part, which is also called sapogenin, is either a steroid (C27) or a 
triterpene (C30). Agave plants are an important source of steroidal 
sapogenins that can be isolated from leaves, flowers, leaf juice, rhi-
zomes and callus 3. On the basis of the aglycone part, saponins can be 
classified as spirostanol or furostanol glycosides. These compounds, 
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depending on the number of sugars attached, may further be classified 
as mono- until hexa-glycosides 3. Saponins exhibit a number of well-
known important bioactivities like anticancer, adjuvant, immunostim-
ulant, analgesic, anti-inflammatory, gastroprotective, antimicrobial, 
hypocholesterolemic and antioxidant properties 145. Despite this, at 
high concentration, saponins exert hemolytic and cytotoxic activities 
due to the amphipathic nature that confer the capacity to alter mem-
brane permeability 147; 32. As mentioned, saponins act as anti-inflamma-
tory agents, indeed they can down-regulate a plethora of inflammation 
promoting factors such as IL-1β, IL-2, IL-6, IL-10, IL-12, IL-18, iNOS, 
NF-κB, PGE2, TNF-α, TGFβ1 and COX-2. Diosgenin extracted from 
Fenugreek is demonstrated to exert anti-inflammatory function in ad-
ipose tissue suppressing macrophages infiltration and activation; 
moreover, it is shown to exert also a metabolic role promoting adipo-
cyte differentiation by CCAAT/enhancer binding protein (C/EBP) mRNA 
increased expression that results in reduced serum glucose uptake 159.  
Platycodin saponins are known to prevent IκBs degradation and NF-
κB activation, thus iNOS, COX-2 and inflammatory cytokines are in-
hibited after bacterial lipopolysaccharide (LPS) treatment 4. Likewise, 
caulosaponin, present in Blue Cohosh, inhibits iNOS, TNF-α, COX-2, 
IL-1β and IL-6 production after LPS treatment 82, ginenosides, present 
in Panax ginseng, inhibits TNF-α-induced NF-κB transcription of COX-
2 and iNOS 146 and hecogenin shows a potent gastroprotective effect in 
gastric ulcer mice models suppressing NO production and inducing 
K+ATP channel activation 28. Cantalasaponin-1 from A. tequilana, A. an-
gustifolia and A. americana shows anti-inflammatory properties reduc-
ing edema in mice models in a dose dependent manner 107.    

Saponins exhibit also anticancer functions 96; 126. Diosgenin from 
fenugreek is demonstrated to inhibit human telomerase reverse tran-
scriptase (hTERT) expression and so telomerase activity and cell 
growth in lung cancer cell lines 105; chlorogenin affects cell cycle inhib-
iting the G2/M transition in Hela cells 118. Moreover, diosgenin is able 
to activate p53, the apoptosis-inducing factor (AIF), and Bax proteins 
resulting in cell cycle arrest (in S and G2/M phases) and caspase-3-de-
pendent apoptosis in osteosarcoma, laryngocarcinoma and melanoma 
cell lines 40. Specifically in osteosarcoma, other studies demonstrate 
that diosgenin inhibits cell growth, induces TP53 and p21Waf1/Cip1 mRNA 
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levels and reduces Bcl-2 and COX-2 protein levels 104; moreover, dios-
genin, hecogenin, tigogenin, sarsasapogenin, smilagenin and so-
lasodine saponins can block cell proliferation and induce apoptosis 155. 
Paris saponin VII reduces viability, proliferation and migration block-
ing p38 MAPK activation and thus inhibits MMP-2 and -9 synthesis in 
a time- and dose-dependent manner 35. Methyl protodioscin (MPD) 
suppresses cell growth and induces apoptosis. In detail, MPD inhibits 
anti-apoptotic protein expression Xiap and Survivin, induces reactive 
oxygen species (ROS) production that in turn activate p38 MAPK and 
inhibit Bcl-2 and MMP expression. This regulation results in caspase-
3 and -9 activation and apoptosis induction. Moreover, MPD decreases 
extracellular signal–regulated kinases (ERKs) activation and induces 
G0 and G2/M arrest inhibiting cell proliferation 156. Considering all 
these data, we can summarize saponins function, in particular their 
anticancer activity. As reviewed in Koczurkiewicz et al., at high con-
centration (>100μM) saponins induce cell membrane permeabilization 
exerting cytotoxic and hemolytic effects. At low concentration, sapo-
nins inhibit MMPs expression via MAPK/ERK pathway; impair NF-κB 
and AP-1 transcription down-regulating PI3K/Akt pathway; reduce 
Mdm2 levels, activate p38 and prevent IκBα phosphorylation and thus 
NF-κB nuclear translocation. In addiction saponins down-regulate 
Cdk2/Cyc D1 and Cdk4/Cyc E complexes and Cyc B levels. Finally, 
they activate TNF and FAS receptors, p53 and Bcl-2-associated X pro-
tein (Bax) pro-apoptotic factors. All these modulations result in the in-
hibition of cell proliferation and invasion and intrinsic and extrinsic 
apoptosis induction (Figure 5) 77.          
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Fig. 5. Saponins effects in cancer. Modified from Koczurkiewicz et al., 2015 77.      

For high concentration 
(>100μM) 
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OS is a tumor that develops in bones with an unknown etiology. It is 
mainly a pediatric cancer frequently associated with Li-Fraumeni, 
Rothmund Thomson and hereditary retinoblastoma genetic syn-
dromes. Patients with OS exhibit a very low survival rate spanning 
from 1 to 5 years and 50% of them encounter limb amputations. Be-
cause its radio- and chemo-resistances, new effective OS anticancer 
strategies are urgently required, paving the way for research into less-
toxic, cost-effective natural compounds that could be useful novel OS 
therapeutics. To this end, we tested several natural extracts and found 
that Agave promoted cell death of OS cell lines. Then, we aimed to 
dissect the Agave’s mechanism of action. We also evidenced how 
Agave could be useful alone or in combined anticancer treatments po-
tentiating the killing effects of conventional OS therapies and thus 
overcoming chemoresistance. Agave’s effect is also demonstrated in 
other cancer cell lines opening future prospective in treating many dif-
ferent cancers. We propose a model depicting Agave anticancer effects 
that occur through the impairment of two well-known oncogenic path-
ways (YAP/TAZ and NF-κB). Both pathways are frequently hyper-ac-
tivated in OS and many other cancers. We propose to test Agave anti-
cancer effects in vivo to highlight the potential use of Agave as adjuvant 
treatment for OS.  

 
 

2. Aim of the project 
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3.1. Agave reduces cell viability, colony formation,     
cell migration, and sensitizes cells to CDDP 

Searching for potential alternative OS therapeutics, we performed cell 
viability assays testing 15 natural compounds on U-2 OS and Saos-2 
OS cell lines (data not shown). We noted that of the 15 compounds 
tested, Agave natural extract (from A. sisalana) showed the greatest 
reduction in cell viability. We therefore focused on this extract and ex-
tended our analysis to four OS cell lines: U-2 OS, Saos-2, HOS and MG-
63. Dose-response assays were performed using Agave treatment for 
72 h (Fig. 1A). Table 1 shows the half-maximal effective concentration 
(EC50) and the half-maximal lethal concentration (LC50) for each cell 
line. EC50 values ranged from 3.67 µg/mL in U-2 OS to 6.16 µg/mL in 
HOS cells (Table 1). For subsequent functional analyses, we selected 
the lower dose of 3.12 µg/mL, which reduced cell viability by approx-
imately 25% (Fig. 1A). We tested cell migratory ability after 24 h of 
Agave treatment using wound healing- (Fig. 1B-C) and transwell- (Fig. 
1D-E) migration assays, and found that Agave impairs cell migration 
in both U-2 OS and Saos-2 cell lines.  

The biggest challenge in OS therapy is overcoming chemo-
resistance 1. To determine whether Agave can improve the effective-
ness of CDDP as an apoptotic agent, we assayed Agave in combination 

3. Results 
 



3. Results

32 AGAVE NEGATIVELY REGULATES YAP AND TAZ IN OSTEOSARCOMA CELL LINES 

3.1. Agave reduces cell viability, colony formation,     
cell migration, and sensitizes cells to CDDP 

Searching for potential alternative OS therapeutics, we performed cell 
viability assays testing 15 natural compounds on U-2 OS and Saos-2 
OS cell lines (data not shown). We noted that of the 15 compounds 
tested, Agave natural extract (from A. sisalana) showed the greatest 
reduction in cell viability. We therefore focused on this extract and ex-
tended our analysis to four OS cell lines: U-2 OS, Saos-2, HOS and MG-
63. Dose-response assays were performed using Agave treatment for 
72 h (Fig. 1A). Table 1 shows the half-maximal effective concentration 
(EC50) and the half-maximal lethal concentration (LC50) for each cell 
line. EC50 values ranged from 3.67 µg/mL in U-2 OS to 6.16 µg/mL in 
HOS cells (Table 1). For subsequent functional analyses, we selected 
the lower dose of 3.12 µg/mL, which reduced cell viability by approx-
imately 25% (Fig. 1A). We tested cell migratory ability after 24 h of 
Agave treatment using wound healing- (Fig. 1B-C) and transwell- (Fig. 
1D-E) migration assays, and found that Agave impairs cell migration 
in both U-2 OS and Saos-2 cell lines.  

