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A papà





Abstract

Black holes are the most compact objects in the Universe. According
to general relativity, black holes have a horizon that hides a singularity
where Einstein’s theory breaks down. Recently, gravitational waves
opened the possibility to probe the existence of horizons and investigate
the nature of compact objects. This is of particular interest given some
quantum-gravity models which predict the presence of horizonless and
singularity-free compact objects. Such exotic compact objects can emit
a different gravitational-wave signal relative to the black hole case. In
this thesis, we analyze the stability of horizonless compact objects, and
derive a generic framework to compute their characteristic oscillation
frequencies. We provide an analytical, physically-motivated template to
search for the gravitational-wave echoes emitted by these objects in the
late-time postmerger signal. Finally, we infer how extreme mass-ratio
inspirals observable by future gravitational-wave detectors will allow
for model-independent tests of the black hole paradigm.
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Introduction

The landmark detection of gravitational waves (GWs) provides the
unique opportunity to test gravity in the strong-field regime and infer
the nature of astrophysical sources. So far, the ground-based detectors
LIGO and Virgo have detected ninety GW events from the coalescence of
compact binaries [9, 14, 15, 16]. These detections allowed us to observe
for the first time the coalescence of two black holes (BHs) and revealed
that their masses can be heavier than the ones observed in the electro-
magnetic spectrum [5, 14]. Recent important discoveries include the first
multi-messenger observation of a binary neutron star (NS)merger [7, 8]
and the observation of the formation of an intermediate-mass BH [11].

Furthermore, GWs provide a new channel for probing Einstein’s
theory of gravity in a regime inaccessible to traditional astronomical
observations, namely the strong-field and highly dynamical one. Several
consistency tests of the GWdatawith the predictions of general relativity
(GR) have been performed. No evidence for new physics has been
reported within current measurement accuracies [5, 2, 18, 19].

The GW signal emitted by compact binary coalescences is character-
ized by three main stages: the inspiral phase, when the two bodies orbit
around each other and the emission of GWs makes the orbit shrink, the
merger phase, when the two bodies coalesce, and the ringdown when
the final remnant relaxes to an equilibrium solution. The study of the
different stages of the GW signal allows us to infer the properties of the
compact objects and understand their nature.

Several extensions of GR predict the existence of regular and horizon-
less compact objects, also known as exotic compact objects (ECOs) [144,
85]. Indeed, the presence of the horizon poses some theoretical prob-
lems, the most notable ones being the existence of a singularity in the
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black-hole interior and the Hawking information loss paradox [214].
ECOs can mimic the features of BHs through electromagnetic obser-

vations since they can be as compact as BHs [23]. Indeed, the super-
massive object at the center of the M87 galaxy observed by the Event
Horizon Telescope poorly constrains few models of ECOs [27]. Fur-
thermore, current GW observations do not exclude ECOs that could
potentially explain events in the mass gap between NSs and BHs and
due to pair-instability supernova processes [11, 74, 12].

One way to distinguish ECOs from BHs is by analyzing the ringdown
stage of a compact binary coalescence. The ringdown is dominated
by the complex characteristic frequencies – the so-called quasi-normal
modes (QNMs) – of the remnant, that differ dramatically if the latter is
a BH or an ECO [81]. By inferring the QNMs of the remnant, we can
test whether they are compatible with the predicted spectrum for a BH.

Current observations of the fundamental QNM in the ringdown
of binary coalescences are compatible with remnant BHs as predicted
by GR [2, 18, 19]; however, the characterization of the remnant is still
an open problem. The no-hair theorems establish that BHs in GR are
determined uniquely by two parameters, i.e., their mass and angular
momentum [88, 259]. Therefore, themeasurement of one complexQNM
allows us only to estimate the parameters of the BH. A test of the BH
paradigm would require the identification of at least two complex QNM
frequencies. Louder GW events, to be collected as detector sensitivity
improves, and more sophisticated parametrized waveforms will allow
us to extract more information about the remnant.

If the remnant of a merger is an ECO that is almost as compact as
a BH, the prompt ringdown signal would be nearly indistinguishable
from that of a BH [81]. A characteristic fingerprint of ECOs would be
the appearance of a modulated train of GW echoes at late times due to
the absence of the horizon [81, 203]. Tentative evidence for GW echoes
in LIGO/Virgo data has been reported in the last few years [22], but
recent independent searches argued that the statistical significance for
GW echoes is consistent with noise [297, 18, 19].

Besides ECO fingerprints in the GW emission, in this thesis we ana-
lyze the astrophysical viability of ECOs as BH alternatives. Indeed, spin-
ning horizonless compact objects are prone to the so-called ergoregion
instability when spinning sufficiently fast [130, 301, 179]. The endpoint
of the instability could be a slowly-spinning ECO [77, 65] or dissipa-
tion within the object could lead to a stable remnant [201, 200, 296]. If

18 Probing the horizon of black holes with gravitational waves
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confirmed, the ergoregion instability could provide a strong theoreti-
cal argument in favor of the BH paradigm for which rapidly spinning
compact objects must have a horizon.

The prospect for detectability of new physics will improve in the
future with the next-generation detectors like the ground-based obser-
vatories Einstein Telescope [253] and Cosmic Explorer [258], and the
space-based Laser Interferometer SpaceAntenna (LISA) [31]. In particu-
lar, LISA is an extremely promising observatory of fundamental physics.
Planned for launch in 2034, LISA will detect GWs in a lower frequency
band than ground-based detectors. LISA will observe a plethora of
astrophysical sources, particularly extreme mass-ratio inspirals (EMRIs)
in which a stellar-mass object orbits around the supermassive object at
the center of a galaxy [134].

EMRIs are unique probes of the nature of supermassive compact
objects. Since LISA will observe inspirals that can last for years, the
phase shift of the waveform will be tracked with high precision and
deviations from GR will be measured accurately. During the inspiral
around a horizonless supermassive object, extra resonances would be
excited leaving a characteristic imprint in the waveform [78, 204]. Any
evidence of partial reflectivity at the surface of the object would also
indicate a departure from the classical BH picture [110, 204].

Within this broad and flourishing context, this thesis aims to inves-
tigate the nature of compact objects and test the existence of horizons
with GWs. This work is organized as follows.

Chapter 1 is dedicated to the tests of the BH paradigm that have been
currently performedusingGWs. A reviewof the recentGWobservations
is presented, and the stages of the gravitational waveform are analyzed.
In particular, the consistency tests of GR and the parametrized tests of
deviations from GR are described. Finally, the prospects of detecting
deviations from GR with next-generation detectors are assessed.

Chapter 2 illustrates the theoretical motivations for studying hori-
zonless compact objects. A parametrized classification of horizonless
compact objects is presented depending on their deviations from the
standard BH picture. Some remarkable models of ECOs are reviewed,
and their phenomenology is compared to the BH case.

Chapter 3 derives the GW signatures of static horizonless compact
objects, particularly their QNM spectrum in the ringdown. The system
is described by perturbation theory. The imposition of the boundary con-
ditions that describe the response of the compact object to perturbations

Introduction 19
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requires careful analysis. A numerical procedure for the derivation of
the QNMs is illustrated. The QNMs of horizonless compact objects are
derived both for remnants almost as compact as BHs and with smaller
compactness. In the former case, the presence of characteristic low fre-
quencies in the QNM spectrum is highlighted. In the latter case, an
extended version of the BH membrane paradigm is applied to derive
model-independent deviations from the BH QNM spectrum. Finally,
current constraints on horizonless compact objects and prospects of
detectability are assessed.

Chapter 4 analyzes spinning horizonless compact objects that are
prone to the ergoregion instability above a critical threshold of the spin.
The QNMs of spinning horizonless compact objects are derived. From
the analysis of the imaginary part of the QNMs, the conditions for which
horizonless compact objects are unstable are identified. An analytical
description of the QNMs in terms of superradiance is detailed, and ways
of quenching the ergoregion instability are provided.

Chapter 5 describes the GW echoes that would be emitted after the
prompt ringdown in the case of a horizonless merger remnant. An
analytical, physically-motivated template for GW echoes is provided
that can be implemented to perform a matched-filter-based search for
echoes. Finally, the properties of GW echoes are analyzed, and the
prospects of detection with current and future detectors are assessed.

Chapter 6 is devoted to the analysis of EMRIs with a central horizon-
less compact object. During the inspiral, extra resonances are excited
when the orbital frequency matches the characteristic frequencies of the
central ECO. The impact of the resonances in the GW dephasing with
respect to the BH case is assessed. This analysis shows that LISA will
be able to probe the reflectivity of compact objects with unprecedented
accuracy.

20 Probing the horizon of black holes with gravitational waves



1. Tests of the black hole paradigm

Sì, ma dapprincipio non lo si sapeva, - precisò Qfwfq, - ossia, uno poteva anche
prevederlo, ma così, un po’ a naso, tirando a indovinare. Io, non per vantarmi,
fin da principio scommisi che l’universo ci sarebbe stato, e l’azzeccai, e anche

sul come sarebbe stato vinsi parecchie scommesse, col Decano (k)yK.
Italo Calvino, Le Cosmicomiche

Astrophysical BHs are the end result of gravitational collapse and
hierarchical mergers. The no-hair theorems in GR establish that rotating
BHs are well described by the Kerr geometry [88, 259]. Kerr BHs are
determined uniquely by two parameters, i.e., their mass M and angular
momentum J defined through the dimensionless spin parameter χ ≡
J/M2. As such, every property of BHs is characterized only by two
parameters, i.e., the mass and the spin. Observations of deviations from
the properties of Kerr BHs would be an indication of departure from
GR.

In this chapter, the tests of the BHparadigm that have been performed
with current GW observations are reviewed. Moreover, the prospects
of detection of deviations from GR with next-generation detectors are
assessed.

1.1. Gravitational waves from compact binary mergers
1.1.1. Review of current observations

On September 14, 2015, the first GW emitted by the coalescence of a
compact binary was detected [3]. The signal, GW150914, is compatible
with the inspiral of two BHs as predicted by GR [5]. The remnant BH
has final mass M = 62+4

−4M⊙ and spin χ = 0.67+0.05
−0.07, where ∼ 3.0M⊙c2
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were radiated in GWs.
During the first observing run (O1), which ran from September 12,

2015 to January 19, 2016, the two Advanced LIGO detectors [4] observed
a total of three GW events from the coalescence of binary BHs [9]. The
second observing run (O2), which ran from November 30, 2016 to Au-
gust 25, 2017, was joined by the Advanced Virgo detector [24] in the last
month of data taking, enabling the first three-detector observations of
GWs.

On August 17, 2017, the detectors made their first observation of
a binary NS inspiral [7]. The signal, GW170817, was detected with
a combined signal-to-noise ratio (SNR) of 32.4, which is the highest
SNR in both the O1 and O2 datasets. GW170817 is the most precisely
localized event and allowed for the first multi-messenger observation
in the electromagnetic spectrum [8]. Indeed, a short γ-ray burst was
associated with the NS merger, followed by a transient kilonova coun-
terpart across the electromagnetic spectrum in the same sky location. In
addition to GW170817, during O2, a total of seven binary BH mergers
were detected [9].

During the first half of the third observing run (O3a), which ran from
April 1, 2019 to October 1, 2019, forty-four GW events were detected [14,
15]. For the first time, the observations include binary systems with
asymmetric mass ratios [12, 10] and an intermediate-mass BH with
142+28

−16M⊙ [11]. The event, GW190521, is consistent with the merger of
two BHs whose primary component lies in the mass gap produced by
pulsational pair-instability supernova processes. Indeed, it is predicted
that stars with a helium core are subject to an instability which leaves
the remnants with mass less than 65M⊙ [40]. BHs with mass larger
than this value might form via hierarchical mergers of smaller BHs.
Recent studies showed that the event GW190521 is also consistent with
the head-on collision of two horizonless vector boson stars forming a
remnant BH [74].

During O3a, the event GW190814 [12] was also detected, whose
secondary mass lies in the lower mass gap of 2.5− 5M⊙ between known
NSs and BHs [230]. Some ECOs such as boson stars and gravastars can
potentially support masses beyond 2.5M⊙. The nature of GW190814 is
unknown, and the hypothesis of an exotic secondary is not excluded.

In the second half of the third observing run (O3b), which ran from
November 1, 2019 toMarch 27, 2020, thirty-five GW events were detected
including the first observations of NS-BH coalescences [17, 16].

22 Probing the horizon of black holes with gravitational waves
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Fig. 1.1. Top: The stages of a compact binary coalescence. Estimated GW strain amplitude
from the event GW150914 compared to the numerical waveform of a binary BH coalescence.
Bottom: The Keplerian effective separation in units of Schwarzschild radii (RS = 2M)
and the effective relative velocity of the binary system. [3]

1.1.2. Stages of the waveform
The signal emitted by a compact binary coalescence is characterized

by three main stages, as shown in Fig. 1.1.

(i) The inspiral is a phase during which the two compact objects spiral
in towards each other as they lose energy to gravitational radiation.
At this stage, the two compact objects have large separations and
small velocities. The gravitational waveform is well approximated
by the post-Newtonian (PN) theory [57, 58, 175, 106, 33]. The latter
is a perturbative approach to solve the Einstein field equations
in which an expansion in terms of the velocity parameter v/c is
performed.

(ii) The merger is a rapid phase in which the two compact objects
coalesce to form a final remnant. This stage can be described only
by numerical simulations that take into account the nonlinearities
of the dynamics.

(iii) The ringdown is a final phase in which the remnant settles down to
its stationary state. This stage is described by perturbation theory.