The biggest challenge in OS therapy is overcoming chemo-
resistance 1. To determine whether Agave can improve the effective-
ness of CDDP as an apoptotic agent, we assayed Agave in combination 

3. Results 
 



3. Results 33 

with increasing doses of CDDP for 72 h (Fig. 1F-G). Agave extract sen-
sitized OS cells to CDDP, effectively reducing the EC50 (by 2.7- and 
2.2-fold) and LC50 (3.7- and 2.7-fold) for U-2 OS and Saos-2 cells, re-
spectively (Table 2). Clonogenic assays were then performed to assess 
colony formation ability using U-2 OS and Saos-2 cell lines treated 
with Agave and CDDP either alone or in combination (Fig. 1H-I). 
Whilst CDDP was more effective than Agave in reducing colony num-
bers, Agave potentiated CDDP’s inhibitory effect in both cell lines. 
Agave’s inhibitory effect on cell viability was also tested in a variety of 
other cancer cell lines (lung, mesothelioma and breast) (Fig. 2) demon-
strating a consistent dose-dependent effect. 
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Fig. 1. Agave exerts anticancer effects on osteosarcoma cell lines. (A) Osteosarcoma 
cell lines were treated with Vehicle control (EtOH) or increasing concentrations of Agave 
for 72 h before being analyzed by ATPlite assay. The percentage cell viability normalized 
to control is shown, with values representing mean ± STDEV of n=3 independent exper-
iments. Wound healing- (B-C) and transwell- (D-E) migration assays were performed 
on U-2 OS (B, D) and Saos-2 (C, E) cell lines after treatment with Agave (3.12 µg/mL) or 
Vehicle for 24 h. Histograms represent the percentage of wound width (B-C) or migrated 
cells (D-E) normalized to the relevant control. Values represent mean ± STDEV from n=3 
independent experiments, *p<0.01 **p<0.001. Osteosarcoma cell lines U-2 OS (F) and 
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Saos-2 (G) were treated with either Vehicle (CTRL) or Agave (3.12 µg/mL) in combina-
tion with increasing doses of cisplatin (CDDP) for 72 h. The percentage viability of 
Agave treatment alone was subtracted from each CDDP or CTRL value (corrected 
value), then these data were normalized to the CTRL corrected value. Values shown 
represent mean ± STDEV from n=3 independent experiments. U-2 OS (H) and Saos-2 (I) 
cell lines were treated with Vehicle, Agave (3.12 µg/mL), and/or CDDP (2 µM) fter seed-
ing for clonogenic assays. Histograms represent the mean percentage of colonies ± 
STDEV normalized to Vehicle control from n=3 independent experiments, **p<0.001. Im-
ages underneath histograms are representative stained culture dishes used for counting 
colonies. 
 
Table 1 

Tab. 1. Treatment with Agave reduces cell viability. The half-maximal effective con-

centration (EC50) and the half-maximal lethal concentration (LC50) values for osteosar-

coma cell lines treated with Agave, calculated using Compusyn software from the dose 

response curves in Fig. 1A.  
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EC50 
(μg/
mL) 

LC50 
(μg/
mL) 
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(μg/
mL) 

LC50 
(μg/
mL) 

EC50 
(μg/
mL) 

LC50 
(μg/
mL) 

EC50 
(μg/
mL) 

LC50 
(μg/
mL) 

Agave 3.67 5.21 4.8 6.3 6.16 9.38 4.39 7.81 

 U2-OS SAOS-2 

Samples 
CDDP  

EC50 (μM) 
CDDP  

LC50 (μM) 
CDDP  

EC50 (μM) 
CDDP  

LC50 (μM) 
CTRL 5.27 13.85 9.3 13.33 

Agave 3.12 μg/mL 1.94 3.79 4.3 5 
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Fig. 2. Agave impairs cell viability in different tumor cell lines. H1299 (A), A549 (B), 

MSTO-211H (C), MPP-89 (D), MDA-MB-231 (E) and SUM-159PT (F) cells were treated 

with Vehicle (EtOH) or increasing concentrations of Agave for 72 h before being ana-

lyzed by ATPlite assay. The percentage cell viability normalized to control is shown, 

with values representing mean ± STDEV of n=3 independent experiments. 
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3.2. Agave decreases oncogenic YAP and TAZ protein 
levels and induces apoptosis  

As previously described, OS typically exhibits dysregulation of 
multiple signalling pathways, including Hippo/YAP 44. Alterations in 
this pathway have also been demonstrated to be a driver of chemo- 
and radio-resistance in OS patients 163. To determine the mechanism of 
Agave’s anticancer effects we focused on alterations within the Hippo 
pathway, specifically the Hippo transducers YAP and TAZ. Agave de-
creased YAP and TAZ protein expression after 24 h in U-2 OS cells 
(Fig. 3A). Notably, Lats1 protein level was unchanged, and TEAD1 
only mildly down-regulated. Reduced YAP and TAZ expression was 
also observed in Saos-2, HOS and MG-63 lines after 72 h of Agave 
treatment (Fig. 3B). Treatment with CDDP alone did not affect YAP 
and TAZ protein levels (Fig. 3C). Moreover, Agave induced apoptosis 
by increasing Bax protein expression, as well as caspase 3 and Poly 
(ADP-ribose) polymerase (PARP) cleavage (lanes 1-2, Fig. 3C), this ef-
fect is stronger compared to that mediated by CDDP treatment alone 
(lanes 1 and 3, Fig. 3C), and appears to enhance CDDP’s effect increas-
ing caspase 3 cleavage in combined treatment (lanes 3-4, Fig. 3C). 
These data suggest that Agave reduces cell viability by down-regulat-
ing YAP and TAZ that are well known to function as oncogenes in OS 
cells 44; 163. Indeed, YAP/TAZ silencing sensitized OS cell lines to Agave 
(Fig. 3D), reducing the EC50 and LC50 concentrations by 4.2- and 2.2-
fold, respectively (Table 3). Moreover, silencing of YAP and TAZ re-
duced the clonogenic and migratory capabilities of both U-2 OS and 
Saos-2 cell lines (Fig. 3E-G and Fig. 4A-B). 
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Fig. 3. Agave down-regulates YAP and TAZ oncogenic proteins. (A) U-2 OS cells were 

treated with Agave (3.12 µg/mL) for 24, 48 or 72 h, or EtOH as Vehicle control (0 h), then 

subjected to Western Blot analysis as indicated. GAPDH was used as a loading control. 

(B) Saos-2, HOS and MG-63 cell lines were treated with Agave (3.12 µg/mL) or Vehicle 

for 72 h, and (C) U-2 OS cells were treated with Vehicle, Agave (3.12 µg/mL) and/or 

CDDP (2 µM) for 72 h before being subjected to Western Blot analysis as indicated. (D) 

U-2 OS cells transfected with siGFP (control), siYAP, siTAZ or siYAP/siTAZ were 

treated with increasing doses of Agave diluted in Vehicle. Values represent the mean 

percentage viability ± STDEV for each condition (n=3), determined by ATPlite assay. (E) 
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U-2 OS and Saos-2 cells were transfected with siGFP (control), siYAP, siTAZ or 

siYAP/siTAZ and subjected to clonogenic assays. Histograms show the mean percentage 

of colonies ± STDEV normalized to siGFP from n=3 independent experiments, **p<0.001. 

Images underneath histograms are representative stained culture dishes used for count-

ing colonies. U-2 OS (F) and Saos-2 (G) cells were transfected with siGFP (control), 

siYAP, siTAZ or siYAP/siTAZ and subjected to wound healing assays. Histograms show 

the mean percentage of wound width ± STDEV normalized to siGFP from n=3 independ-

ent experiments, *p<0.01 **p<0.001. Images underneath histograms are representative of 

the wounded areas used for measuring wound opening. 

Table 3 

 
 
 

 
Tab. 3. YAP and TAZ depletion sensitizes osteosarcoma cells to Agave. The half-max-
imal effective concentration (EC50) and the half-maximal lethal concentration (LC50) 
values for Agave treatment of siGFP (control), siYAP, siTAZ, or siYAP/siTAZ U-2 OS 
cell lines, analyzed using Compusyn software from the dose-response curves in Fig. 3D. 

Fig. 4. Silencing efficiency in OS cell lines. Western Blot analyses of U-2 OS (A) and 
Saos-2 (B) cells transfected with siGFP (control), siYAP, siTAZ or siYAP/siTAZ. 

Samples 
Agave  

EC50 (μg/mL) 
Agave  

LC50 (μg/mL) 
siGFP 7.6 5.2 
siYAP 4 4 
siTAZ 3.8 4 

siYAP/siTAZ 1.8 2.4 
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3.3. Saponins in Agave extract down-regulate YAP     
and TAZ protein levels 

To dissect the molecular mechanism by which Agave extract func-
tions, we investigated the effect of saponins, which are the most abun-
dant compounds present in Agave natural extract among that with rec-
ognised anticancer effects (Table 4) 77; 145. We assayed Diosgenin, 
Sarsasapogenin and Solasodine synthetic steroidal saponins using vi-
ability assays (Fig. 5A and Table 5), then treated cells with sub-lethal 
doses of each compound to test their effect on YAP and TAZ. Although 
less effective when compared to Agave, Diosgenin and Solasodine re-
duced both YAP and TAZ protein abundance, whilst Sarsasapogenin 
significantly reduced YAP at the selected concentrations (Fig. 5B). 
Lats1 and TEAD1 down-regulation were not observed (Fig. 5B). 

 

3.4. Agave enhances YAP and TAZ protein degradation 
as an early event in OS tumorigenesis 

To investigate how Agave can modulate YAP and TAZ protein lev-
els we performed protein stability assays by treating cells with cyclo-
heximide (CHX) in the presence or absence of Agave, then harvesting 
cells at different time points. Agave treatment resulted in significantly 
reduced YAP and TAZ protein levels at 24 and 16 h, respectively (Fig. 
5C-E). Agave-induced YAP/TAZ reduction was mediated by ubiqui-
tin-dependent proteasomal degradation as indicated by the increased 
abundance of ubiquitinated YAP/TAZ (Fig. 5F-G). The rapid loss of 
YAP and TAZ proteins suggests that ubiquitin-mediated YAP/TAZ 
degradation is an early event following Agave administration. 
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Table 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tab. 4. Agave composition. All compounds identified by liquid or gas chromatography 
and mass spectrometry in Agave natural extract (from A. sisalana) divided into classes 
(bold) and subclasses (italics). Diosgenin and Sarsasapogenin, used for subsequent func-
tional assays, are highlighted in blue. Saponins belong to the terpenes class, which are 
the most abundant of the bioactive compounds. 

 

Compounds 
% 

compound 
 
Phenols, total 

 
0.1904 

Of which Flavonoids, total 0.0806 
Of which Acid Phenol, total 0.0159 

Of which Phenylpropanoid derivatives, total 0.0708 

Of which  Quinones, total 0.0025 
Of which Salicylates, total 0.0113 

Of which Simple Phenols, total 0.0093 
Terpenes, total 0.2273 

Of which Monoterpenes , total 0.1061 
Of which Sesquiterpenes, total 0.0506 

Of which Triterpenes, total 0.03397 
Diosgenin 0.00105 

Sarsasapogenin 0.00152 
Of which Apocarotenids, total 0.0302 

Of which Norisoprenoids, total 0.0064 
Polysaccharides, total 62.1 
Saccharides, total 2.17 
Aromatic alcohols, total 0.0416 
Aromatic acids, aromatic esters and 
lactones, total 

0.0627 

Nitrogen compounds, total 6.01099 
Aromatic Ketones, total 0.0170 
Esters, total 0.0040 
Lactones, total 0.0687 
Organic acids, total 5.7487 
Fats, total 0.1459 
Sulphur compounds, total 0.0028 
Vitamins, total 0.0886 
Water 6.6 
Minerals, total 8.4100 

Total 91.74504 
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Fig. 5. Agave induces YAP and TAZ protein degradation. (A) U-2 OS cells were treated 
with Vehicle (EtOH) or increasing concentrations of Diosgenin, Sarsasapogenin and So-
lasodine synthetic saponins for 72 h before being analyzed by ATPlite assay. The per-
centage cell viability normalized to control is shown, with values representing mean ± 
STDEV of n=3 independent experiments. (B) U-2 OS cells were treated with Vehicle, Di-
osgenin (10 µM), Sarsasapogenin (15 µM) or Solasodine (10 µM) for 72 h before being 
subjected to Western Blot analysis as indicated. GAPDH was used as a loading control. 
(C) U-2 OS cells were treated with Vehicle or Agave (3.12 µg/mL) in combination with 
cycloheximide (CHX, 40 µM) for 16, 24 or 40 h, or DMSO (0 h). Cell extracts were then 
subjected to Western Blotting with the indicated antibodies and quantified using Alli-
ance (UVITEC) Software. The quantitated protein levels at each time point for YAP (D) 
and TAZ (E) were normalized to that of GAPDH. U-2 OS cells were co-transfected with 
Flag-tagged YAP (F) or TAZ (G) as well as HA-tagged Ubiquitin before being treated 
with Vehicle or Agave (3.12 µg/mL) in combination with MG-132 (25 µM) for 6 h. Protein 

Agave negatively regulates YAP and TAZ in osteosarcoma cell lines40



3. Results 41 

Table 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tab. 4. Agave composition. All compounds identified by liquid or gas chromatography 
and mass spectrometry in Agave natural extract (from A. sisalana) divided into classes 
(bold) and subclasses (italics). Diosgenin and Sarsasapogenin, used for subsequent func-
tional assays, are highlighted in blue. Saponins belong to the terpenes class, which are 
the most abundant of the bioactive compounds. 

 

Compounds 
% 

compound 
 
Phenols, total 

 
0.1904 

Of which Flavonoids, total 0.0806 
Of which Acid Phenol, total 0.0159 

Of which Phenylpropanoid derivatives, total 0.0708 

Of which  Quinones, total 0.0025 
Of which Salicylates, total 0.0113 

Of which Simple Phenols, total 0.0093 
Terpenes, total 0.2273 

Of which Monoterpenes , total 0.1061 
Of which Sesquiterpenes, total 0.0506 

Of which Triterpenes, total 0.03397 
Diosgenin 0.00105 

Sarsasapogenin 0.00152 
Of which Apocarotenids, total 0.0302 

Of which Norisoprenoids, total 0.0064 
Polysaccharides, total 62.1 
Saccharides, total 2.17 
Aromatic alcohols, total 0.0416 
Aromatic acids, aromatic esters and 
lactones, total 

0.0627 

Nitrogen compounds, total 6.01099 
Aromatic Ketones, total 0.0170 
Esters, total 0.0040 
Lactones, total 0.0687 
Organic acids, total 5.7487 
Fats, total 0.1459 
Sulphur compounds, total 0.0028 
Vitamins, total 0.0886 
Water 6.6 
Minerals, total 8.4100 

Total 91.74504 

42 AGAVE NEGATIVELY REGULATES YAP AND TAZ IN OSTEOSARCOMA CELL LINES 

 
 
Fig. 5. Agave induces YAP and TAZ protein degradation. (A) U-2 OS cells were treated 
with Vehicle (EtOH) or increasing concentrations of Diosgenin, Sarsasapogenin and So-
lasodine synthetic saponins for 72 h before being analyzed by ATPlite assay. The per-
centage cell viability normalized to control is shown, with values representing mean ± 
STDEV of n=3 independent experiments. (B) U-2 OS cells were treated with Vehicle, Di-
osgenin (10 µM), Sarsasapogenin (15 µM) or Solasodine (10 µM) for 72 h before being 
subjected to Western Blot analysis as indicated. GAPDH was used as a loading control. 
(C) U-2 OS cells were treated with Vehicle or Agave (3.12 µg/mL) in combination with 
cycloheximide (CHX, 40 µM) for 16, 24 or 40 h, or DMSO (0 h). Cell extracts were then 
subjected to Western Blotting with the indicated antibodies and quantified using Alli-
ance (UVITEC) Software. The quantitated protein levels at each time point for YAP (D) 
and TAZ (E) were normalized to that of GAPDH. U-2 OS cells were co-transfected with 
Flag-tagged YAP (F) or TAZ (G) as well as HA-tagged Ubiquitin before being treated 
with Vehicle or Agave (3.12 µg/mL) in combination with MG-132 (25 µM) for 6 h. Protein 
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lysates were then subjected to immunoprecipitation using anti-IgG or anti-Flag antibod-
ies. Inputs recovered from anti-IgG IPs were loaded onto gels and subjected to im-
munoblot together with IP samples. Arrows indicate ubiquitinated proteins. 

 
Table 5 

Tab. 5. Saponin treatment reduces osteosarcoma cell viability. The half-maximal effec-
tive concentration (EC50) and the half-maximal lethal concentration (LC50) values for 
U-2 OS cells treated with synthetic saponins Diosgenin, Sarsasapogenin and Solasodine, 
calculated using Compusyn software from the dose response curves in Fig. 5A. 