1. Tests of the black hole paradigm 23
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Fig. 1.2. 90% credible regions in the joint posterior distributions for the mass Mf and spin
a f of the merger remnant as determined from the inspiral and postinspiral signals, and
a full inspiral-merger-ringdown analysis. The posterior distributions have a significant
region of overlap. [5]

The ringdown is dominated by the complex characteristic frequen-
cies of the remnant, the so-called quasi-normal modes (QNMs),
which describe the response of the compact object to a perturba-
tion [277, 251, 274, 93, 187, 180, 51]. The BH ringdown signal can
be modeled as a superposition of exponentially damped sinusoids

h = ∑
ℓmn

Aℓmn(r)e−t/τℓmn sin(ωℓmnt + ϕℓmn) −2Sℓm(θ, φ) , (1.1)

where ωℓmn are the characteristic frequencies of the remnant, τℓmn

are the damping times, Aℓmn(r) ∝ 1/r is the amplitude of the
signal at a distance r, ϕℓmn is the phase, and sSℓm(θ, φ) ∝ eimφ

are the spin-weighted spheroidal harmonics which depend on the
location of the observer to the source. Each mode is described by
three integers, namely the angular number (ℓ ≥ 0), the azimuthal
number m (such that |m| ≤ ℓ), and the overtone number (n ≥ 0).
From the detection of the ringdown it is possible to infer the QNMs
of the remnant and understand the nature of the compact object.

1.2. Inspiral-merger-rindown consistency test
One way of testing that a gravitational waveform is consistent with

the predictions of GR for a binary BH is the inspiral-merger-ringdown
test [137]. The test consists in comparing the estimates of the mass and

24 Probing the horizon of black holes with gravitational waves



1.3. PARAMETRIZED TESTS 25

the spin of the remnant obtained from the inspiral (low-frequency) and
postinspiral (high-frequency) parts of the waveform. If GR describes
well both the adiabatic and the nonlinear regimes, the estimates on the
parameters from the two phases are consistent with each other within
the statistical uncertainties.

The inspiral-merger-ringdown consistency test was performed in the
first GW event, GW150914 [5]. Fig. 1.2 shows the 90% credible contours
in the estimates of the remnant mass Mf and spin a f ≡ χ f Mf from the
inspiral and the postinspiral stages. The two posterior distributions have
a significant region of overlap. Moreover, they agree with the estimate
performed using full inspiral-merger-ringdown waveforms.

To constrain possible departures from GR, the following parameters
are defined

∆Mf

Mf
= 2

Minsp
f − Mpostinsp

f

Minsp
f + Mpostinsp

f

, (1.2)

∆χ f

χ f
= 2

χ
insp
f − χ

postinsp
f

χ
insp
f + χ

postinsp
f

, (1.3)

that quantify the fractional difference between the estimates of the rem-
nant mass and dimensionless spin from the inspiral and postinspiral
stages. In GW150914, the joint posterior distribution of the parameters
is compatible with the (0, 0) result expected in GR [5].

The inspiral-merger-ringdown test has also been applied to the events
in the third LIGO–Virgo GW transient catalog with SNR > 6 both in the
inspiral and postinspiral regions. The measurement constraints are

∆Mf

Mf
= 0.03+0.14

−0.13 ,
∆χ f

χ f
= −0.05+0.37

−0.38 , (1.4)

which are consistent with the expectations of GR [19].

1.3. Parametrized tests
Several parametrized tests have been performed to quantify generic

deviations from GR. These tests introduce parametrized modifications
to the GRwaveform to constrain the degree to which the data agree with
GR predictions. The following sections analyze generic deviations from
inspiral-merger-ringdown waveforms, the BH spin-induced quadrupole
moment, the BH QNMs, and review some searches for GW echoes.

1. Tests of the black hole paradigm 25
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Fig. 1.3. Combined results for parametrized deviations from GR obtained from the binary
BH events in the second GW transient catalog, for each deviation parameter. Phenom
(SEOB) results were obtained with IMRPhenomPv2 (SEOBNRv4_ROM) and are shown in
blue (red). The error bars denote symmetric 90%-credible intervals, and the white dashed
line marks the median. The dashed horizontal line at δ p̂i = 0 highlights the expected GR
value. [18]

1.3.1. Constraints on generic deviations in the waveform
Deviations from GR can be introduced via parametric deformations

of the inspiral-merger-ringdown waveform predicted by GR, without re-
lying on any specific alternative theory of gravity. In this framework [191,
25], the deviations from GR are modeled as fractional changes δ p̂i in the
parameters pi that parametrize the GW phase as pi → (1 + δ p̂i) pi. The
fractional changes are parameters that are introduced to be constrained
by the data and check the consistency with the GR values.

The parameters pi denote collectively all the inspiral {φi} and postin-
spiral {αi, βi} parameters. In particular, the early-inspiral stage is known
analytically up to the order (v/c)7 and is parametrized in terms of the
PN coefficients φj with j = 0, ..., 7 and the logarithmic terms φjl with
j = 5, 6. In addition, the coefficient at j = −2 is included corresponding
to an effective -1PN term that, in some circumstances, can be interpreted
as arising from the emission of dipolar radiation. The transition be-
tween the inspiral and the merger-ringdown phase is parametrized in
terms of the phenomenological coefficients β j with j = 2, 3. Finally, the
merger-ringdown phase is parametrized in terms of the phenomenolog-
ical coefficients αj with j = 2, 3, 4. Parameters that are degenerate with
either the reference time or the reference phase are not considered.

It is possible to perform two kinds of tests: a single-parameter analysis,
in which only one of the parameters is allowed to vary freely while the
remaining ones are fixed to their GR value, and a multiple-parameter
analysis, in which all the parameters are allowed to vary simultaneously.
The multiple-parameter analysis accounts for correlations between the
parameters and provides a more conservative estimate on the agreement
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between a single GW event and GR.
Fig. 1.3 shows the combination of the parametric deviations of GR

from a single-parameter analysis for the binary BH coalescences in the
second GW transient catalog [18]. From left to right, the plot shows
increasingly high-frequency regimes: the early-inspiral stage is from
0PN to 3.5PN, whereas the parameters βi and αi correspond to the in-
termediate and merger-ringdown stages, respectively. Phenom (SEOB)
results were obtained with IMRPhenomPv2 (SEOBNRv4_ROM) wave-
form model. The error bars are symmetric 90%-credible intervals, and
the white dashed line is the median. The dashed horizontal line at
δ p̂i = 0 highlights the expected GR value.

The parameter that is constrained most tightly by the combined
analysis is δφ̂−2 = −0.05+0.99

−1.25 × 10−3, within 90% credibility [19]. The
0PN term is the second best constrained parameter with |δφ̂0| ≲ 4.4 ×
10−2 [18]. However, the latter constraint is weaker than the bound in-
ferred from the double pulsar J0737-3039 by a factor ∼ 3 due to the long
observation time [298]. All the other PN orders are constrained signifi-
cantly more tightly with GW observations rather than electromagnetic
observations.

The results of the parametrized analysis can be used to place con-
straints on specific theories of gravity by building a theory-dependent
mapping [302, 303].

1.3.2. The spin-induced quadrupole moment
The oblateness of a compact object due to its spin creates a deforma-

tion in the surrounding gravitational field, which is measured by the
spin-induced quadrupole-moment [247]. The effect of the quadrupole
moment on the orbital motion of a binary system is imprinted in the
gravitational waveform at specific PN orders with a 2PN leading-order
effect.

For a compact object with mass M and spin χ, the spin-induced
quadrupole moment can be parametrized as

Q = −κχ2M3 , (1.5)

where κ is the spin-induced quadrupole moment coefficient that de-
pends on the mass, spin, and internal composition of the compact object.
Due to the no-hair theorems, κ is unity for BHs in GR [88, 150]. For
spinning NSs, κ can vary between ∼ 2 and ∼ 14 depending on the
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Fig. 1.4. Combined measurement of the spin-induced quadrupole moment parameter δκs
for all the events in the third GW transient catalog [19]. The blue curve is the posterior
obtained without assuming a unique value of δκs in all the events, whereas the red curve
is the posterior obtained by restricting δκs to take the same value for all the events. The
dotted lines bound symmetric 90%-credible intervals. The Kerr BH value (δκs = 0) is
marked by a dashed line. [19]

equation of state [243, 153], whereas for slowly spinning boson stars, κ

can vary between ∼ 10 and ∼ 150 [262, 158].

The measurement of the spin-induced quadrupole moment coef-
ficients of the binary components, κ1 and κ2, is challenging given the
strong correlations between the binary parameters [183]. For this reason,
the individual deviations from unity are defined, δκ1 and δκ2, and the
symmetric and anti-symmetric combinations of the individual deviation
parameters are [18]

δκs = (δκ1 + δκ2) /2 , (1.6)
δκa = (δκ1 − δκ2) /2 . (1.7)

For simplicity, the analysis is restricted to δκa = 0, requiring that the
binary components are of the same nature. Nevertheless, the measure-
ment of δκs from individual GW events is poorly constrained. Fig. 1.4
shows the distributions on δκs obtained by combining all the events
in the third GW transient catalog [19]. The blue curve represents the
posterior obtained without assuming a unique value of δκs in all the
events, whereas the red curve is the posterior obtained by restricting δκs

to take the same value for all the events. Under the latter assumption,
the following contraint is estimated δκs = −16.0+13.6

−16.7 [19].

28 Probing the horizon of black holes with gravitational waves



1.3. PARAMETRIZED TESTS 29

Fig. 1.5. 90% credible regions in the joint posterior distributions for the QNM frequency
and decay time, for several values of the starting time of the ringdown after the merger.
The solid black line shows the 90% credible region for the frequency and decay time of
the least-damped (ℓ = m = 2, n = 0) QNM, as derived from the posterior distributions of
the remnant mass and spin from inspiral-merger-ringdown waveforms. [5]

1.3.3. Tests of the remnant properties
From the analysis of the postmerger signal of a compact binary coales-

cence, it is possible to infer the nature of the compact remnant. Due to the
no-hair theorems [88, 259], the QNM spectrum of a BH in GR depends
only on the mass and spin of the remnant. Therefore, the measurement
of one complex QNM allows us only to infer the mass and the spin of
the remnant. Conversely, the measurement of more than one QNMs
would allow us to perform independent tests of the Kerr metric. This
set of analyses is referred to as BH spectroscopy [116, 149, 63, 89, 165, 53].

One test of the remnant properties consists in checking the consis-
tency of the data with the least-damped QNM predicted for a remnant
BH. The posterior estimates for the QNM frequency and decay time
are a function of the unknown starting time of the ringdown after the
merger. Fig. 1.5 shows the 90% credible contours for the QNM frequency
and decay time as a function of the ringdown time offset for the event
GW150914 [5]. The solid black line shows the 90% credible region of
the least-damped QNM as derived from the posterior distributions of
the remnant mass and spin from full inspiral-merger-ringdown wave-
forms. The 90% posteriors overlap with the GR prediction starting from
t0 = 3 ms, which is the offset time when the description of the ringdown
in terms of QNMs is valid.

To test the BH paradigm, onewould need to detect at least twoQNMs
in the ringdown. One test consists in incorporating the first overtone
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Fig. 1.6. The 90% credible region of the joint posterior distribution of the fractional
deviations of the frequency and the damping time for the ℓ = m = 2, n = 1 mode. The
measurement of the fractional deviation of the frequency is consistent with GR. The
fractional deviation of the damping time is mostly unconstrained. [18]

(ℓ = m = 2, n = 1) in the ringdown template in time domain [89, 165].
The starting time of the ringdown is chosen based on an estimate of
the peak of the strain from the full inspiral-merger-ringdown analyses.
The data show evidence for the presence of overtones only for loud
signals. Fig. 1.6 shows the joint posterior distributions for the fractional
deviations in the frequency and damping time to their GR predictions
for the first overtone, where

f221 = fGR
221

(
1 + δ f̂221

)
, (1.8)

τ221 = τGR
221 (1 + δτ̂221) , (1.9)

and the “GR” superscript indicates the Kerr value corresponding to a
remnant with a given mass and spin [18]. A hierarchical analysis of
the events in the third GW transient catalog constrains the frequency
deviations to δ f̂221 = 0.01+0.27

−0.28, whereas the damping time is essentially
unconstrained [19]. Recently, the observation of the ℓ = m = 3, n = 0
mode has been claimed in the event GW190521 [75].

The fractional deviations in the frequency and the damping time
of the least-damped QNM are δ f̂220 = 0.03+0.10

−0.09 and δτ̂220 = 0.10+0.44
−0.39,

which are obtained by combining the information from different events
using a hierarchical approach [136]. The event GW150914 gives the
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single-eventmost-stringent constraintwith δ f̂220 = 0.05+0.11
−0.07 and δτ̂220 =

0.07+0.11
−0.07 [136], corresponding to a maximum allowed deviation from

the least-damped QNM of a Kerr BH of ∼ 16% and ∼ 33% for the real
and the imaginary part of the QNM, respectively.

The bounds for the fractional deviations for the modes can be used to
put constraints on possible deviations in the ringdown spectrum caused
by horizonless remnant objects, as detailed in Secs. 3.3.4 and 3.3.5.

1.3.4. Searches for gravitational-wave echoes
If the remnant of a compact binary coalescence is a horizonless com-

pact object, a train of modulated pulses – known as GW echoes – is
emitted in the late postmerger stage in addition to the ringdown ex-
pected from BHs [85, 21]. The detection of the GW echoes would be
clear evidence of the existence of horizonless objects whose compactness
is similar to the BH one (see Sec. 5.1 for details).