3.5. Agave reduces YAP and TAZ mRNA levels as a late 
event in OS tumorigenesis 

In addition to decreasing YAP/TAZ protein abundance, we inves-
tigated whether Agave reduces YAP and TAZ mRNA expression. 
Treatment with Agave for 72 h resulted in a significant decrease in 
YAP (2.3-fold, p<0.001) and TAZ (1.9-fold, p<0.001) mRNA (Fig. 6A-B). 
This reduced the ability of YAP and TAZ to function as transcriptional 
co-activators since the expression of their target genes: CTGF, 
ANKRD1 and MCM7 were also significantly down-regulated (Fig. 6C-
E). Interestingly, treatment with CDDP alone mildly decreased YAP 
and TAZ expression, as well as their transcriptional function (deter-
mined by target gene expression) by 96 h (Fig. 6A-E). This is consistent 
with the results showed in Figure 3C in which CDPP alone did not 
modulate YAP and TAZ protein levels after 72h. Importantly however, 
the observed effect was less than for Agave either alone or in combi-
nation with CDDP (Fig. 6A-E). TEAD1 mRNA was slightly decreased 
(1.2 fold, p<0.01) after 72 h of Agave or CDDP treatment (Fig. 7A), sug-
gesting non-specific regulation. LATS1 and LATS2 were not affected 
by any treatment (Fig. 7B-C).  

 

Synthetic compounds 
EC50 
(μM) 

LC50 
(μM) 

Diosgenin 15.93 12.5 
Sarsasapogenin 29.29 20 

Solasodine 4.40 17.5 
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Fig. 6. Agave transcriptionally down-regulates YAP and TAZ. U-2 OS cells were 
treated with Vehicle (EtOH), Agave (3.12 µg/mL), and/or CDDP (2 µM) for the indicated 
times before being subjected to Real Time qPCR analysis. Histograms show the mean ± 
STDEV mRNA level of YAP (A), TAZ (B), CTGF (C), ANKRD1 (D), and MCM7 (E) nor-
malized to GAPDH, (n=3) *p<0.01 **p<0.001. 
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Fig. 8. YAP and TAZ promoter analysis for NF-κB binding sites. Putative NF-κB bind-
ing sites within the YAP (A) and TAZ (B) promoters analysed using LASAGNA-Search 
2.0 software. Some sequences are present on both DNA strands, and at multiple over-
lapping sites. We preferentially selected sites that were closer to TATA/TBP boxes that 
we hypothesized might be more transcriptionally active. The two YAP (A) and three 
TAZ (B) NF-κB putative binding sites that were subsequently used for ChIP analysis are 
highlighted in different colors, corresponding to those used in Fig. 9A.

 
To determine whether the NF-κB consensus-binding sites identi-

fied within the YAP and TAZ promoters are linked to their transcrip-
tional regulation by Agave, we performed ChIP analysis using NF-κB 
p65 and p50 subunits, and p300 histone acetyltransferase as control of 
transcriptionally active chromatin for two (YAP) and three (TAZ) pre-
dicted sites (Fig. 9A). Using the H1H2BA sequence as a non-modu-
lated control (Fig. 9B), we observed that treatment with Agave de-
creased NF-κB p65 and p50 recruitment to YAP’s first putative binding 
site (Fig. 9C), and reduced p65 recruitment, whilst simultaneously in-
creasing p50 binding, at YAP’s second binding site (Fig. 9D). Agave 
treatment reduced p300 histone acetylase recruitment to both YAP 
binding sites (Fig. 9C-D), indicating impairment of YAP transcription. 
Similarly, Agave reduced NF-κB p65, p50 and p300 recruitment to all 
three TAZ binding sites (Fig. 9E-G). Of particular note, TAZ’s first 
binding site was strongly regulated by NF-κB p65:p65 homo-dimers, 
and Agave treatment abolished this recruitment (Fig. 9E). 
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Fig. 7. Agave mildly down-regulates TEAD1 transcript and does not affect LATS1/2 
expression. U-2 OS cells were treated with Vehicle (EtOH), Agave (3.12 µg/mL), and/or 
CDDP (2 µM) for 72 h before being subjected to Real Time qPCR analysis. Histograms 
show the mean ± STDEV mRNA level (n=3) for TEAD1 (A), LATS1 (B) and LATS2 (C), 
with cells treated with Vehicle normalized to 1, *p<0.01. 

 

3.6. Agave reduces YAP and TAZ mRNA levels as a late 
event in OS tumorigenesis 

To investigate the observed transcriptional inhibition mediated by 
Agave, we analysed the promoter sequence of YAP and TAZ for tran-
scription factor binding sites using LASAGNA-Search 2.0. Notably, we 
found multiple consensus binding sites for NF-κB p65/p50 homo- and 
hetero- dimers within YAP (Fig. 8A) and TAZ (Fig. 8B) promoters. This 
was very intriguing because, as previously described, NF-κB tran-
scription factors play an oncogenic role in various cancers and have 
been shown to promote metastasis and chemoresistance in OS 73; 1; 174.  

 
 
 

3.6. Agave down-regulates YAP and TAZ mRNA by 
inhibiting NF-kB transcriptional activator function
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Fig. 9. Agave inhibits NF-κB recruitment onto YAP and TAZ promoters. (A) Schematic 

representation of the relative position of the putative NF-κB binding sites within the 

YAP and TAZ promoters. Different sites are highlighted in different colors, which are 

consistent with that used for sequences showed in Fig. 8. U-2 OS cells were treated with 
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Vehicle (EtOH) or Agave (3.12 µg/mL) for 72 h before being analyzed by ChIP. Samples 

were immunoprecipitated with antibodies against IgG, NF-κB p65, NF-κB p50 or p300 

and then subjected to qPCR analysis. Histograms shows the mean fold enrichment ± 

STDEV (n=3) for H1H2BA (B), and the putative NF-κB binding sites within the YAP (C-

D) and TAZ (E-G) promoters, **p<0.001. 

Since NF-κB transcription factors bind to and regulate YAP and 
TAZ transcription (Fig. 9), we subsequently investigated whether 
Agave regulates NF-κB protein expression. Treatment of U-2 OS cells 
with Agave for 48 h resulted in significant accumulation of NF-κB p50, 
and a slight decrease of NF-κB p65 (Fig. 10A). Treatment of Saos-2, 
MG-63 and HOS cell lines showed a consistent pattern of p65 and p50 
expression after 72 h (Fig. 10B). As described previously, NF-κB func-
tions as dimers to either activate (p65:p65 and p65:p50) or repress 
(p50:p50) gene transcription 103. In addition to total abundance, the rel-
ative ratio of different subunits determines the outcome of NF-κB sig-
nalling 103. Quantitation of p65/p50 protein ratios revealed that Agave 
treatment strongly favours the accumulation of NF-κB inhibitory sub-
unit p50 in all tested cell lines (Fig. 10C).  

NF-κB dimers need to be localised to the nucleus to exert their tran-
scriptional effect. We thus investigated the sub-cellular localization of 
NF-κB subunits following Agave treatment using nuclear/cytoplasmic 
fractionation. Agave treatment increased nuclear accumulation of 
p105 (p50 precursor) and p50, and simultaneously reduced p65 locali-
zation to the nucleus (Fig. 10D-E). These data are consistent with im-
munofluorescent staining for NF-κB p105/p50 in the absence and pres-
ence of IL-6 (to activate NF-κB signalling) (Fig. 10F-G), and NF-κB p65 
(Fig. 10H-I), following treatment with Agave. Finally, consistent with 
the altered expression and localization of NF-κB subunits induced by 
Agave, the expression of various NF-κB target genes was significantly 
reduced (Fig. 10J).  
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Fig. 10. Agave down-regulates NF-κB transcriptional function. (A) U-2 OS cells were 
treated with Agave (3.12 µg/mL) for 24, 48 or 72 h, or EtOH as Vehicle control (0 h), then 
subjected to Western Blot analysis as indicated. GAPDH was used as a loading control. 
(B) U-2 OS, Saos-2, HOS and MG-63 cells were treated with Agave (3.12 µg/mL) or Ve-
hicle for 72 h before being subjected to Western Blot analysis. The abundance of NF-κB 
p65 and NF-κB p50 was quantified using Alliance (UVITEC) Software and the NF-κB 
p65/p50 ratio was determined. The relative ratios are shown in (C). Values represent 
mean ± STDEV (n=3), with U-2 OS cells treated with Vehicle normalized to 1, **p<0.001. 
(D) U-2 OS cells were treated with Vehicle or Agave (3.12 µg/mL) for 72 h before being 
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subjected to nuclear/cytoplasmic fractionation followed by Western Blot analysis. H1 
(nuclear) and α-Tubulin (cytoplasmic) were used as loading controls. The nuclear/cyto-
plasmic ratios for NF-κB p105, p50 and p65 were determined (E). Values represent mean 
± STDEV (n=3), with U-2 OS cells treated with Vehicle normalized to 1, **p<0.001. (F, H) 
U-2 OS cells were treated with Vehicle or Agave (3.12 µg/mL) either in the absence or 
presence of IL-6 (100 ng/mL) for 72 h. Cells were then stained for NF-κB p105/p50 (F), or 
p65 (H) with nuclei marked by DAPI staining. Nuclear and cytoplasmic signal was 
quantified using ImageJ software, and the relative mean ± STDEV for NF-κB p105/p50 
(G) and NF-κB p65 (I) is shown, with cells treated with Vehicle normalized to 1, n=3 
**p<0.001. (J) U-2 OS cells were treated with Vehicle or Agave (3.12 µg/mL) for 72 h be-
fore being subjected to Real Time qPCR analysis. The mean mRNA level ± STDEV (n=3) 
for each target gene is shown, with cells treated with Vehicle normalized to 1, **p<0.001. 
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Agave natural extract is known to exert prebiotic and immunomodu-
latory effects, as well as putative anticancer activity in colorectal and 
cervical cancer cells 7; 109; 61. Though the mechanism/s of Agave’s action 
remain poorly understood, Agave fructans have been shown to con-
tribute to increased fermentation and increased bifidobacterium pop-
ulations, with decreased ammonia and inflammation in colon cancer 
cells 7. Here, we tested the anti-tumorigenic potential of Agave in OS 
cell lines, demonstrating that it can reduce cell viability, impair migra-
tion and colony formation, and can sensitize cells to CDDP. Investiga-
tion of the molecular mechanism of action revealed that YAP and TAZ 
are down-regulated by Agave treatment. This could explain Agave’s 
anticancer effects since direct silencing of YAP/TAZ in OS lines re-
duced cell survival, colony formation and migration capability. Im-
portantly, Agave treatment induced an apoptotic response, even po-
tentiating CDDP cytotoxicity, identifying Agave as a promising 
anticancer compound for OS. Agave-induced apoptosis appears to be 
p53-independent since various cell lines analysed harbour wild-type 
(U-2 OS, A549, MSTO-211H, MPP-89), depleted (Saos-2, MG-63, 
H1299) or mutant p53 (HOS, MDA-MB-231, SUM-159PT). This is con-
sistent with a previous publication that identified a p53-independent 
induction of apoptosis by Agave in cervical cancer cells 109. In this 
study, Agave increased Bax and down-regulated Bcl-2 protein levels, 
with no change in p53 abundance 109. 