Several matched-filtered searches have been performed to search for
GW echoes. A waveform template in the time domain is based on the
standard inspiral-merger-ringdown template in GR, M(t), with five
additional parameters, i.e., [22]

h(t) = A
∞

∑
i=0

(−1)i+1γiM(t + tmerger + techo − i∆techo, t0) , (1.10)

whereM(t, t0) = Θ(t, t0)M(t) and Θ(t, t0) is a smooth cut-off function.
The five free parameters are: the time-interval in between successive
echoes, ∆techo; the time of arrival of the first echo, techo, that can be
affected by the non-linear dynamics near the merger; the cut-off time, t0,
which quantifies the part of theGR template that produce the subsequent
echoes; the damping factor of successive echoes, γ; the overall amplitude
of the echo template, A. The (−1)i term represents the phase inversion
of the waveform in each pulse. Extensions of the original template have
been developed in Refs. [222, 295].

A phenomenological template in the time domain is based on the
superposition of sine-Gaussians with several free parameters [211]. Fur-
thermore, some templates in the frequency domain depend explicitly
on the physical parameters of the horizonless compact object, i.e., its
compactness and reflectivity [208, 273, 203].

Some unmodeled searches have also been performed. Several anal-
yses are based on the superposition of generalized wavelets adapted
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from burst searches [281, 280]. Moreover, searches with Fourier win-
dows [102, 101] use the fact that the echoes should pile up at specific
frequencies.

Tentative evidence for GW echoes in LIGO/Virgo O1 and O2 events
has been reported [22, 102, 20], although independent searches argued
that the statistical significance for GW echoes is low and consistent
with noise [297, 224]. Recently, some negative searches have been per-
formed [282, 280, 194]. Furthermore, a dedicated search for GW echoes
has been performed by the LIGO/Virgo Collaboration in the events of
the second and third GW transient catalogs, finding no evidence for GW
echoes [18, 19].

1.4. Prospects with next-generation detectors
Next-generation detectors are planned to observe GWs in a different

frequency range than current detectors and with improved sensitivity,
opening up the possibility of observing new GW sources [160]. The
ground-based observatories Einstein Telescope [253] and Cosmic Ex-
plorer [258] will observe GWs in the 5− 4000 Hz band with a sensitivity
of a factor of 10 better than current detectors.

The future space-based interferometer LISA [31] will detect GWs in
the 10−4 − 1 Hz frequency band from a variety of astrophysical sources.
For instance, massive BHs (with masses ranging from 105M⊙ to 109M⊙)
are hosted in the center of galaxies and are expected to coalesce in bigger
systems. The inspiral, merger, and ringdown phases are predicted to be
in the LISA frequency band of observation with SNR ∼ 1000 [177].

EMRIs are one of the target sources of LISA [134]. EMRIs are binary
systems in which a stellar-mass object (with mass ranging 10 − 100M⊙)
orbits around a supermassive object at the center of a galaxy. EMRIs
occur over long timescales since the stellar-mass compact object spends
103 − 105 orbits in the close vicinity of the central object. A large number
of orbital cycles allows for precise measurements of the parameters of
the binary. Moreover, and to put GR to the most stringent tests.

EMRIs are unique probes of the nature of the central supermassive
object. The mass quadrupole moment of the central object and possible
deviations from the Kerr metric will be probed by LISA with large
accuracy [37, 145]. In Sec. 6, the prospects of detection of LISA for the
reflectivity of compact objects are assessed.
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2. Exotic compact objects

Per voi cadere è sbattersi giù magari dal ventesimo piano d’un grattacielo, o da
un aeroplano che si guasta in volo: precipitare a testa sotto, annaspare un po’

nell’aria, ed ecco che la terra è subito lì, e ci si piglia una gran botta.
Italo Calvino, Le Cosmicomiche

2.1. Motivation
BHs are the most compact objects in the Universe. According to GR,

stationary BHs have an event horizon surrounding a curvature singu-
larity where Einstein’s theory breaks down. On the astrophysical side,
the existence of BHs with masses ranging from a few to hundred solar
masses has been confirmed by GW observations [9, 14, 16]. Moreover,
supermassive BHs at the center of galaxies have been observed with
stellar orbits [135] and the electromagnetic emission from accretion
disks [26]. All the observations are compatible with BHs as predicted
by GR and support the Kerr hypothesis for which any compact object
heavier than a few solar masses is well described by the Kerr metric.
Indeed, the Carter-Robinson uniqueness theorem establishes that the
Kerr geometry is the only physically acceptable stationary solution to
the Einstein vacuum field equations [88, 259].

Given the observational robustness of BHs, it is natural to question
the motivation for further tests of the nature of compact objects. It is
worth remarking that the evidence for BHs is the observation of dark,
compact, and massive objects. The Kerr geometry has been probed
in the exterior spacetime approximately until the location of the light
ring [26] which is the innermost stable circular orbit (ISCO) of photons.
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Investigations of the spacetime in the vicinity of the event horizon have
not been performed with current measurement accuracies. For this
reason, it is relevant to quantify the evidence for BHs by constraining the
compactness and darkness of the objects observed so far via gravitational
and electromagnetic channels.

On the theoretical side, Kerr BHs have singularities and are patholog-
ical in their interior. In particular, the existence of a curvature singularity
with infinite tidal forces shows a breakdown of the Einstein equations.
Moreover, the spacetime within the BH horizon can contain closed time-
like curves which violate causality. Some attempts to regularize the BH
solution predict that quantum fluctuations might prevent the formation
of the horizon and the singularity therein [215, 212].

In the semiclassical approximation, when a massless scalar field such
as that of the photon is quantized in the Schwarzschild background, one
finds that the BH radiates a thermal spectrum at the Hawking tempera-
ture TH = h̄/(8πkB M) [155]. The inverse dependence of the Hawking
temperature on the mass implies that a BH in thermal equilibrium with
its Hawking radiation has negative specific heat, hence is thermodynam-
ically unstable [156]. Energy conservation plus the thermal radiation
spectrum also imply that the BH has enormous entropy [43] which is
far over a typical stellar progenitor.

Finally, one of themain openproblems in BHphysics is the information-
loss paradox [214] which is related to loss of unitarity at the end of the
BH evaporation due to Hawking’s radiation. Several attempts to address
this issue involve the formulation of a consistent quantum gravity theory
that predicts modifications at the horizon relative to the classical picture
(e.g., nonlocal theories [139, 140, 141] and string theories [196, 216, 212,
213]) and new ways to compute the entropy [119, 29, 209].

ECOs are horizonless objects that are predicted in quantum gravity
extensions of GR [223, 46, 142, 182, 21] and in the context of GR in the
presence of exoticmatter fields [192, 64, 144]. These ideas have inspired a
plethora of models including gravastars [215, 216], boson stars [124, 174,
261, 265], wormholes [118, 219, 108], fuzzballs [212, 213], and others [61,
143, 67, 162, 73]. Some models are solutions to consistent field theories
coupled to gravity [192, 216], whereas some phenomenological models
do not arise from specific theories and are simple toy models to test
deviations from the classical BH picture [108, 235].

ECOs without a classical horizon can nonetheless mimic the fea-
tures of BHs through electromagnetic observations since they can be as
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Fig. 2.1. Schematic representation of the parameter space of ECOs. The closeness param-
eter ϵ (horizontal axis) is related to the effective radius of the object by r0 = r+(1 + ϵ),
where r+ is the horizon of a Kerr BH with the same mass and spin. The reflectivity R
(vertical axis) is related to the object’s interior and is generically complex and frequency-
dependent. [202]

compact as BHs [23]. For this reason, ECOs are also generically called
“BH mimickers” [86, 190]. In most models, the dynamical formation
of ECOs has not been explored consistently, with some notable excep-
tions [266, 192].

From a more phenomenological standpoint, BHs and NSs might be
just two species of a larger zoo of compact objects. New species can
be used to devise precision tests on the nature of compact objects. In
particular, GW events that fall in the mass gap forbidden by standard
stellar evolution (i.e., GW190814 [12] and GW190521 [11, 13]) could be
interpreted as mergers of exotic objects [74].

In summary, ECOs are a tool that allows us to quantify the observa-
tional evidence for BHs and search for signatures of alternative proposals
in GW and electromagnetic data.

2.2. A parametrized classification
Horizonless compact objects deviate from BHs for two parameters

(see Fig. 2.1):

• their compactness, i.e., the inverse of their effective radius in units of
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the total mass M. It is customary to define a closeness parameter
ϵ from the horizon of a BH such that the effective radius of the
horizonless compact object is located at

r0 = r+(1 + ϵ) , (2.1)

where r+ = M +
√

M2 − a2, and a is the spin of the compact
object. The closeness parameter is related to the compactness of
the horizonless object via

C ≡ M
r0

=
M

r+(1 + ϵ)
, (2.2)

where 0.5 ≤ C ≤ 1 for a Kerr BH with 0 ≤ a ≤ M. In this
framework, the BH limit corresponds to ϵ → 0;

• their reflectivityR at the effective radius of the compact object. The
properties of the interior of a horizonless compact object can be
parametrized in terms of its surface reflectivity, which is generi-
cally complex and frequency-dependent. In this framework, the
R = 0 case describes a totally absorbing object that reduces to
the standard BH case when ϵ → 0. The |R|2 = 1 case describes a
perfectly reflecting object for perturbations moving towards the
compact object. This is the case, for example, of NSs where the
most efficient absorption mechanism is due to viscosity. However,
the absorption of the incoming radiation is negligible as detailed
in Sec. 4.5, therefore the radiation passes unperturbed across the
NS from a three-dimensional perspective. Intermediate values of
R describe partially absorbing compact objects through viscosity,
dissipation, fluid mode excitations, nonlinear effects, etc.

Depending on their compactness, two categories of ECOs are [83]:
horizonless objects with small compactness, whose effective radius
is comparable with the light ring of BHs with ϵ = O(0.1 − 1); and
ultracompact objects, where Planckian corrections at the horizon as
r0 ≈ r+ + lPlanck correspond to ϵ = O(10−50 − 10−40) for supermassive
to stellar objects depending on their mass. Several models of ultra-
compact horizonless objects are conceived by assuming that quantum
fluctuations might prevent the formation of the horizon [215]. These
models are so compact that the round-trip time of the light between
the light ring and the radius of the object is longer than the instability
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timescale of the photon orbits.
If the remnant of a merger is a compact object with small compact-

ness, the ringdown signal differs from the BH ringdown at early stages,
as detailed in Sec. 5.4. Conversely, if the remnant of a merger is an
ultracompact horizonless object, the prompt ringdown is nearly indis-
tinguishable from that of a BH since it is excited at the light ring which
is at the same location both in the BH and the horizonless case [81].
The details of the object’s interior appear at late times in the form of a
modulated train of GW echoes, as detailed in Sec. 5.1.

Another mention-worthy property used to classify ECOs is their
softness, which is associatedwith the spacetime curvature at their surface.
When the underlying theory of an ECO model has a new length scale
L ≪ M, the curvature (e.g., the Kretschmann scalar K) at the surface
can be much larger than the curvature at the horizon, i.e., K ≫ 1/M4.
On the other hand, models of ECOs that are not motivated by length
scales other than M cannot sustain large curvatures at their surfaces.
The former case is referred to as “hard” ECOs, whereas the latter case is
denoted by “soft” ECOs [256].

2.2.1. The Buchdhal theorem
A useful compass to navigate through the ECO atlas is provided by

the Buchdhal theorem [69] which states that, under certain assumptions,
the maximum compactness of a self-gravitating object is M/r0 = 4/9
(i.e., ϵ ≥ 1/8). This theorem prevents the existence of ECOs with com-
pactness arbitrarily close to that of a BH. In particular, the assumptions
of the Buchdhal theorem are:

• GR is the theory of gravity;

• the solution is spherically symmetric;

• the interior matter is a single perfect fluid;

• the fluid is at most mildly anisotropic, i.e., the radial pressure is
larger than the tangential one, pr ≳ pt;

• the radial pressure and the energy density are positive, i.e., pr ≥ 0
and ρ ≥ 0;

• the energy density decreases by moving outwards, i.e., dρ/dr < 0.
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Relaxing some of these assumptions provides a way to circumvent the
theorem and suggests a route to classify ECOs [284, 85]. For example,
the assumption of GR is violated in any modified-gravity theory, i.e.,
in fuzzballs in string theory [212, 213] and nonlocal stars in infinite
derivative gravity [182, 73].

A common property of ECOs is the presence of an anisotropic pres-
sure. Indeed, strong tangential stresses are necessary to support compact
self-gravitating configurations. This is the case, for instance, of ultra-
compact anisotropic stars [62, 255].

Several models of ECOs are spherically symmetric solutions of GR
supported by an exotic distribution of matter violating the energy con-
ditions. This is the case of gravastars [215, 216, 221] with a dark energy
interior, and wormholes [219, 291, 108] with a thin shell of exotic matter
at the throat.

2.3. Review of some remarkable models
2.3.1. Boson stars

Boson stars are self-gravitating compact solutions formed by massive
bosonic fields which are coupled minimally to GR [168, 264, 192]. The
action of the Einstein-Klein-Gordon theory is [294]

S =
∫ (

R
16π

+ LM

)√
−g d4x , (2.3)

where R is the Ricci scalar of the spacetime with metric gµν and deter-
minant √−g, and the term LM describes the matter of the scalar field
Φ,

LM = −1
2

[
gµν∇µΦ∗∇νΦ + V

(
|Φ|2

)]
, (2.4)

where Φ∗ is the complex conjugate of the scalar field and V
(
|Φ|2

)
is

the bosonic potential. By varying the action in Eq. (2.3) with respect
to the metric gµν, the Einstein field equations are obtained; whereas by
varying the action with respect to the scalar field Φ, the Klein-Gordon
equation is derived.

If the scalar field is complex, the boson star is a static and spherically
symmetric geometry with an oscillating field [174, 261]

Φ(r, t) = Φ0(r)eiωt , (2.5)

where Φ0(r) is the profile of the star and ω is the angular frequency of the
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phase of the field. On the other hand, real scalar fields give rise to long-
term stable oscillating geometries with a non-trivial time-dependent
stress-energy tensor, called oscillatons [265]. Both solutions arise nat-
urally as the end-state of the gravitational collapse in the presence of
bosonic fields [266, 225].