4. Discussion 
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Our findings support that of multiple reports identifying an onco-
genic role for YAP and TAZ in OS 44; 163. YAP/TAZ are frequently over-
expressed in human OS samples, correlating with target gene expres-
sion, OS staging and overall patient survival 44; 20. Further, YAP 
suppression impairs OS cell proliferation and migration in vitro, and 
reduces tumor growth in vivo 44. Mechanistically, up-regulation of YAP 
in osteo-tissues is mediated by Sox2 inhibition of NF2 and Kibra, 
which are activators of the Hippo pathway 142, and by activation of Shh 
signalling via Hippo pathway crosstalk 44. In addition, RASSFs, NF2 
and Mob1 tumor suppressor proteins are frequently mutated in OS, 
resulting in increased YAP and TAZ activation 44. Importantly, there is 
good evidence for the involvement of YAP/TAZ in inducing chemo-, 
radio- and molecular targeted therapy-resistant OS 163; 76. 

Agave extract is a complex blend of compounds amongst which 
saponins stand out as bioactive components with multiple functions. 
Unlike Agave, which is poorly studied, saponins have been widely in-
vestigated, with numerous reports citing their antimicrobial 83, pro-
apoptotic 32, immunomodulatory 159, neuroprotective 148, anti-prolifer-
ative 145 and anti-migratory properties in various cancer cell lines 96; 80; 

139. At high doses (>100 µM), saponins exert a cytotoxic effect by dis-
rupting cell membranes. At low doses however, they induce apoptosis 
by multiple mechanisms including activation of TNF-R and FAS-L re-
ceptors, cleavage of caspase 3 and 9, and induction of p53 by inhibiting 
Mdm2 40; 118; 155; 146. They also block cell proliferation via down-regula-
tion of Cdk2/Cyc D1, Cdk4/Cyc E and Cyc B complexes 104; 170, impair 
migration and EMT 77, and regulate various signalling pathways in-
cluding PI3K/Akt, MAPK and NF-κB 105; 36; 172; 35; 156. Consistent with sap-
onins’ tumor suppressive properties, we demonstrate that synthetic 
saponins reduce cell viability, and down-regulate YAP/TAZ abun-
dance, although to a lesser extent than Agave itself. This is consistent 
with previous reports demonstrating that the anti-inflammatory prop-
erties of Agave extract, mediated by NF-κB modulation, could be par-
tially recapitulated by saponins 4; 81; 169. In detail, saponins reduce NF-
κB activity and its binding to DNA either by preventing IκBs degrada-
tion 4; 81, or increasing sirtuin 1 (SIRT1) levels, resulting in reduced NF-
κB p65 acetylation and subsequent transcriptional inhibition 169. It is 
possible that this is the mechanism of Agave’s action on NF-κB in this 
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study. However, due to the complexity of Agave extract, it is likely 
that a combination of active components could activate/inhibit multi-
ple signalling pathways simultaneously, to produce a greater overall 
effect.  

From our study, we propose that Agave initially induces YAP and 
TAZ protein destabilization by promoting ubiquitin-dependent pro-
teasome degradation. As a secondary mechanism, Agave impairs YAP 
and TAZ transcription by regulating NF-κB expression, and conse-
quently NF-κB subunit recruitment to YAP and TAZ promoter se-
quences. Indeed, we suggest for the first time that NF-κB subunits bind 
directly to YAP/TAZ promoters to activate their transcription.  

We considered that Agave’s modulation of NF-κB could directly 
regulate apoptosis and chemosensitivity, bypassing YAP/TAZ tran-
scriptional regulation 1; 103. Saponins cooperate with CDDP to induce 
reactive oxygen species production, resulting in apoptosis 77. Chemical 
inhibitors of NF-κB (parthenolide and BRM270) sensitize OS to chemo- 
and radio-therapies, and activate apoptosis 25; 194; 106. Moreover, NF-κB 
inhibition can sensitize cells to chemotherapeutics via up-regulation of 
IL-6, an activator of NF-κB signalling 25. 

Data presented here, indicate that YAP/TAZ as well as NF-κB are 
mediators of Agave-induced anti-proliferative, anti-migratory and 
pro-apoptotic effects in OS cell lines, and possibly in OS of animals and 
human patients. OS could therefore potentially be targeted by drugs 
that have recently emerged as inhibitors of the critical YAP/TAZ-
TEAD complexes, which drive transcription of proliferative and anti-
apoptotic genes. Among YAP/TAZ inhibitors is verteporfin, a photo-
sensitizer that is used clinically to treat macular degeneration that was 
shown to inhibit YAP-induced overgrowth of liver in animal models 
85.  Another potent YAP-TEAD inhibitor is a peptide mimic of VGLL 4 
74. Translocation of YAP/TAZ to the nucleus was shown to be blocked 
by two FDA-approved tyrosine kinase inhibitors, dasatinib and pazo-
panib 119, and the egress of YAP from the nucleus was facilitated by 
dobutamine, sympathomimetic drug used in the treatment of heart 
failure 12.  

Based on publically presented talks and conference posters over the 
past two years, in addition to on-going drug discovery programs at 
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several biotech companies including Inventiva Pharma, Genentech 
and Novartis, it is anticipated that new therapeutic compounds that 
inhibit YAP/TAZ-TEAD will emerge soon. Such new drugs for 
YAP/TAZ could be complemented with selected saponins of Agave to 
better control and manage OS. Agave/saponin-mediated NF-κB inac-
tivation could be of interest for the treatment of other tumours in 
which NF-κB is known to play an oncogenic role, including myeloid 
malignancies 37, breast 193, lung 171, liver 160 and ovarian 10 cancers. Sim-
ilarly, for tumours in which YAP/TAZ play critical oncogenic roles 64; 

185. Future experiments should test the effectiveness of Agave using in 
vivo cancer models, and focus on delineating the mechanism/s of NF-
κB inactivation and YAP/TAZ protein degradation, and identification 
of additional chemical components of Agave that contribute to its an-
ticancer effectiveness. 
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Our results show that Agave induces YAP/TAZ protein degradation 
as early event, and subsequently impairs YAP and TAZ transcription 
by inactivating NF-κB (Fig. 1). We propose that Agave-mediated 
YAP/TAZ down-regulation and NF-κB inactivation results in a pro-
apoptotic, anti-migratory phenotype with enhanced chemosensitivity 
to CDDP. Natural compounds offer advantages over traditional 
chemotherapies as they typically exhibit low toxicity, are associated 
with low production costs, and offer the potential for multi-faceted 
mechanisms of action. We advocate that Agave natural extract is a 
promising agent to treat OS, either independently, or as an adjuvant to 
reduce the intrinsic toxic side effects of chemotherapeutics. 