Boson stars are the most robust model of ECOs since their formation,
stability, and binary coalescence have been analyzed in detail numeri-
cally [231, 232, 263]. Boson stars are natural candidates for dark matter.
They are not meant to replace all the BHs in the Universe since their
compactness is lower than the BH one. Indeed, boson stars have proper-
ties similar to NSs, e.g., having a maximum mass above which they are
unstable against gravitational collapse.

There are several models of boson stars depending on the bosonic
potential and the classes of self-interactions, namely:

• mini boson starswhich are characterized by a non-interacting scalar
field where [189]

V
(
|Φ|2

)
= µ2|Φ|2 , (2.6)

where µ is the bare mass of the field theory. The maximum boson
star mass is Mmax ∼ 0.633M2

Planck/µ. Their mass-radius diagram
is qualitatively similar to the one of static NSs;

• massive boson stars which are characterized by a scalar field with a
quartic self-interaction potential [99]

V
(
|Φ|2

)
= µ2|Φ|2 + λ

2
|Φ|4 , (2.7)

where λ is a dimensionless coupling constant. The maximum
mass can be of the order of the Chandrasekhar mass or larger,
Mmax ∼ 0.062 λ1/2M3

Planck/µ2. This effect is caused by the self-
interaction of the potential that provides an extra pressure against
the gravitational collapse;

• solitonic boson stars which are characterized by a potential with an
attractive term [129, 188]

V
(
|Φ|2

)
= µ2|Φ|2

(
1 − 2

|Φ|2

σ2
0

)
, (2.8)

where σ0 is a constant that is generically assumed to be of the
same order as µ. The maximum mass of the boson star is Mmax ∼
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M4
Planck/(µσ0)

2. Stationary, soliton-like configurations have also
been found for complex and massive Proca fields [64].

2.3.2. Gravastars
Gravitational-vacuum stars or gravastars are configurations sup-

ported by a negative pressure in their interior [216, 292, 217]. The region
with negative pressure forces the gravastar to violate some energy con-
ditions and evade the Buchdhal theorem. The model is singularity-free,
thermodynamically stable and has no information paradox.

Gravastars can have an arbitrary compactness depending on the
model to describe the pressure. The original formulation of the gravastar
has a five-layer construction with a de Sitter core, a thin shell connect-
ing to a perfect-fluid region, and another thin shell connecting to the
Schwarzschild exterior. A simpler model is the thin-shell gravastar [292]
that is constructed with a de Sitter core connected to the Schwarzschild
exterior by a thin shell of perfect-fluid matter.

The formation of a gravastar can occur at the endpoint of a gravita-
tional collapse when quantum gravitational vacuum phase transition
could intervene before the event horizon can form [215]. However, the
dynamical formation of a non-singular gravastar is still an open issue.

2.3.3. Wormholes
Wormholes were introduced originally by Einstein and Rosen [118]

in the attempt to build a geometrical model of an elementary particle
in GR. Wormholes are constructed by taking two copies of a static and
spherically symmetric metric with an asymptotically flat region. The
two regions are connected by a wormhole whose throat occurs at the
radius r0. This procedure is called Schwarzschild surgery [219, 291].

The spacetime is everywhere vacuum except at the throat, where the
surgery requires a thin shell of matter. The Einstein field equations yield
an exotic distribution of matter that has a negative energy density and
violates the weak and the dominant energy conditions.

Wormholes can be constructed with arbitrary mass and compactness,
therefore they canmimic the observational features of BHs [108]. Worm-
holes solutions have also been constructed in more generic gravity theo-
ries, some of which do not violate energy conditions [169]. Nevertheless,
their formation mechanism is not well understood, and wormholes are
unstable under linear perturbations [148, 66].
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2.3.4. Fuzzballs

The fuzzball models are conceived in string theory to solve the loss
of unitarity in the BH evaporation and the huge Bekenstein-Hawking
entropy of BHs [195, 196, 212, 213]. A classical BH is interpreted as an
ensemble of regular, horizonless geometries that describes its quantum
microstates [46, 36, 47]. These geometries are solutions to string theory
and have the same mass and charge of the corresponding BH. In this
description, quantum gravity effects are not confined close to the BH
horizon, but the BH interior is formed by fluctuating geometries. For
this reason, this picture is referred to as the “fuzzball” description of
BHs.

The construction of themicrostates has been achieved only under spe-
cific assumptions, i.e., in higher-dimensional or in non-asymptotically-
flat spacetimes. None of the geometries that can be constructed in
four-dimensional spacetimes could represent astrophysical BHs since
these solutions are typically non-rotating, charged, and extremal. A
general class of extremal and charged solutions in four dimensions is
described by the metric [46, 138, 41]

ds2 = −e2U(dt + w)2 + e−2U
3

∑
i=1

dx2
i , (2.9)

where U is a function of eight harmonic functions associated with the
electric and the magnetic charges [54, 55]. The fuzzballs are constructed
by distributing the charges of the eight harmonic functions among N
centers. The geometry is regular and characterized by the absence of
horizons and closed timelike curves.

2.3.5. Anisotropic stars

Anisotropic stars are compact objects which are supported by large
anisotropic stresses [42, 113, 205, 32] that arise at high densities, in
superfluidity, solid cores, etc. Anisotropic stars have been studied
in GR, mostly in the context of static and spherically symmetric so-
lutions [114, 159, 115, 269, 300]. Depending on the anisotropy scale,
the compactness of anisotropic stars can be arbitrarily close to the BH
one [255]. Furthermore, anisotropic stars can cover a wide range of
masses, hence they can mimic both stellar BHs and the supermassive
BHs at the center of galaxies.

2. Exotic compact objects 41
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2.3.6. Firewalls, nonlocal stars, and superspinars
Firewalls are horizonless compact objects with a BH exterior space-

time and some “hard” structure localized close to the horizon due to
quantum origin [30, 171]. Furthermore, a classical BH with modified
dispersion relations for the graviton could effectively appear as having
a hard surface [306, 228].

Nonlocal stars emerge in theories with infinite derivatives in which
the nonlocality of the gravitational interaction can smear out the curva-
ture singularity and avoid the presence of a horizon [131, 182, 72, 73]. A
nonlocal star is a self-gravitational bound system of gravitons interacting
nonlocally. Outside the nonlocal star, the spacetime is well described by
the Schwarzschild metric, whereas inside there is a nonvacuum space-
time that is conformally flat at the origin.

Superspinars are string-inspired Kerr geometries spinning above the
Kerr bound [143, 235, 246]. Indeed, in GR the angular momentum J of
a Kerr BH is bounded by J ≤ M2. When the Kerr bound is violated,
the geometry does not possess an event horizon. Furthermore, some
unknown quantum effects need to be invoked to create an effective
surface to avoid naked singularities and closed timelike curves.

2.4. Phenomenology of exotic compact objects
2.4.1. Tests of the multipolar structure

Uniqueness theorems in GR predict that the outcome of the grav-
itational collapse is a Kerr BH which is determined uniquely by two
parameters, i.e., its mass M and angular momentum J [88, 259]. The
multipolar structure of Kerr BHs can be written as [150]

MBH
ℓ + iSBH

ℓ = Mℓ+1 (iχ)ℓ+1 , (2.10)

where Mℓ and Sℓ are the mass and current multiple moments, respec-
tively, M = M0 is the mass, χ = J/M2 is the dimensionless spin, and
J = S1 is the angular momentum. In addition, Kerr BHs have vanishing
mass (current) multiple moments when ℓ is odd (even) since the metric
is axially and equatorially symmetric. The BH multipole moments do
not depend on the azimuthal number m given the axisymmetry of the
metric.

For ECOs, the tower of multipole moments is, in general, richer
due to the presence of moments that break the equatorial symmetry
or the axisymmetry, as in the case of multipolar boson stars [157] and
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fuzzball microstate geometries [44, 54, 55, 45]. The deformation of the
multipoles depends on the specific ECO model and vanishes in the
high-compactness limit approaching the Kerr value [234, 256, 254]. The
multipole moments of an ECO can be parametrized as

MECO
ℓm = MBH

ℓ + δMℓm , SECO
ℓm = SBH

ℓ + δSℓm , (2.11)

where δMℓm and δSℓm are model-dependent corrections to the mass
and current multipole moments.

“Soft” ECOs motivated by new physics effects whose length scale is
comparable to the mass cannot have arbitrarily large deviations from
the BH multipole moments. In the BH limit, the multipole moment
deviations must vanish sufficiently fast. For axisymmetric spacetimes,
spin-induced moments must vanish logarithmically (or faster), whereas
non-spin induced moments vanish linearly (or faster) [256], i.e.,

δMℓ

Mℓ+1 ∼ aℓ
χℓ

log ϵ
+ bℓϵ , (2.12)

and equivalently for the current multipole moments, where aℓ and bℓ
are constants.

The multipolar structure of an object leaves a footprint in the GW
signal emitted by a compact binary coalescence, modifying the PN struc-
ture of the waveform at different orders. The lowest order contribution
is the quadrupole moment which enters at 2PN order [172] as detailed
in Sec. 1.3.2. Current constraints on the parametrized PN deviations
with GW observations [2, 18] can be mapped into constraints on δM20.
However, such tests are challenging given the correlations between the
binary component spins and the quadrupole moment where the former
have not been measured accurately.

EMRIs are expected to put stronger bounds on the multipolar struc-
ture of the central supermassive object, due to a large number of cycles
before the merger. The future space mission LISA is expected to provide
accurate measurements of the spin-induced quadrupole and a large set
of high-order multipole moments [37, 34, 173].

2.4.2. Tests of the tidal heating
If the components of a binary system are dissipative objects, energy

and angular momentum are dissipated in their interior in addition to
the GW emission to infinity. This is the case of BHs in which energy and
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angular momentum are absorbed by the horizon. This effect is known
as tidal heating (TH) and can contribute to thousands of radians of
accumulated orbital phase for EMRIs in the LISA band [154, 163, 164].

If at least one component of the binary system is an ECO, the dis-
sipation in their interior would be smaller than in the BH case. In-
deed, exotic matter is expected to interact weakly with GWs leading
to a suppressed contribution to the GW accumulated phase from TH.
This effect would allow distinguishing binary BHs from binary systems
involving ECOs [210]. For EMRIs in the LISA band, the absence of
TH could be used to put a stringent upper bound on the reflectivity of
ECOs [110, 204].

2.4.3. Measurements of the tidal deformability
In the coalescence of a compact binary system, the gravitational

field of each component acts as a tidal field on its companion, inducing
some multipolar deformation in the spacetime. Tidal effects change the
orbital phase and in turn the GW emission [249]. This effect can be
quantified in terms of the “tidal-induced multipole moments”. Indeed,
a weak tidal field can be decomposed into electric (or polar) tidal field
moments, Eℓm, and magnetic (or axial) tidal field moments, Bℓm. In the
nonrotating case, the ratio between the multipole moments and the tidal
field moments that induce them defines the tidal deformability of the
body, i.e.,

λ
(ℓ)
E =

Mℓm
Eℓm

, λ
(ℓ)
B =

Sℓm
Bℓm

. (2.13)

The dimensionless tidal Love numbers can be defined as

kE
ℓ = const

λ
(ℓ)
E

M2ℓ+1 , kB
ℓ = const

λ
(ℓ)
B

M2ℓ+1 , (2.14)

that depend on the internal composition of the central object.
A remarkable result in GR is that the tidal Love numbers of BHs

are null. This was demonstrated for nonrotating BHs [56, 107], then
extended to slowly rotating BHs [248, 184, 241] and recently to Kerr
BHs [95, 185, 186]. Conversely, the tidal Love numbers of ECOs are
generically different from zero and can provide a smoking-gun test
of the nature of compact objects [80]. The tidal Love numbers were
computed for several models of ECOs such as boson stars [80, 267, 218],
gravastars [234, 80, 283] and anisotropic stars [255].

In the case of “hard” ECOs, the tidal Love numbers vanish logarith-
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mically in the BH limit [80]

kECO
ℓ → cℓ

1 + dℓ log ϵ
, ϵ → 0 , (2.15)

where axial and polar Love numbers coincide in the BH limit. Con-
versely, “soft” ECOs – such as anisotropic stars in certain regimes – have
a polynomial vanishing behavior in the BH limit [255]

kECO
ℓ → fℓ

( ϵ

M

)n
, (2.16)

where n is a parameter that depends on the specific model.
The effect of tidal deformability alters the GW signal emitted by

a compact binary coalescence at 5PN order. Current and future GW
detectors will be able to measure the tidal Love numbers of compact
objects to distinguish ECOs from BHs [80, 210, 267].

2.4.4. Ringdown tests
The postmerger phase of a compact binary coalescence is dominated

by the QNMs of the remnant. In the case of a horizonless compact
remnant, the QNM spectrum deviates from the one predicted for a BH
in GR. The estimation of the fractional deviations from the GR modes in
the GW events allows us to constrain possible deviations in the spectrum
due to a horizonless remnant, as detailed in Sec. 1.3.3.

The vibration spectra of ECOs have been computed in a wide class
of models: boson stars [49, 197], gravastars [97, 236, 96, 293], worm-
holes [81, 181, 70], and quantum structures [79, 120, 82, 39, 68, 296].
Typically, the QNMs of ECOs differ from the BH QNMs due to the pres-
ence of an effective radius instead of the horizon, the excitation of the
internal oscillation modes [125, 240, 147], and the excitation of extra
degrees of freedom in modified-gravity theories [226, 59, 272].

The isospectrality of axial and polar modes of BHs in GR [93] is
broken in ECOs, which are expected to emit a characteristic mode doublet.
The detection of such doublet would be an irrevocable signature of new
physics, whose prospects of detection are detailed in Sec. 3.3.5.

The formation of an ECO can also be constrained by looking for GW
echoes in the postmerger signal of a compact binary coalescence. GW
echoes are an additional signal that would be emitted after the prompt
ringdown if the remnant is an ultracompact ECO. In Sec. 1.3.4 we re-
viewed the searches for GW echoes that have been currently performed.
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Third-generation detectors are expected to detect the ringdown sig-
nal of massive binaries with a large SNR, which would allow putting
strong constraints on the compactness and the reflectivity of the compact
objects [273, 203].
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Esatto, quel tempo là ci impiega, mica meno, - disse Qfwfq, - io una volta
passando feci un segno in un punto dello spazio, apposta per poterlo ritrovare
duecento milioni d’anni dopo, quando saremmo ripassati di lì al prossimo giro.

Italo Calvino, Le Cosmicomiche

3.1. A static model
Let us analyze a static and spherically symmetric horizonless compact

object. We assume that GR is a reliable approximation outside the radius
of the compact object and somemodifications appear at the horizon scale
as in some quantum-gravity models. Owing to the Birkhoff theorem,
the exterior spacetime of a static and spherically symmetric compact
object is described by the Schwarzschild metric

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2) , (3.1)

where (t, r, θ, φ) are the Boyer-Lindquist coordinates, f (r) = 1 − 2M/r
and M is the total mass of the object.

The radius of the horizonless compact object is as in Eq. (2.1), where
r+ = 2M is the would-be horizon of a Schwarzschild BH with the same
mass. Ultracompact horizonless objects (ϵ ≪ 1) have a compactness
that is almost the same as the one of a Schwarzschild BH, i.e., C ≃ 0.5,
whereas horizonless objects with a small compactness [ϵ = O(0.1 − 1)]
have C ≃ 0.45 − 0.25. In the following, we shall not assume a specific
model for the interior of the compact object that is parametrized in terms
of the reflectivity at the effective radius.
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In Sec. 3.2, we shall derive the QNM spectrum of ultracompact ob-
jects, whereas in Sec. 3.3, we shall derive a model-independent frame-
work for the QNMs of horizonless compact objects using the membrane
paradigm.

3.2. Ringdown spectrum of ultracompact objects

Horizonless compact objects are characterized by a completely dif-
ferent QNM spectrum with respect to the BH case. In this section, we
derive the QNM spectrum of a static ultracompact object (ϵ ≪ 1) with
surface reflectivity R(ω).

3.2.1. Linear perturbations in Schwarzschild background

Let us perturb the background geometry in Eq. (3.1) with a spin-
s perturbation, where s = 0,±1,±2 for scalar, electromagnetic and
gravitational perturbations, respectively. The perturbation can be de-
composed as

Ψs(t, r, θ, φ) =
∫

dωe−iωt ∑
ℓm

eimφ
sSℓm(θ) sψℓm(r) , (3.2)

where sSℓm(θ)eimφ are the spin-weighted spherical harmonics, ℓ is the
angular number (ℓ ≥ 0) and m is the azimuthal number (−ℓ ≤ m ≤ ℓ)
of the perturbation. In the following, we shall omit the s, ℓ, m subscripts
for brevity. The radial component of the perturbation is governed by a
Schrödinger-like equation [257, 305]

d2ψ(r)
dr2∗

+
[
ω2 − V(r)

]
ψ(r) = 0 , (3.3)

where the tortoise coordinate is defined such that dr∗/dr = 1/ f (r), i.e.,

r∗ = r + 2M log
( r

2M
− 1

)
. (3.4)

Let us notice that the tortoise coordinate allows us to explore a region
in close proximity to the horizon of a BH since the tortoise coordinate
is finite at the effective radius, i.e., r∗(r0) = const ≡ r0

∗, and diverges at
the would-be horizon, i.e., r∗(2M) → −∞.
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Fig. 3.1. Effective potential as a function of the tortoise coordinate of a Schwarzschild
BH (top panel) and a static horizonless compact object with radius r0 = 2M(1 + ϵ) and
ϵ = 10−8 (bottom panel), for axial (continuous line) and polar (dashed line) ℓ = 2
gravitational perturbations. The effective potentials have a maximum approximately
at the photon sphere, r ≈ 3M. In the horizonless case, the effective potential features a
characteristic cavity between the radius of the object and the photon sphere [81, 82, 85, 202].

The effective potential in Eq. (3.3) is [257, 305]

Vaxial = f (r)
[
ℓ(ℓ+ 1)

r2 + (1 − s2)
2M
r3

]
, (3.5)

Vpolar = 2 f (r)
[

q2(q + 1)r3 + 3q2Mr2 + 9M2(qr + M)

r3(qr + 3M)2

]
, (3.6)

where q = (ℓ− 1)(ℓ+ 2)/2. The potential in Eq. (3.5) describes scalar,
electromagnetic and axial gravitational perturbations, whereas the po-
tential in Eq. (3.6) describes polar gravitational perturbations. The
tensor spherical harmonics can be classified according to their behavior
under parity change,

P
(

sSℓm(θ)eimφ
)
→ sSℓm(π − θ)eim(π+φ) . (3.7)

In particular, we refer to axial perturbations as thosewith parity (−1)ℓ+1,
whereas we refer to polar perturbations as those with parity (−1)ℓ. The
former are described by the Regge-Wheeler wave function [257], while
the latter by the Zerilli wave function [305]. Fig. 3.1 shows the effective
potential as a function of the tortoise coordinate for axial and polar
gravitational perturbations for a Schwarzschild BH (top panel) and for
a static horizonless compact object (bottom panel) with ϵ = 10−8.

3. Spectroscopy of horizonless compact objects 49



50CHAPTER3. SPECTROSCOPYOFHORIZONLESSCOMPACTOBJECTS

Let us notice that the effective potential of a Schwarzschild BH tends
to zero asymptotically both at infinity (r∗ → +∞) and the horizon (r∗ →
−∞). As a consequence, the solution of the perturbation equation in
Eq. (3.3) is a wave of frequency ω at the asymptotics both at infinity and
the horizon. Furthermore, the effective potential displays a maximum
located approximately at the photon sphere, r ≈ 3M, that is the unstable
circular orbit of photons around a Schwarzschild BH.

In the case of a horizonless ultracompact object (ϵ ≪ 1), the effective
potential coincides with the one of a BH except for the presence of a
radius at a constant r0

∗. The effective potential features a characteristic
cavity between the radius of the object and the photon sphere. The cavity
can support quasi-trapped modes that are responsible for a completely
different QNM spectrum with respect to the BH case.

Let us emphasize that this description is valid when ϵ ≪ 1 and
the effective potential is vanishing at the radius of the object, thus the
solution of Eq. (3.3) is a superposition of ingoing and outgoing waves
at the radius of the object. Conversely, when ϵ ≃ 0.1 − 1 (thus r0 ≲ 3M)
the effective potential is not vanishing at the radius of the object and
does not have an asymptotic trend, hence the solution of Eq. (3.3) is not
a generic superposition of waves. We shall investigate the latter case in
detail in Sec. 3.3.

3.2.2. Boundary conditions
TheQNMs are the complex eigenvalues, ω = ωR + iωI , of the system

given by Eq. (3.3) with two suitable boundary conditions. In our con-
vention, a stable mode has ωI < 0 and corresponds to an exponentially
damped sinusoidal signal with frequency f ≡ ωR/(2π) and damping
time τdamp ≡ −1/ωI . Conversely, an unstable mode has ωI > 0 with
instability timescale τinst ≡ 1/ωI .

As a boundary condition, we impose that the perturbation is a purely
outgoing wave at infinity, i.e.,

ψ ∼ eiωr∗ , as r∗ → +∞ . (3.8)

In the BH case, the horizon would require that the perturbation is a
purely ingoing wave as r∗ → −∞. In the case of a horizonless ultra-
compact object, the regularity at the center of the object implies the
imposition of a boundary condition at the effective radius of the object.
The perturbation can be decomposed a superposition of ingoing and
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outgoing waves at the radius of the object, i.e.,

ψ ∼ Cine−iωr∗ + Couteiωr∗ , as r∗ → r0
∗ , (3.9)

where we define the surface reflectivity of the object as [201]

R(ω) =
Cout

Cin
e2iωr0

∗ . (3.10)

Let us notice that, for a given wave function, |R(ω)|2 defines the fraction
of the reflected energy flux in units of the incident one at the radius of
the object. Indeed, for ϵ ≪ 1 the imaginary part of the QNMs vanishes
sufficiently fast that |e2iωr0

∗ |2 ≈ 1 and |R(ω)|2 ≈ |Cout|2/|Cin|2. The
BH boundary condition is recovered for R = 0 and in the limit of
ϵ → 0. Conversely, a perfectly reflecting compact object is described by
|R(ω)|2 = 1 where the outgoing energy flux at the effective radius of
the object is equal to the incident one.

In the case of electromagnetic perturbations, a perfectly reflecting
object can be modeled as a perfect conductor in which the electric and
magnetic fields satisfy Eθ(r0) = Eφ(r0) = 0 and Br(r0) = 0. The former
conditions translate into

ψ(r0) = 0 Dirichlet on axial , (3.11)
dψ(r0)/dr∗ = 0 Neumann on polar , (3.12)

where the Dirichlet boundary condition describes waves that are re-
flected with inverted phase (R(ω) = −1), whereas the Neumann
boundary condition describeswaves that are reflected in phase (R(ω) =

1). The details of the derivation are given in Appendix 3.4.
An analogous description of a perfectly reflecting compact object

under gravitational perturbations is not available. We assume that the
results of electromagnetic perturbations can be applied to gravitational
perturbations, in which case Dirichlet and Neumann boundary condi-
tions are imposed on axial and polar gravitational perturbations, respec-
tively.

3.2.3. Numerical procedure
Equation (3.3) with boundary conditions at infinity in Eq. (3.8) and

at the radius of the compact object in Eq. (3.11) or (3.12) can be solved
numerically with a direct integration shooting method [233]. The method
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starts with an analytical high-order series expansion of the solution at
large distances. We use the ansatz

ψ(r) = eiωr∗
∞

∑
i=0

R(i)
inf
ri , (3.13)

where the coefficients R(i)
inf with i = 1, ..., ∞ are computed by solving

Eq. (3.3) in the large distance limit order by order, and the coefficients
R(i)

inf are functions of R(0)
inf . For simplicity, we set R(0)

inf = 1. A high
truncation order of the series expansion (i ≳ 10) is needed for the
numerical stability of the solution.

Eq. (3.3) is integratedwith the boundary condition in Eq. (3.13) from
infinity inwards up to r = r0. The integration is repeated for different
values of the complex frequency starting from an initial guess until
the boundary condition at the radius of the object (either Eq. (3.11)
or Eq. (3.12)) is satisfied. The resulting QNM should not depend on
the numerical parameters of the method, i.e., the numerical value that
stands for the infinity and the truncation order of the series expansion
at infinity. The direct integration shooting method is robust when the
imaginary part of the mode is sufficiently small with respect to the
real part of the mode. Typically, this method allows us to compute the
fundamental mode and possibly the first few overtones.

An alternative method is based on the continued fraction technique,
where the eigenfunction is written as a series whose coefficients sat-
isfy a finite-term recurrence relation [187]. The QNMs are the roots
of n implicit equations fn(ω) = 0, where n is the inversion index of
the continued fraction. For a given n, the method gives some spurious
roots apart from the physical QNMs. The spurious roots can be ruled
out since they are not present by changing the numerical parameters
of the method, i.e., the inversion index of the continued fraction. This
method was derived by Leaver to compute the QNMs of Kerr BHs [187].
Appendix 3.5 contains a generalization of the method to compact ob-
jects. The continued-fraction method is also robust for overtones with a
large imaginary part of the frequency for which the direct integration
fails. When they both are applicable, the two methods are in excellent
agreement within the numerical accuracy that is chosen to find the
QNMs.
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Fig. 3.2. QNM spectrum of a perfectly reflecting ECO with radius r0 = 2M(1 + ϵ) and ϵ ∈
(10−10, 10−2), compared to the fundamental ℓ = 2 gravitational QNM of a Schwarzschild
BH. Axial and polar modes are not isospectral at variance with the BH case. As ϵ → 0, the
ECO QNMs are low-frequencies and long-lived [81, 202].

3.2.4. Black hole vs horizonless compact object spectrum
When normalized by the mass, the QNMs of the system depend on

two continuous, dimensionless parameters: the closeness parameter
from the horizon of a Schwarzschild BH, ϵ, and the surface reflectivity
of the object, R(ω). Furthermore, the QNMs depend on some integer
numbers, namely the spin s, the angular number ℓ and the overtone
number n of the perturbation. In the following, we shall focus on the
gravitational (s = −2) ℓ = 2 fundamental mode (n = 0) that corre-
sponds to the mode with the smallest imaginary part, i.e., with the
largest damping time.