5. Conclusions 
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Fig. 1. . Proposed model of Agave’s anticancer activity in osteosarcoma. (A) NF-κB 
p65:p50 and/or NF-κB p65:p65 dimers bind to YAP and TAZ promoters inducing p300 
recruitment and transcriptional activation. YAP and TAZ activated proteins, translocate 
into the nucleus to activate transcription of oncogenic targets genes CTGF, ANKRD1 and 
MCM7. (B) Agave treatment promotes YAP/TAZ ubiquitin-dependent proteasomal deg-
radation, reducing their nuclear translocation. Moreover, Agave down-regulates NF-κB 
p65 and promotes its cytoplasmic sequestration, whereas NF-κB p50 is up-regulated and 
enriched in the nuclear compartment. YAP and TAZ transcription is therefore strongly 
diminished, as it is for their downstream targets.
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6.1. Cell culture and reagents 

Cell lines were obtained from the ATCC (Manassas, US) and cultured 
either in DMEM (U-2 OS, Saos-2, HOS, MG-63, H1299, A549 and 
MDA-MB-231 cell lines) or DMEM-F12 (SUM-159-PT, MSTO-211H 
and MPP-89 cell lines) (Gibco, Life Technologies, Carlsbad, CA, USA) 
supplemented with 10% FBS (Life Technologies), 100 Units/mL Peni-
cillin and 100 µg/mL Streptomycin (Life Technologies). Cell lines were 
grown at 37°C in 5% CO2. DPBS (EuroClone, Milano, Italy) and Tryp-
sin 0.05% (GE Healthcare Hyclone, Little Chalfont, UK) were used to 
wash and detach cells. Agave total extract was provided in powder 
form the Italian Aboca Society and resuspended to generate a stock 
solution at 50 mg/mL in absolute EtOH. Agave extract was obtained 
from frozen leaf samples of A. sisalana plant and were extracted (DER 
from 5 to 6:1) by hydro-alcoholic procedure (ETOH 50%) and complete 
characterized as previously described in Pulito et al. 127. Saponins Di-
osgenin (Cat. D1634), Sarsasapogenin (Cat. S8534) and Solasodine 
(Cat. SML1141) were purchased from Sigma (Saint Louis, Missouri, 
US) and resuspended in absolute EtOH at 10 mM. Cisplatin (CDDP) 
dissolved in saline solution was provided by the Pharmacy of the “Re-
gina Elena National Cancer Institute” in Rome. DAPI (4’, 6-diamidino-
2- phenylindole, dihydrochloride, Sigma Cat. 32670) was used to stain 
cell nuclei. Protease Inhibitor Cocktail (CI) (Cat. P8340), MG-132 (Z-
Leu-Leu-Leu-al, Cat. C2211), Cycloheximide (CHX) (Cat. 01810) and 
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IL-6 (Cat. I1395) were purchased from Sigma. CHX was dissolved in 
DMSO solution (Cat. 907201418, Carlo Erba, Cornaredo, Milan, Italy). 

Osteosarcoma (OS) is the most frequent primary tumor affecting 
bone, and typically originates in the extremities of the long bones in 
the legs e.g., femur or tibia, or in arm bones such as the humerus. Less 
frequently, it develops in the hip bones, shoulders or jaw, and is al-
ways associated with increasing pain 135; 5. OS shows a bimodal age oc-
currence, arising frequently in children and teens aged 10-16 years and 
in older adults usually over 40. OS originates from mesenchymal 
stem/stromal cells (MSCs) or from the derived osteogenic lineage rep-
resented by the osteoblast cells 112 (Fig. 1). 

6.2. Cell transfection 

Transfections were performed using Lipofectamine 2000 (for plas-
mids) and Lipofectamine RNAiMax (for siRNA) (Life Technologies) 
according to the manufacturer’s recommendations.  

siRNAs were purchased from Eurofins MWG (Ebersberg, Ger-
many): siGFP 5’-AAGUUCAGCGUGUCCGGGGAG(dTdT)-3’ 47, 
siYAP 5’-GACAUCUUCUGGUCAGAGA(dTdT)-3’ 53, siTAZ is a pool 
of two independent siRNAs mixed in equal amount: siTAZ_1 5’-AAA-
GUUCCUAAGUCAACGU(dTdT)-3’ and siTAZ_2 5’-UGAUUGAG-
GAAGUACCUCU(dTdT)-3’ 46. To exclude unspecific effects, we pre-
viously performed YAP and TAZ silencing with two different siRNAs. 
Representative data are showed in figures. Plasmids utilized were: 
pCDNA3-YAP-Flag 60, pCS2-TAZ-Flag 11, and pCS2-Ub-HA generated 
by fusing an epitope of HA with the entire open reading frame of ubiq-
uitin 111. 

6.3. Viability assays 

Cells (800 per well) were seeded into 96-well plates in 200 µl of me-
dia. After 24 h, cells were treated for the indicated times. Where indi-
cated, gene silencing was performed by transfecting cells in suspen-
sion immediately prior to plating for experiments. Cell viability assays 
were performed using the ATPlite assay (Perkin Elmer, Massachusetts, 
USA) according to the manufacturer’s instructions. Plates were evalu-
ated using an EnSpire Technology microplate reader (Perkin Elmer). 
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Each condition was assayed in triplicate. 

6.4. Clonogenic assay 

Cells (1000) were plated into 6-well dishes (Corning-Costar, Tewks-
bury, MA, USA) and treated as indicated. Fresh media (25% of the total 
volume) with treatments are added every three days. After 15–21 days, 
cells were stained with crystal violet and colonies counted using 
OpenCFU Free Open-Source Software 59. Each condition was assayed 
in triplicate. 

6.5. Wound healing migration assay 

Cells were grown to 80% confluence in 6-well tissue culture plates 
and scratched (wounded) with a sterile 10 µL pipet tip (t=0), before the 
relevant treatment was applied. Where indicated, gene silencing was 
performed by transfecting cells in suspension immediately prior to 
plating for experiments. The progression of migration was photo-
graphed at time points t=0 and t=24 h using a light microscope. The 
wound opening was measured and data normalized to t=0 points. 
Samples were assayed in triplicate. 

6.6. Transwell migration assay 

Migration assays were performed using 24-well Boyden chambers 
with a non-coated 8 µm pore size filter in the insert chamber (BD Fal-
con, Franklin Lakes, NJ, USA). 5x104 cells, in a volume of 100 µl DMEM 
containing 0.1% FBS, were seeded into the upper chamber while the 
bottom chamber was filled with 500 µl of DMEM supplemented with 
10% FBS. Either Agave or Vehicle was added to the upper chamber. 
Chambers were incubated for 24 h before any cells remaining in the 
upper chamber were removed with a cotton pad, and cells on the bot-
tom layer of the upper chamber were subjected to DAPI staining. In 
detail, the upper chamber was washed twice with PBS and then cells 
were fixed with 4% formaldehyde for 20 min, permeabilized with 0.5% 
Triton X-100 for 25 min and, after being washed with PBS, stained with 
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5 µM DAPI for 5 min. Membranes were cut and mounted on micros-
copy slides. All cells on each membrane were counted under a Zeiss 
LSM 510 laser scanning fluorescence confocal microscope (Zeiss, 
Wetzlar, Germany). Each sample was assayed in triplicate. 

6.7. Cell extracts, Immunoprecipitation and Western 
blotting 

Cell lysis was performed on ice for 30 min in lysis buffer (50 mM 
Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 2 mM EDTA, 10 mM 
MgCl2, 5 mM KCl) supplemented with protease and phosphatase in-
hibitors (1 mM CI, 5 mM PMSF, 1 mM DTT, 1 mM Na2VO4). Cell ly-
sates were sonicated and protein concentration determined by colori-
metric assay (Bio-Rad, Hercules, CA, USA). Equal amounts of total 
protein were resolved by 10% denaturing SDS polyacrylamide gel 
electrophoresis, and transferred for 2 h onto polyvinylidene difluoride 
membrane (PVDF, Immobilon-P, Merck-Millipore, Darmstadt, Ger-
many). Membranes were blocked with 5% milk-TBS 0.05% Tween-20 
for 3 h and incubated overnight with specific primary antibodies. Sec-
ondary anti-mouse and anti-rabbit antibodies were purchased from 
Bio-Rad. Chemiluminescent images were captured using the Alliance 
4.7 by UVITEC Cambridge (Eppendorf) detector. For immunoprecipi-
tation (IP) assay, we used 1 µg of antibody or relative IgG control 
(Santa Cruz Biotechnology) for 1 mg of cell lysate. Lysates were incu-
bated on a rotor at 4°C for 3 h. IPs were washed three times in wash 
buffer before elution with 50 µl of SDS sample buffer. Then, 25 µl (50% 
of the total IP, 500 µg of total cell extract) was loaded onto gels in du-
plicate. Western Blotting was performed using the following primary 
antibodies: mouse monoclonal anti-GAPDH (sc-47724, Santa Cruz Bi-
otechnology), rabbit polyclonal anti-Lats1 (Cat. 9153, Cell Signaling 
Technology), mouse monoclonal anti-YAP1 (ab56701, Abcam), rabbit 
polyclonal anti-TAZ (anti-WWTR1, Cat. HPA007415, Sigma), mouse 
monoclonal anti-TEAD1 (anti-TEF-1 Cat. 610923, BD-Transduction La-
boratories,), rabbit monoclonal anti-NF-κB p65 (Cat. D14E12, Cell Sig-
naling Technology), rabbit polyclonal anti-NF-κB p105/p50 (H-119 sc-
7178, Santa Cruz Biotechnology), mouse monoclonal anti-HA (anti-
HA-probe F-7 sc-7392, Santa Cruz Biotechnology), rabbit polyclonal 
anti-Bax (N-20 sc-493, Santa Cruz Biotechnology), mouse monoclonal 
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anti-caspase 3 (Cat. 31A1067, Enzo Life Science), rabbit polyclonal anti-
PARP (Cat. 9542, Cell Signaling Technology). ECL reagent (Amer-
sham, GE Healthcare, Piscataway, NJ, USA) was used for chemo-lumi-
nescence detection. All Western Blot analyses were performed at least 
in triplicate with the most representative blots shown. 