Fig. 3.2 shows the QNM spectrum of a perfectly reflecting ECO com-
pared to the fundamental ℓ = 2 QNM of a Schwarzschild BH, i.e.,

MωBH = M(ωR,BH + iωI,BH) = 0.37367 − i0.088962 . (3.14)

The QNM spectrum of the ECO is derived by imposing the boundary
conditions in Eqs. (3.11) and (3.12) on axial and polar perturbations,
respectively. The radius of the compact object is located as in Eq. (2.1),
where ϵ ∈ (10−10, 10−2) from the left to the right of the plot. As shown
in Fig. 3.2, an important feature of ECOs is the breaking of isospectrality
between axial and polarmodes unlike BHs in GR. Indeed, Schwarzschild
BHs have a unique QNM spectrum despite the Regge-Wheeler potential
for axial perturbations in Eq. (3.5) is different from the Zerilli potential
for polar perturbations in Eq. (3.6). The isospectrality can be demon-
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strated by showing that the Regge-Wheeler and Zerilli wave functions
are related by a Darboux transformation [91, 93, 92, 146]

ψRW = A
dψZ

dr∗
+ B(r)ψZ , (3.15)

where

A = −M
[

iωM +
1
3

q(q + 1)
]−1

, (3.16)

B(r) =
q(q + 1)(qr + 3M)r2 + 9M2(r − 2M)

r2(qr + 3M)[q(q + 1) + 3iωM]
. (3.17)

At the BH horizon, both the Regge-Wheeler and the Zerilli wave func-
tions are purely ingoing. Conversely, at the effective radius of the hori-
zonless compact object, the boundary conditions are mapped differently
from Eq. (3.15) since the Regge-Wheeler and the Zerilli wave functions
are a superposition of waves as in Eq. (3.9).

Fig. 3.2 also shows that in the BH limit (ϵ → 0) the deviations from
the BH QNM are arbitrarily large and the QNMs are low frequencies,
i.e., MωR ≪ MωR,BH, and long-lived, i.e., τdamp ≫ 1 [81]. For example,
for ϵ = 10−10 the fundamental ℓ = 2 QNMs of a perfectly reflecting
ECO are

Mωaxial = 0.074698 − i2.2992 × 10−9 , (3.18)
Mωpolar = 0.037914 − i2.7385 × 10−11 . (3.19)

Low-frequency QNMs are a peculiar feature of horizonless compact
objects whose compactness is similar to the BH one. These modes can
be understood in terms of quasi-trapped modes between the effective
radius of the object and the photon sphere barrier, as shown in Fig. 3.1.
The real part of the QNMs scales as thewidth of the cavity of the effective
potential, i.e., ωR ∼ 1/r0

∗; whereas the imaginary part of the QNMs is
given by the modes that tunnel through the potential barrier and reach
infinity, i.e., ωI ∼ |A|2/r0

∗ where |A|2 is the tunneling probability. For
ϵ ≪ 1, the QNMs can be derived analytically in the low-frequency
regime as [200, 85]

ωR ≃ − π

2|r0∗|

[
p +

s(s + 1)
2

]
∼ | log ϵ|−1 , (3.20)

ωI ≃ − βsℓ

|r0∗|
(2MωR)

2ℓ+2 ∼ −| log ϵ|−(2ℓ+3) , (3.21)
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Fig. 3.3. Schematic representation of the BH membrane paradigm [105, 279]. A static
observer outside the horizon can replace the interior of a perturbed BH (left panel)
with a perturbed fictitious membrane located at the horizon (right panel). The fictitious
membrane is a viscous fluid whose properties (density, pressure, viscosity) are such that
the BH phenomenology, particularly the QNM spectrum, is reproduced. [199]

where
√

βsℓ = (ℓ−s)!(ℓ+s)!
(2ℓ)!(2ℓ+1)!! and p is a positive odd (even) integer for

polar (axial) modes. A detailed derivation of Eqs. (3.20) and (3.21) is
given in Appendix 4.8 for their generalization to the spinning case.

3.3. Membrane paradigm for compact objects

In Sec. 3.2, we derived the QNM spectrum of static ultracompact ob-
jects whose effective radius is located at r0 = 2M(1 + ϵ) with ϵ ≪ 1. To
derive the QNM spectrum of horizonless objects with different compact-
ness and interior solutions, we make use of the BHmembrane paradigm
and generalize it to the case of horizonless objects. The membrane
paradigm allows us to describe any compact object with a Schwarzschild
exterior where no specific model is assumed for the object interior. GR
is assumed to work sufficiently well at the radius of the compact ob-
ject. This assumption is also justified in theories of gravity with higher-
curvature/high-energy corrections to GR. In this case, the corrections
to the metric are suppressed by powers of lP/r0 ≪ 1, where r0 is the
object radius, and lP is the Planck length or the scale of new physics. The
membrane paradigm allows us to derive the QNMs of gravastars, worm-
holes, nonlocal stars, anisotropic stars, etc., after fixing the (possibly
frequency-dependent) viscosity of the fictitious membrane according to
the model.
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3.3.1. Setup
According to the BH membrane paradigm, a static observer outside

the horizon can replace the interior of a perturbed BH by a perturbed
fictitious membrane located at the horizon [105, 252, 279] (see Fig. 3.3).
The features of the interior spacetime are mapped into the properties
of the membrane that are fixed by the Israel-Darmois junction condi-
tions [109, 166]

[[Kab − Khab]] = −8πTab , [[hab]] = 0 , (3.22)

where [[...]] = (...)+ − (...)− denotes the jump of a quantity across the
membrane,M+ andM− are the exterior and the interior spacetimes to
the membrane, hab is the induced metric on the membrane, Kab is the
extrinsic curvature, K = Kabhab, and Tab is the stress-energy tensor of
the membrane.

The fictitious membrane is such that the extrinsic curvature of the
interior spacetime vanishes, i.e., K−

ab = 0 [279]. As a consequence, the
junction conditions impose that the fictitious membrane is a viscous
fluid with stress-energy tensor

Tab = ρuaub + (p − ζΘ)γab − 2ησab , (3.23)

where η and ζ are the shear and bulk viscosities of the fluid, ρ, p and
ua are the density, pressure and 3-velocity of the fluid, Θ = ua

;a is the
expansion, σab = 1

2
(
ua;cγc

b + ub;cγc
a − Θγab

)
is the shear tensor, γab =

hab + uaub is the projector tensor, and the semicolon is the covariant
derivative compatible with the induced metric, respectively.

The BH membrane paradigm allows us to describe the interior of a
perturbed BH in terms of the shear and the bulk viscosities of a fictitious
viscous fluid located at the horizon, where

ηBH =
1

16π
, ζBH = − 1

16π
. (3.24)

The generalization of the BH membrane paradigm to horizonless com-
pact objects allows us to describe several models of ECOs with dif-
ferent interior solutions with an exterior Schwarzschild spacetime in
terms of the properties of a fictitious membrane located at the ECO ra-
dius [21, 199]. The details on the calculations are given in Appendix 3.6.
The shear and the bulk viscosities of the fluid are generically complex
and frequency-dependent and are related to the reflective properties
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of the ECO. For each model of ECO, the shear and the bulk viscosities
are uniquely determined. In the following, we shall focus on the case
in which η and ζ are real and constant since the energy dissipation is
absent when R(η) = R(ζ) = 0.

3.3.2. Boundary conditions

Gravitational perturbations in the exterior Schwarzschild spacetime
are governed by the Schrödinger-like equation in Eq. (3.3), where the
effective potential is in Eqs. (3.5) and (3.6) for axial and polar perturba-
tions, respectively.

By imposing boundary conditions at infinity and the radius of the
compact object, Eq. (3.3) defines the complex QNMs of the system.
We impose that the perturbation is a purely outgoing wave at infinity,
whereas the condition on the inner boundary would depend on the
properties of the object. We rely on the membrane paradigm to derive
the boundary condition at the radius of the compact object without
assuming any specific model of ECO. As detailed in Appendix 3.6, the
boundary conditions at the ECO radius are [199]

dψ(r0)/dr∗
ψ(r0)

= − iω
16πη

−
r2

0Vaxial(r0)

2(r0 − 3M)
, axial , (3.25)

dψ(r0)/dr∗
ψ(r0)

= −16πiηω + G(r0, ω, η, ζ) , polar , (3.26)

where G(r0, ω, η, ζ) is a cumbersome function given in Appendix 3.6.
Let us notice that in the BH limit (r0 → 2M) the boundary conditions in
Eqs. (3.25) and (3.26) reduce to the BH boundary condition of a purely
ingoing wave at the horizon as η → ηBH. This result agrees with the
standard BH membrane.

The boundary conditions in Eqs. (3.25) and (3.26) allow us to de-
scribe several models of ECOs in terms of the shear and bulk viscosities
of the fictitious membrane located at the radius of the object. For ex-
ample, ultracompact thin-shell wormholes with Dirichlet (Neumann)
boundary conditions [81] are described by η = 0 (η → ∞). Whereas,
ultracompact thin-shell gravastars [236] are described by a complex
and frequency-dependent shear viscosity that is expressed in terms of
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hypergeometric functions

η =
1

16π
− iϵ

64πMω

[
8 − 2ℓ2 + 2iMω

+ (1 + ℓ+ 2iMω) (2 + ℓ+ 2iMω)

×
2F1

(
1
2 (3 + ℓ+ 2iMω), 1

2 (4 + ℓ+ 2iMω); 5
2 + ℓ; 1

)

2F1

(
1
2 (1 + ℓ+ 2iMω), 1

2 (2 + ℓ+ 2iMω); 3
2 + ℓ; 1

)
]

+ O(ϵ2) . (3.27)

In particular, the axial sector depends only on the shear viscosity
of the membrane, whereas the polar sector depends also on the bulk
viscosity of the fictitious fluid. In the BH limit, the dependence on
the bulk viscosity disappears (G(2M) = 0) therefore the parameter for
the bulk viscosity is not fixed by the linear perturbation analysis (see
Appendix 3.6 for details).

3.3.3. Effective reflectivity of compact objects
According to the membrane paradigm, the effective reflectivity of

compact objects is mapped into the shear and bulk viscosities of the
fictitious fluid located at the radius of the object. To illustrate their
relation, we compute the effective reflectivity of the spacetime through
the scattering of awave coming from infinity and being partially reflected
after being subjected to the boundary conditions in Eqs. (3.25) and (3.26)
at r = r0, i.e.,

ψ ∼ e−iωr∗ + Reiωr∗ , r∗ → ∞ . (3.28)

Let us notice that the effective reflectivity at infinity defined in Eq. (3.28)
is different from the surface reflectivity defined in Eq. (3.10) at the radius
of ultracompact objects.

In the large-frequency limit (Mω ≫ 1), the potential in Eq. (3.3) can
be neglected and the effective reflectivity reads

|R|2 =

(
1 − η/ηBH

1 + η/ηBH

)2
. (3.29)

Eq. (3.29) shows that a compact object is a perfect absorber of high-
frequency waves (|R|2 = 0) when η = ηBH, whereas it is a perfect
reflector of high-frequency waves (|R|2 = 1) when either η = 0 or
η → ∞.
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Fig. 3.4. Effective reflectivity of compact objects for axial (left panel) and polar (right
panel) gravitational perturbations as a function of the frequency. The radius of the compact
object is located at r0 = 2M(1+ ϵ), and the shear and bulk viscosities of the membrane are
η = ηBH and ζ = ζBH, respectively. In both panels, the vertical dashed line corresponds to
the fundamental QNM frequency of a Schwarzschild BH, i.e., MωR,BH ∼ 0.37367. [199]

In the case of horizonless ultracompact objects with ϵ ≪ 1, the ef-
fective reflectivity at infinity in Eq. (3.29) coincides with the surface
reflectivity of the object when the latter does not have an explicit depen-
dence on the frequency, i.e., |R|2 = |R|2. For η = 0, the ultracompact
object is perfectly reflecting (|R|2 = 1) and the boundary conditions in
Eqs. (3.25) and (3.26) reduce to Dirichlet and Neumann boundary con-
ditions on axial and polar modes in Eqs. (3.11) and (3.12), respectively.
Also for η → ∞, the ultracompact object is perfectly reflecting.

Although η is formally a free parameter, we expect the most interest-
ing range to be η ∈ [0, ηBH]. Indeed, from Eq. (3.29) negative values of
η would correspond to |R|2 > 1 that would lead to superradiant insta-
bilities [65]. Similarly, for η > ηBH the effective reflectivity is a growing
function of the shear viscosity, which is unphysical. For this reason,
partially absorbing ultracompact objects are analyzed by considering
η ∈ (0, ηBH).

We compute the effective reflectivity in Eq. (3.28) for generic fre-
quencies numerically. Fig. 3.4 shows the effective reflectivity of compact
objects with different radii compared to the BH reflectivity as a function
of the frequency. The left (right) panel shows the effective reflectivity for
axial (polar) gravitational perturbations with shear and bulk viscosities
η = ηBH and ζ = ζBH, respectively.

Interestingly, as the ECO radius approaches the photon sphere (ϵ →
1/2) the effective reflectivity tends to unity in the axial sector for any
frequency. This distinctive feature can be understood by noticing that the
axial boundary condition in Eq. (3.25) reduces to ψ(r0) = 0 as r0 → 3M
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Fig. 3.5. Real (left panel) and imaginary (right panel) part of the QNMs of an ECO de-
scribed by a fictitious fluid with shear viscosity η = ηBH and compared to the fundamental
ℓ = 2 gravitational QNM of a Schwarzschild BH, as a function of the closeness parameter
ϵ where the ECO radius is located at r0 = 2M(1 + ϵ). The highlighted region corresponds
to the maximum deviation (with 90% credibility) for the least-damped QNM in the event
GW150914 to the Kerr BH case [136]. Horizonless compact objects with ϵ ≲ 0.1 are
compatible with current measurement accuracies.

for any complex η. As a consequence, any ECO with r0 = 3M is a perfect
reflector of axial GWs regardless of the interior structure1. The same
universality does not occur in the polar sector.

Let us also notice that the effective reflectivity at intermediate fre-
quencies (Mω = O(0.1 − 1)) can be larger than the BH reflectivity. For
example, at the fundamental QNM frequency of a Schwarzschild BH
MωR,BH ∼ 0.37367, shown in Fig. 3.4 as a dashed vertical line, the effec-
tive reflectivity is about unity for ϵ = 0.4 in the axial sector. This effect
has relevant consequences in the QNM spectrum of compact objects
with respect to the BH QNM spectrum, as we shall discuss in Sec. 3.3.4.