6.8. RNA extraction, Reverse transcription and 
Quantitative Real-Time PCR 

RNA was extracted with Trizol (Life Technologies) following the 
manufacturer’s instructions and quantified using a Nanodrop 
(Thermo Scientific). RNA (500 ng) was reverse-transcribed with M-
MLV reverse transcriptase (Life Technologies) following the manufac-
turer’s instructions and 1/10 of the resultant cDNA was subjected to 
Real-Time PCR using FAST SYBR Green master mix (Applied Biosys-
tems, Carlsbad, CA, USA) and the QuantStudio 7 Flex Real-Time PCR 
System (Applied Biosystems). Data were analyzed using the relative 
standard curve method and normalized to GAPDH. The following pri-
mers were used:  

GAPDH_Fw 5’-GAGTCAACGGATTTGGTCGT-3’;  
GAPDH_Rv 5’-GACAAGCTTCCCGTTCTCAG-3’;  
YAP_Fw 5’-TACACCCACAGCTCAGCATC-3’;  
YAP_Rv 5’-GCCATGTTGTTGTCTGATCG-3’;  
TAZ_Fw 5’-GGAGAGAGAAAGGATTCGAATGC-3’;  
TAZ_Rv 5’-TGTCGACAGAGGGCAGCTT-3’;  
TEAD1_Fw 5’-CCACCAAAGTTTGCTCCTTTGGGA-3’; 
TEAD1_Rv 5’-ACTTCAAACACACAGGCCATGCAG-3’; 
CTGF_Fw 5’-GCCACAAGCTGTCCAGTCTAATCG-3’;  
CTGF_Rv 5’-TGCATTCTCCAGCCATCAAGAGAC-3’; 
ANKRD1_Fw 5’-AGTAGAGGAACTGGTCACTGG-3’; 
ANKRD1_Rv 5’-TGGGCTAGAAGTGTCTTCAGAT-3’; 
MCM7_Fw 5’-CAGAACTCGGATTAGGGCTG-3’;  
MCM7_Rv 5’-GCTTGGGAAGTGAGTCAAAACT-3’;  
LATS1_Fw 5’-CTCTGCACTGGCTTCAGATG-3’;  
LATS1_Rv 5’-TCCGCTCTAATGGCTTCAGT-3’;  
LATS2_Fw 5’-ACATTCACTGGTGGGGACTC-3’;  
LATS2_Rv 5’-GTGGGAGTAGGTGCCAAAAA-3’;  
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copy slides. All cells on each membrane were counted under a Zeiss 
LSM 510 laser scanning fluorescence confocal microscope (Zeiss, 
Wetzlar, Germany). Each sample was assayed in triplicate. 

6.7. Cell extracts, Immunoprecipitation and Western 
blotting 

Cell lysis was performed on ice for 30 min in lysis buffer (50 mM 
Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP-40, 2 mM EDTA, 10 mM 
MgCl2, 5 mM KCl) supplemented with protease and phosphatase in-
hibitors (1 mM CI, 5 mM PMSF, 1 mM DTT, 1 mM Na2VO4). Cell ly-
sates were sonicated and protein concentration determined by colori-
metric assay (Bio-Rad, Hercules, CA, USA). Equal amounts of total 
protein were resolved by 10% denaturing SDS polyacrylamide gel 
electrophoresis, and transferred for 2 h onto polyvinylidene difluoride 
membrane (PVDF, Immobilon-P, Merck-Millipore, Darmstadt, Ger-
many). Membranes were blocked with 5% milk-TBS 0.05% Tween-20 
for 3 h and incubated overnight with specific primary antibodies. Sec-
ondary anti-mouse and anti-rabbit antibodies were purchased from 
Bio-Rad. Chemiluminescent images were captured using the Alliance 
4.7 by UVITEC Cambridge (Eppendorf) detector. For immunoprecipi-
tation (IP) assay, we used 1 µg of antibody or relative IgG control 
(Santa Cruz Biotechnology) for 1 mg of cell lysate. Lysates were incu-
bated on a rotor at 4°C for 3 h. IPs were washed three times in wash 
buffer before elution with 50 µl of SDS sample buffer. Then, 25 µl (50% 
of the total IP, 500 µg of total cell extract) was loaded onto gels in du-
plicate. Western Blotting was performed using the following primary 
antibodies: mouse monoclonal anti-GAPDH (sc-47724, Santa Cruz Bi-
otechnology), rabbit polyclonal anti-Lats1 (Cat. 9153, Cell Signaling 
Technology), mouse monoclonal anti-YAP1 (ab56701, Abcam), rabbit 
polyclonal anti-TAZ (anti-WWTR1, Cat. HPA007415, Sigma), mouse 
monoclonal anti-TEAD1 (anti-TEF-1 Cat. 610923, BD-Transduction La-
boratories,), rabbit monoclonal anti-NF-κB p65 (Cat. D14E12, Cell Sig-
naling Technology), rabbit polyclonal anti-NF-κB p105/p50 (H-119 sc-
7178, Santa Cruz Biotechnology), mouse monoclonal anti-HA (anti-
HA-probe F-7 sc-7392, Santa Cruz Biotechnology), rabbit polyclonal 
anti-Bax (N-20 sc-493, Santa Cruz Biotechnology), mouse monoclonal 
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anti-caspase 3 (Cat. 31A1067, Enzo Life Science), rabbit polyclonal anti-
PARP (Cat. 9542, Cell Signaling Technology). ECL reagent (Amer-
sham, GE Healthcare, Piscataway, NJ, USA) was used for chemo-lumi-
nescence detection. All Western Blot analyses were performed at least 
in triplicate with the most representative blots shown. 

6.8. RNA extraction, Reverse transcription and 
Quantitative Real-Time PCR 

RNA was extracted with Trizol (Life Technologies) following the 
manufacturer’s instructions and quantified using a Nanodrop 
(Thermo Scientific). RNA (500 ng) was reverse-transcribed with M-
MLV reverse transcriptase (Life Technologies) following the manufac-
turer’s instructions and 1/10 of the resultant cDNA was subjected to 
Real-Time PCR using FAST SYBR Green master mix (Applied Biosys-
tems, Carlsbad, CA, USA) and the QuantStudio 7 Flex Real-Time PCR 
System (Applied Biosystems). Data were analyzed using the relative 
standard curve method and normalized to GAPDH. The following pri-
mers were used:  