3.3.4. Quasi-normal mode spectrum
Equation (3.3) with boundary conditions at infinity in Eq. (3.8) and

at the radius of the compact object in Eqs. (3.25) and (3.26) for the axial
and polar sector, respectively, can be solved numerically to derive the
QNM spectrum of a static horizonless compact object. When normal-
ized by the mass, the QNMs of the object depend on three integers, i.e.,
the spin s, the angular number ℓ, and the overtone number n of the
perturbation. The QNM spectrum also depends on some continuous
parameters that are related to the properties of the system, i.e., its com-
pactness through the parameter ϵ as in Eq. (2.2). In the axial sector, the

1 The only exception is when η → − 3iω
16πq (r0 − 3M) as r0 → 3M, in which case the

divergence in Eq. (3.25) cancels out. This peculiar case corresponds to thin-shell
gravastars [292].
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QNMs depend on the shear viscosity of the membrane η, whereas in
the polar sector there is an additional dependence on the bulk viscosity
of the membrane ζ.

We compute the QNM spectrum with two numerical methods: a
direct integration shooting method, as described in Sec. 3.2.3, and a
method based on continued fractions, as described in Appendix 3.5. The
continued fraction method is more robust than the direct integration
for overtones with a large imaginary part of the frequency. When they
both are applicable, we checked that the two methods are in excellent
agreement.

Let us first analyze the QNM spectrum of a horizonless compact
object with η = ηBH. Fig. 3.5 shows the ratio of the real (left panel)
and imaginary (right panel) part of the ECO QNMs to the fundamental
ℓ = 2 QNMof a Schwarzschild BH, as a function of ϵ. As ϵ → 0, the hori-
zonless compact object has the same QNM spectrum of a Schwarzschild
BH. This is because, as ϵ → 0, the compct object has the same reflective
properties of a BH for η = ηBH. For larger values of ϵ, the compactness
of the object decreases and the QNMs start deviating from the BH QNM.
Let us notice that the isospectrality of axial and polar modes in BHs
is broken for finite values of ϵ. In the case of horizonless objects, the
fundamental ℓ = 2 modes form a characteristic doublet. Polar modes
show a mild dependence on the bulk viscosity of the membrane. In the
large-ζ limit, the QNM spectrum is independent of the bulk viscosity,
as shown by the ζ = ±10 curves in Fig. 3.5.

The highlighted regions in Fig. 3.5 correspond to the maximum al-
lowed deviation (with 90% credibility) for the least-damped QNM in
the event GW150914, and correspond to ∼ 16% and ∼ 33% for the real
and imaginary part of the QNM, respectively [136]. Remarkably, Fig. 3.5
shows that horizonless compact objects with ϵ ≲ 0.1 are compatible with
current measurement accuracies. Future ringdown detections would
allow us to set more stringent constraints on the radius of compact
objects.

Let us now change the reflective properties of the compact object via
the parameter η. Fig. 3.6 shows the complex QNMplane of a horizonless
compact object under axial perturbations for several values of ϵ. Each
curve is parametrized by the shear viscosity of the membrane where η ∈
[10−4, 100]. As a reference, the fundamental QNM of a Schwarzschild
BH is marked by a black dot corresponding to η = ηBH and ϵ = 0. As
the location of the radius of the object approaches the photon sphere
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Fig. 3.6. The complex QNM plane of a horizonless compact object for axial perturbations.
Each curve is the QNM spectrum of a compact object with a given radius r0 = 2M(1 + ϵ)
parametrized by the shear viscosity of the membrane, η ∈ [10−4, 100]. As the radius of
the object approaches the photon sphere (ϵ → 1/2), the curves converge to a universal
QNM (marked with an empty black circle) regardless of the value of η. As a reference,
the fundamental QNM of a Schwarzschild BH is marked by a black dot. [199]

(ϵ → 1/2), the axial QNMs become independent of η. Indeed, the
QNMs tend to a universal mode (marked by an empty black circle in
Fig. 3.6) which, for ℓ = 2, reads

Mωaxial ∼ 0.3601 − i0.2149 , ϵ → 1/2 , (3.30)

As previously discussed, in this limit the object is a perfect reflector of
axial GWs, regardless of the value of η. This remarkable universality
does not apply to the case of polar perturbations.

Let us analyze the transition from fundamental modes to overtones
as a function of the shear viscosity of the membrane for ϵ ≪ 1. Indeed,
in the ϵ → 0 limit, the parameter η interpolates between the BH case
(η = ηBH) and the perfectly reflecting case (η = 0). Fig. 3.7 shows the
tracking of the fundamental mode (blue curve) and the first overtone
(red curve) of a Schwarzschild BH by changing the shear viscosity of
the membrane. We notice that the change in the imaginary part of the
QNMs is drastic even for small variations of the shear viscosity with
respect to the BH case. Fig. 3.7 displays a crossing point after which
the BH overtone has a smaller imaginary part than the BH fundamental
mode and becomes more relevant in the ringdown stage. This trend is
general and BH higher overtones become long-lived in the η → 0 limit.
This transition could explain the presence of low-frequency QNMs in
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Fig. 3.7. Imaginary part of the axial QNMs of a compact object with radius r0 = 2M(1+ ϵ)
and ϵ = 10−10 as a function of the shear viscosity of the membrane. The fundamental
mode (blue curve) and the first overtone (red curve) of a Schwarzschild BH are tracked
from η = ηBH (leftmost part of the plot) to the limit of a perfectly reflecting object, η = 0
(rightmost part). The figure shows a crossing point after which the imaginary part of the
BH overtone becomes smaller than the one of the BH fundamental mode. [203]

the case of perfectly reflecting objects, as discussed in Sec. 3.2.4.
We notice that the tracking of higher overtones as a function of the

shear viscosity is numerically challenging. Indeed, the BH QNM spec-
trum is unstable against small deformations of the eigenvalue prob-
lem [167]. In our numerical analysis, we have seen hints of this instabil-
ity (which is more severe for high-order overtones) due to finite-ϵ effects
and the slightly different boundary conditions when approaching the
BH limit.

3.3.5. Current constraints and prospects of detectability
Current measurement accuracies impose strong constraints on the

compactness and reflectivity of horizonless compact objects. Fig. 3.8
shows the relative percentage difference between the BH QNM and the
QNMs of a compact object with radius r0 = 2M(1 + ϵ) as a function
of the closeness parameter ϵ and the shear viscosity η ∈ [0, ηBH]. The
left (right) panels show the relative percentage difference of the real
(imaginary) part of the QNMs under axial and polar perturbations in
the top and bottom panels, respectively. The contour lines correspond
to the accuracy within which the least-damped QNM of the remnant
of GW150914 has been measured [136]. Indeed, GW150914 gives the
single-event most-stringent constraints with a maximum allowed devia-
tion from the least-damped QNM of a Kerr BH of ∼ 16% and ∼ 33% for
the real and imaginary part of the QNM, respectively. The dashed areas
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Fig. 3.8. Relative percentage difference of the real (left panels) and imaginary (right
panels) part of the QNMs of a horizonless compact object to the fundamental QNM of a
Schwarzschild BH under axial (top panels) and polar (bottom panels) perturbations. The
QNMs of the compact object are parametrized by the compactness of the object through
the parameter ϵ ∈ [0.01, 1] and the shear viscosity η ∈ [0, ηBH]. The dashed areas are
the regions that would be excluded by individual measurements of the real (left) and
imaginary (right) part of the QNMs with the same accuracy as in GW150914 [136]. The
dark shaded region is the area that would not be excluded by a simultaneousmeasurement
of the frequency and the damping time with current measurement accuracies. [199]

are the regions of the (ϵ, η) parameter space that would be excluded by
the individual measurement of the real and imaginary part of the fun-
damental QNM. The dark shaded areas are the regions that would not
be excluded by a simultaneous measurement of the real and imaginary
part of the QNM in the axial (top panels) and polar (bottom panels)
sectors.

Interestingly, already with the current LIGO/Virgo accuracy we can
potentially place strong constraints on the parameter space of horizon-
less compact objects. By combining the information from the real and
imaginary part of the QNMs, Fig. 3.8 shows that only a small region of
the parameter space with ϵ ≲ 0.1 and η ≈ ηBH (dark shaded area) is
compatible with current constraints in the axial sector. For polar per-
turbations, a wider region in the parameter space with ϵ ≳ 0.1 and

64 Probing the horizon of black holes with gravitational waves



3.3. MEMBRANE PARADIGM FOR COMPACT OBJECTS 65

(ωR-ωR,BH)/ωR,BH %

-30
-20
-10
0

10

20

(ωI-ωI,BH)/ωI,BH %

-50

0

50

100

150

(ωR-ωR,BH)/ωR,BH %

-20
-10
0

10

20

(ωI-ωI,BH)/ωI,BH %

-75
-50
-25
0

25

50

75

Fig. 3.9. Same as Fig. 3.8. The dashed areas are the regions that would be excluded by
individual measurements of the real and imaginary part of the QNMs by next-generation
detectors, assuming an order of magnitude improvement in the ringdown measurements
relative to current detectors. The dark shaded region that would be compatible with
a simultaneous measurement of the frequency and the damping time is absent. Next-
generation detectors will allow us to constraint the whole region of the (ϵ, η) parameter
space shown in the diagrams [198].

0 < η < ηBH is compatible with current constraints. We assess that
current measurement accuracies impose a strong lower bound on the
compactness of the merger remnant, which cannot be smaller than 90%
the BH compactness.

Next-generation detectors, i.e., the Einstein Telescope [160] and
LISA [31], will have an overall improvement of the SNR by an order of
magnitude. The sensitivity of the detectors will allow us to resolve the
fundamental QNM at percent level. As shown in Fig. 3.9, almost the
whole region of the (ϵ, η) parameter space would be constrained.

Another signature of new physics is given by the presence of the
mode doublet in the axial and polar sectors, as discussed in Sec. 3.3.4.
A necessary condition to resolve the doublet is based on the Rayleigh
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Fig. 3.10. Minimum SNR required for the resolvability of the axial-polar QNM doublet
according to the Rayleigh criterion. [199]

resolvability criterion [52]

max[σf1 , σf2 ] < | f1 − f2| , (3.31)
max[σQ1 , σQ2 ] < |Q1 − Q2| , (3.32)

where fi = ω
(i)
R /2π and Qi = π fiτi are the frequency and the quality

factor of the i-th mode, τi is the damping factor of the i-th mode, and
σX is the uncertainty associated to a quantity X. The uncertainties on
the parameters are computed with a Fisher analysis assuming that the
amplitude ratio between the axial and polar modes is 1/10 (see Ap-
pendix 3.7 for details). Fig. 3.10 shows the minimum SNR required to
resolve the doublet, ρres, according to the Rayleigh resolvability criterion.
In the η ≈ ηBH region, ρres > 103 and it can be smaller for η < ηBH. A
comparison between Fig. 3.8 and Fig. 3.10 shows that the resolution of
the doublet requires a larger SNR than the detection of the deviations
from the BH QNM.

3.4. Appendix: Boundary condition for static objects
Let us derive the boundary conditions that describe a static and

perfectly reflecting ultracompact object under electromagnetic perturba-
tions [65]. The background geometry is the Schwarzschild metric, and
the radius of the compact object is located as in Eq. (2.1) where ϵ ≪ 1.
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The background geometry is perturbed by a test electromagnetic field
that is governed by the Maxwell equations

Fµν
;ν = 0 (3.33)

where Fµν = Aν,µ − Aµ,ν is theMaxwell tensor, Aµ is the electromagnetic
four-potential, the comma stands for an ordinary derivative and the semi-
colon stands for a covariant derivative. The spherical symmetry of the
background allows us to expand the electromagnetic four-potential as

Aµ(t, r, θ, φ) = ∑
ℓ,m







0
0

aℓm(t, r)
¯
Sℓm(θ, φ)


+




f ℓm(t, r)Yℓm(θ, φ)

hℓm(t, r)Yℓm(θ, φ)

kℓm(t, r)
¯
Yℓm(θ, φ)





 ,

(3.34)
where the vector spherical harmonics are given by

¯
S⊤
ℓm(θ, φ) =


1

sin θ
∂φYℓm(θ, φ),− sin θ∂θYℓm(θ, φ)


, (3.35)

¯
Y⊤
ℓm(θ, φ) =

�
∂θYℓm(θ, φ), ∂φYℓm(θ, φ)


, (3.36)

where Yℓm(θ, φ) are the scalar spherical harmonics. The first term in
the right-hand side of Eq. (3.34) has parity (−1)ℓ+1 and corresponds to
axial modes, whereas the second term in the right-hand side of Eq. (3.34)
has parity (−1)ℓ and corresponds to polar modes. By defining

Υℓm(t, r) =
r2

ℓ(ℓ+ 1)


∂thℓm(t, r)− ∂r f ℓm(t, r)


, (3.37)

and by assuming the time dependence aℓm, Υℓm ∝ e−iωt, Eq. (3.33) trans-
lates into a a Schrödinger-like equation as in Eq. (3.3), where

ψ(r) ≡




aℓm(r) for axial modes
Υℓm(r) for polar modes

, (3.38)

and the effective potential is in Eq. (3.5) with s = −1.

We model the perfectly reflecting compact object as a perfect conduc-
tor at r = r0, where the electric field has vanishing tangential compo-
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nents and the magnetic field has a vanishing parallel component

Eθ(r0) ∝ Fθt(r0) = 0 , (3.39)
Eφ(r0) ∝ Fφt(r0) = 0 , (3.40)
Br(r0) ∝ Fφθ(r0) = 0 . (3.41)

Eqs. (3.39)–(3.41) yield to

aℓm(t, r0) = 0 , (3.42)
f ℓm(t, r0)− ∂tkℓm(t, r0) = 0 , (3.43)

and the Maxwell equations (3.33) imply

f ℓm(t, r0)− ∂tkℓm(t, r0) = − f (r0)∂rΥ(t, r0) . (3.44)

Eqs. (3.42) and (3.43) correspond toDirichlet (ψ(r0) = 0) andNeumann
(∂rψ(r0) = 0) boundary conditions on axial and polar perturbations,
respectively, as detailed in Eqs. (3.11) and (3.12).