GAPDH_Fw 5’-GAGTCAACGGATTTGGTCGT-3’;  
GAPDH_Rv 5’-GACAAGCTTCCCGTTCTCAG-3’;  
YAP_Fw 5’-TACACCCACAGCTCAGCATC-3’;  
YAP_Rv 5’-GCCATGTTGTTGTCTGATCG-3’;  
TAZ_Fw 5’-GGAGAGAGAAAGGATTCGAATGC-3’;  
TAZ_Rv 5’-TGTCGACAGAGGGCAGCTT-3’;  
TEAD1_Fw 5’-CCACCAAAGTTTGCTCCTTTGGGA-3’; 
TEAD1_Rv 5’-ACTTCAAACACACAGGCCATGCAG-3’; 
CTGF_Fw 5’-GCCACAAGCTGTCCAGTCTAATCG-3’;  
CTGF_Rv 5’-TGCATTCTCCAGCCATCAAGAGAC-3’; 
ANKRD1_Fw 5’-AGTAGAGGAACTGGTCACTGG-3’; 
ANKRD1_Rv 5’-TGGGCTAGAAGTGTCTTCAGAT-3’; 
MCM7_Fw 5’-CAGAACTCGGATTAGGGCTG-3’;  
MCM7_Rv 5’-GCTTGGGAAGTGAGTCAAAACT-3’;  
LATS1_Fw 5’-CTCTGCACTGGCTTCAGATG-3’;  
LATS1_Rv 5’-TCCGCTCTAATGGCTTCAGT-3’;  
LATS2_Fw 5’-ACATTCACTGGTGGGGACTC-3’;  
LATS2_Rv 5’-GTGGGAGTAGGTGCCAAAAA-3’;  
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IL-6_Fw 5’-CTGCAGAAAAAGGCAAAGAATCTAG-3’;  
IL-6_Rv 5’-CGTCAGCAGGCTGGCATT-3’;  
IL-8_Fw 5’-CTGGCCGTGGCTCTCTTG-3’;  
IL-8_Rv 5’-GCAAAACTGCACCTTCACACA-3’;  
ICAM1_Fw 5’-AGACAGTGACCATCTACAGCTTTCC-3’; 
ICAM1_Rv 5’-CACCTCGGTCCCTTCTGAGA-3’;  
V-CAM1_Fw 5’-CATGACCTGTTCCAGCGAGG-3’;  
V-CAM1_Rv 5’-CATTCACGAGGCCACCACTC-3’;  
Vimentin_Fw 5’-AAATCCAAGTTTGCTGACCTCTCT-3’;  
Vimentin_Rv 5’-CTCAGTGGACTCCTGCTTTGC-3’;  
HMOX-1_Fw 5’-CAGAGGGTGATAGAAGAGGCC-3’;  
HMOX-1_Rv 5’-GGCTCTGGTCCTTGGTGT-3’;  
H1H2BA_Fw 5’-ACTCTCCTTACGGGTCCTCTTG-3’; 
H1H2BA_Rv 5’-AGTGCTGTGTAACCCTGGAAAA-3’;  
ChIP_NF-κB_YAPprom1_Fw 5’-TCTTAGTCTGTTTGTGCTGCT-
3’;  
ChIP_NF-κB_YAPprom1_Rv 5’-CTGCCTTGATCTTGGACTTCC-
3’;  
ChIP_NF-κB_YAPprom2_Fw 5’-GGGACTACAGAACATGCCA-
3’;  
ChIP_NF-κB_YAPprom2_Rv 5’-CCAAGGCAGGGGAATCAC-3’; 
ChIP_NF-κB_TAZprom1_Fw 5’-TCAGGATTTGAGACCAGCCT-
3’;  
ChIP_NF-κB_TAZprom1_Rv 5’-TAGGATTAAGACGCCTGCCA-
3’  
ChIP_NF-κB_TAZprom2_Fw 5’-TGTGTTAAGGGCAATTTCCGT-
3’;  
ChIP_NF-κB_TAZprom2_Rv 5’-GTTGGAACTGGATGGGCAAG-
3’;  
ChIP_NF-κB_TAZprom3_Fw 5’-CTGGGCAGCTGGACTTTTC-3’; 
ChIP_NF-κB_TAZprom3_Rv 5’-GGAGACCTGAGCCACTAAGT-
3’. 
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6.9. Protein stability assay 

Cells were treated with Vehicle or Agave as indicated and simulta-
neously treated with CHX 40 µM for the indicated times. Cells were 
subsequently lysed and subjected to Western Blotting as previously 
described. Quantification and normalization were performed using 
Alliance (UVITEC) Software. 

6.10. Ubiquitination assay 

1.6x106 cells were transfected with 5 µg of the specified plasmids as 
previously described and simultaneously treated with Vehicle or 
Agave as indicated. After 18 h, cells were treated with 25 µM MG-132 
for a further 6 h. Protein extracts were immunoprecipitated as de-
scribed and subjected to Western Blotting. We used mouse monoclonal 
anti-FLAG (F1804 clone M2, Sigma) primary antibody for the IP, and 
rabbit polyclonal anti-YAP (H-125 sc-15407, Santa Cruz Biotechnol-
ogy) and rabbit polyclonal anti-TAZ (anti-WWTR1 HPA007415, 
Sigma) primary antibodies for Western Blot detection.  

6.11. Nuclear/Cytoplasmic protein extraction 

Harvested and washed cells were lysed in Buffer A (10 mM HEPES 
pH 7.5, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA pH 8, 1 mM DDT, 
0.5% NP-40, 1 mM CI) and centrifuged at 9800 RCF, for 30 min at 4°C. 
Cytoplasmic extracts (supernatant) were transferred to a fresh tube 
and nuclear pellets washed twice in Buffer A before being lysed in 
Buffer B (20 mM HEPES pH 7.5, 400 mM NaCl, 1 mM EDTA, 1 mM 
EGTA pH 8, 1 mM DDT, 1 mM CI). Lysates were then centrifuged at 
19000 RCF for 10 min at 4°C and supernatants recovered. Nuclear and 
cytoplasmic extracts were processed as previously described for West-
ern Blot analysis. For nuclear and cytoplasmic protein normalization, 
we used mouse monoclonal anti-αTubulin (B-7 sc-5286, Santa Cruz Bi-
otechnology) and goat polyclonal anti-Histone H1 (N-16 sc-34464, 
Santa Cruz Biotechnology). Quantification and normalization were 
performed using Alliance (UVITEC) Software. 
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6.12. Immunofluorescent staining 

Cells (800 per well) were seeded into 8-well culture slides (Cat. 
354108, Corning BD Falcon) and treated as indicated. Cells were then 
rinsed with ice-cold PBS and fixed with 4% paraformaldehyde for 20 
min at room temperature before being permeabilized with 0.5% Triton 
X-100 for 25 min. Lysates were incubated overnight with the indicated 
antibodies before being washed three times with cold PBS for 3 min 
each, stained for 2 h with Alexa 488-conjugated goat anti-rabbit IgG 
secondary antibody (Thermo Fisher Scientific), and counterstained 
with 5 µM DAPI for 5 min. Cells were examined under a Zeiss LSM 
510 laser scanning fluorescence confocal microscope. We used rabbit 
monoclonal anti-NF-κB p65 (Cat. D14E12, Cell Signaling Technology) 
and rabbit polyclonal anti-NF-κB p105/p50 (H-119 sc-7178, Santa Cruz 
Biotechnology) primary antibodies. IL-6 treatments were performed 
using 100 ng/mL for 30 min before recovering cells. Each sample was 
assayed in triplicate.  

6.13. Chromatin Immunoprecipitation assay (ChIP) 

Cells were cross-linked using 1% formaldehyde for 10 min at room 
temperature before the reaction was stopped by the addition of 0.125 
M Glycine, and washed three times with ice-cold PBS. Cells were lysed 
in Buffer A (5 mM Pipes pH 8, 85 mM KCl, 0.5% NP-40, 1 mM CI), 
centrifuged at 400 RCF for 10 min at 4°C, resuspended in Buffer B (1% 
SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8) and sonicated to shear 
DNA to lengths of approximately 200 bp. The chromatin solution was 
immunoprecipitated with rabbit polyclonal anti-NF-κB p65 (C-20 sc-
372, Santa Cruz Biotechnology), rabbit polyclonal anti-NF-κB 
p105/p50 (H-119 sc-7178, Santa Cruz Biotechnology), rabbit polyclonal 
anti-p300 (N-15 sc-584, Santa Cruz Biotechnology), or with IgG (Santa 
Cruz Biotechnology) as negative control. IPs were performed using 
Pierce ChIP-grade Protein A/G magnetic beads (Thermo Fisher Scien-
tific, Rockford, IL, USA). The immunoprecipitated and purified chro-
matin was subjected to quantitative PCR analysis (qPCR). Primer se-
quences for qPCR analysis are listed above in ‘RNA extraction, Reverse 
transcription and Quantitative Real-Time PCR’. Data were normalized 
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to the amount of Input chromatin and these data were further normal-
ized by subtracting the qPCR signal of a negative sequence control that 
was not modulated (H1H2BA). 

6.14. Promoter analysis 

FASTA sequences of human YAP1 and WWTR1 (TAZ) promoters 
(4000 bp upstream of the TSS) were downloaded from UCSC Genome 
Browser on-line database and pasted into LASAGNA-Search 2.0 to 
identify predicted transcription factor binding sites. TRANSFAC ma-
trices were used for the analysis. 

6.15. Promoter analysis 

All experiments were performed at least three independent times. 
No samples were excluded from the analysis. All p-values were deter-
mined using two-tailed t-tests and statistical significance was set at 
*p<0.01, **p<0.001. 
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Osteosarcoma (OS) is the most aggressive type of primary solid 
tumor that develops in bone. Whilst conventional chemo-

therapy can improve survival rates, the outcome for patients 
with metastatic or recurrent OS remains poor, so novel treatment 
agents and strategies are required. Previously published works 
indicate that Agave exhibits anticancer properties. In the pres-
ent study, anticancer effects of Agave leaf extract were investigated 
in the OS cells, discovering that Agave inhibits cell growth and cell 
migration, and sensitizes OS cells to cisplatin (CDDP), to overcome 
chemoresistance. Agave’s mechanisms of action include an initial 
process in which Agave induces YAP/TAZ oncogenic protein degra-
dation, followed by a secondary event whereby Agave inhibits YAP/
TAZ transcription through NF-κB p65:p50 heterodimers deregulation.
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