3.5. Appendix: Continued fractions method

The continued fraction method allows us to compute the QNMs of
compact objects as roots of implicit equations [187]. The eigenfunction
can be written as a series whose coefficients satisfy a finite-term recur-
rence relation. To optimize the recurrence relation, it is important to
choose a suitable ansatz for the eigenfunction. We analyze the case of
a horizonless compact object under gravitational perturbations that is
governed by Eq. (3.3) with effective potentials in Eqs. (3.5) and (3.6)
and s = −2. Let us first focus on axial perturbations, where the solution
of Eq. (3.3) can be written as [236]

ψ(r) = (r − 2M)2iMωeiωr∗ϕ(z) , (3.45)

where ψ(r) is the Regge-Wheeler wave function, z ≡ 1 − R2/r, and
R2 ≳ r0 is located outside the radius of the compact object. The function
ϕ(z) satisfies the differential equation

(
c0 + c1z + c2z2 + c3z3

) d2ϕ

dz2 +
(

d0 + d1z + d2z2
) dϕ

dz
+(e0 + e1z) ϕ = 0 ,

(3.46)
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where

c0 = 1 − 2M
R2

, c1 =
6M
R2

− 2 , c2 = 1 − 6M
R2

, c3 =
2M
R2

, (3.47)

d0 = 2iωR2 +
6M
R2

− 2 , d1 = 2
(

1 − 6M
R2

)
, d2 =

6M
R2

,

e0 =
6M
R2

− ℓ(ℓ+ 1) , e1 = −6M
R2

.

Let us perform a series expansion of ϕ(z) as

ϕ(z) =
∞

∑
n=0

anzn . (3.48)

By substituting Eq. (3.48) in Eq. (3.46), we derive a four-term recurrence
relation for the expansion coefficients an:

α1a2 + β1a1 + γ1a0 = 0 , n = 1 , (3.49)
αnan+1 + βnan + γnan−1 + δnan−2 = 0 , n ≥ 2 ,

where

αn = n(n + 1)c0 , n ≥ 1 , (3.50)
βn = (n − 1)nc1 + nd0 , n ≥ 1 ,

γn = (n − 2)(n − 1)c2 + (n − 1)d1 + e0 , n ≥ 1 ,

δn = (n − 3)(n − 2)c3 + (n − 2)d2 + e1 , n ≥ 2 .

The four-term recurrence relation (3.49) can be reduced to a three-term
recurrence relation a via Gaussian elimination by defining [187]

α̂0 = −1 , β̂0 =
a1

a0
. (3.51)

The term a1/a0 is determined by imposing the continuity of the solu-
tion (3.45) and its derivative at r = R2, namely

a1

a0
=

R2

ψ(R2)

[
dψ(R2)

dr
− iω

f (R2)
ψ(R2)

]
, (3.52)

where the values of ψ(R2) and dψ(R2)/dr are computed numerically
by integrating Eq. (3.3) from r = r0 up to r = R2 with a suitable bound-
ary condition at r0. The remaining coefficients can be determined by
recursion from Eq. (3.49). In the case of polar perturbations, we inte-
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grate Eq. (3.3) numerically with the effective potential in Eq. (3.6) from
r = r0 up to r = R2. We obtain the values of the Zerilli function ψZ(R2)

and its derivative dψZ(R2)/dr from which we derive the value of the
Regge-Wheeler function in Eq. (3.52) using the relation in Eq. (3.15).

Finally, by defining

α̂n = αn , β̂n = βn , γ̂n = γn , n = 1 ,

(3.53)

α̂n = αn , β̂n = βn −
α̂n−1δn

γ̂n−1
, γ̂n = γn −

β̂n−1δn

γ̂n−1
, δ̂n = 0 , n ≥ 2 ,

(3.54)

the four-term recurrence relation (3.49) reduces to the following three-
term relation

α̂nan+1 + β̂nan + γ̂nan−1 = 0 , (3.55)

that can be recast in

0 = f0(ω) = β̂0 −
α̂0γ̂1

β̂1−
α̂1γ̂2

β̂2−
α̂2γ̂3

β̂3−
... (3.56)

Using the inversion properties of the continued fractions, Eq. (3.56) can
be inverted n times to yield

0 = fn(ω) = β̂n −
α̂n−1γ̂n

β̂n−1−
α̂n−2γ̂n−1

β̂n−2−
...

α̂0γ̂1

β̂0−

− α̂nγ̂n+1

β̂n+1−
α̂n+1γ̂n+2

β̂n+2−
α̂n+2γ̂n+3

β̂n+3−
... (3.57)

where n = 1, 2, ... The roots of Eqs. (3.56) and (3.57) are the QNMs of the
system. Since the functions fn(ω) have different convergence properties,
each of them is best suited to find the QNMs in a given region of the
parameter space. Searching for roots with n = 0 is usually sufficient,
but when the QNMs have a large imaginary part there could be stable
numerical solutions for n = 1 and n = 2.

Overall, the solution is convergent if we choose R2 such that R2 >

2M and R2/2 < r0 < R2 [237]. By defining r0 = 2M(1 + ϵ) and
R2 = 2M(1 + R2,0), we derive that the integration should be performed
from r = r0 up to r = R2 with ϵ < R2,0 < 1 + 2ϵ to ensure numerical
stability.
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3.6. Appendix: Membrane paradigm

In this Appendix, we provide details on the derivation of the bound-
ary conditions in Eqs. (3.25) and (3.26) describing horizonless com-
pact objects with a Schwarzschild exterior and a radius located at r0 =

2M(1 + ϵ). The membrane paradigm allows us to map the interior of
several models of ECOs in terms of the properties of a fictitious mem-
brane located at the radius of the object. Being M the whole spacetime
manifold, we define M+ and M− as the exterior and the interior re-
gions to the 3-dimensional membrane (or shell) that are described by
the metrics g+µν(x+) and g−µν(x−), respectively, with coordinates

x+µ = (t+, r+, θ+, φ+) , x−µ = (t−, r−, θ−, φ−) . (3.58)

We assume that the exterior spacetime is described by the Schwarzschild
metric in Boyer-Lindquist coordinates as in Eq. (3.1) and that GR works
sufficiently well near the radius of the compact object, whereas the
interior spacetime can be described by any theory of gravity.

The coordinates of the membrane are xµ
m = (t, r0, θ, φ) so that the

intrinsic 3-dimensional coordinates on the shell are

ya = (t, θ, φ) . (3.59)

The induced metric on the membrane is defined as

hab = eµ
a eν

b gµν , (3.60)

where the basis of three independent generators for the shell can be
chosen as

eµ
a =

∂xµ

∂ya . (3.61)

The extrinsic curvature on the membrane is defined as

Kab = eµ
a eν

b∇µnν , (3.62)

where nµ is the normal vector to the membrane and ∇µ ≡ ∂/∂xµ. Since
the membrane is a time-like surface, we impose that the normal vector
to the membrane is space-like, i.e., nµnµ = 1. The trace of the extrinsic
curvature is derived as K = habKab.

To embed the membrane in the manifold M we impose the Israel-
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Darmois junction conditions [109, 166]:

h+ab = h−ab ≡ hab , (3.63)

and
(K+hab − K+

ab)−
(
K−hab − K−

ab
)
= 8πTab , (3.64)

where h+ab (h−ab) and K+
ab (K−

ab) are the inducedmetric and extrinsic curva-
ture defined in the exterior (interior) spacetime to the shell, respectively,
and Tab is the stress-energy tensor of the matter distribution located on
the membrane.

According to the original formulation of the membrane paradigm,
the matter is fictitious and is such that the extrinsic curvature in the
interior spacetime vanishes [279]

K−
ab = 0 , (3.65)

so that the junction condition in Eq. (3.64) reduces to

Khab − Kab = 8πTab , (3.66)

where, for simplicity, we define Kab ≡ K+
ab and the coordinates of the

exterior spacetime as xµ = (t, r, θ, φ). Let us notice that it is always
possible to find a metric for the interior spacetime g−µν(x−) that satis-
fies the junction conditions in Eqs. (3.63) and (3.64) together with the
assumption in Eq. (3.65).

By imposing the condition in Eq. (3.65), the membrane paradigm
allows us to map the information on the interior spacetime into the
stress-energy tensor of the fictitious membrane. The junction conditions
in Eqs. (3.63) and (3.64) are compatible with a membrane described by
the stress-energy tensor of a viscous fluid

Tab = ρuaub + (p − ζΘ)γab − 2ησab , (3.67)

where ρ and p are the density and pressure, η and ζ are the shear
and bulk viscosities, ua is the 3-velocity of the fluid defined in terms
of its 4-velocity Uµ as ua = eµ

a Uµ, Θ = ua
;a is the expansion, σab =

1
2
(
ua;cγc

b + ub;cγc
a − Θγab

)
is the shear tensor, γab = hab + uaub is the

projector tensor, and ub;a is the 3-dimensional covariant derivative com-
patible with the induced metric hab [178, 283].
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Unperturbed background

Let us first analyze the background spacetime as in Eq. (3.1). In this
case, the induced metric on the membrane reads

htt = − f (r0) , hθθ =
hφφ

sin2θ
= r2

0 . (3.68)

The normal vector to the membrane is determined by imposing the four
conditions eµ

a nµ = 0 and nµnµ = 1; its components read

nt = 0 , nr =
1√
f (r)

, nθ = 0, nφ = 0. (3.69)

The extrinsic curvature is diagonal,

Ktt = −1
2

√
f (r0) f ′(r0) , Kθθ =

Kφφ

sin2 θ
= r0

√
f (r0) , (3.70)

where the prime denotes partial derivative with respect to the argument.
The stress-energy tensor of the matter distribution reduces to the one
of a perfect fluid since the expansion and the shear tensor are null.
Indeed, the only nonvanishing component of the fluid 4-velocity Uµ =

(Ut, Ur, Uθ , Uφ) is Ut = 1/
√

f (r0). This yields to the the fluid 3-velocity

ua =

(
1√
f (r0)

, 0, 0

)
. (3.71)

At the background level, the nonvanishing components of the junction
condition in Eq. (3.66) are

tt : − 2
r0

f 3/2(r0) = 8π f (r0)ρ0 ,

θθ :
r0 [2 f (r0) + r0 f ′(r0)]

2
√

f (r0)
= 8πr2

0 p0 ,

φφ :
r0sin2θ [2 f (r0) + r0 f ′(r0)]

2
√

f (r0)
= 8πr2

0sin2θp0 . (3.72)

The (tt) component gives the unperturbed density of themembrane [21]

ρ0(r0) = −
√

f (r0)

4πr0
; (3.73)
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whereas the angular components give the unperturbed pressure of the
membrane

p0(r0) =
2 f (r0) + r0 f ′(r0)

16πr0
√

f (r0)
. (3.74)

Eqs. (3.73) and (3.74) fix a barotropic equation of state p = p(ρ). In the
BH limit (r0 → 2M), the density vanishes and the pressure diverges as
the redshift factor ϵ−1/2. The speed of sound is

cs ≡
√

∂p0

∂ρ0
=

√
1 + 2ϵ + 4ϵ2

8ϵ(1/2 − ϵ)
, (3.75)

that diverges both in the BH limit (ϵ → 0) and the photon-sphere limit
(ϵ → 1/2), and is complex for ϵ > 1/2. Let us notice that the properties
of the fluid do not need to be physical since the membrane is fictitious.

Gravitational perturbations

Let us work in the Regge-Wheeler gauge and analyze separately
the axial and polar sectors of the gravitational perturbation [257]. The
perturbed metric can be cast in the following form

gµν = g0
µν(r) + δgµν(r, θ, t) , (3.76)

where, without loss of generality, the perturbation δgµν does not de-
pend on the azimuthal angle φ owing to the spherical symmetry of the
background g0

µν.

Because of the metric perturbations, the dissipative components of
the stress-energy tensor are switched on, and both the density and the
pressure of the membrane are perturbed as follows

ρ = ρ0 + δρ(t, θ) , (3.77)
p = p0 + δp(t, θ) . (3.78)

The location of the membrane is also affected by the perturbation, and
the deviation is parametrized as

rm(t, θ) = r0 + δr(t, θ) . (3.79)

The 4-dimensional coordinates of the membrane are

xµ
m = (t, r0 + δr(t, θ), θ, φ) , (3.80)
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and the perturbed tangential vectors eµ
a introduced in Eq. (3.61) are

eµ
t = (1, ∂tδr(t, θ), 0, 0) ,

eµ
θ = (0, ∂θδr(t, θ), 1, 0) ,

eµ
φ = (0, 0, 0, 1) . (3.81)

Let us notice that δρ(t, θ), δp(t, θ) and δr(t, θ) are scalar quantities un-
der rotations, therefore they are only affected by the polar perturbations
and can be decomposed as

δρ(t, θ) = ερ1Pℓ(cos θ)e−iωt ,

δp(t, θ) = εp1Pℓ(cos θ)e−iωt ,

δr(t, θ) = εδr0Pℓ(cos θ)e−iωt . (3.82)

where ρ1, p1, δr0 depend only on the unperturbed radius r0, Pℓ(cos θ)

are the Legendre polynomials, and the parameter ε is the perturbation
order, so that all the contributions of order O(ε2) are negligible. In the
following, we shall analyze the axial and polar sectors separately.

Axial sector
The nonvanishing components of the axial metric perturbations in

the Regge-Wheeler gauge are [257]

δgtφ = εe−iωth0(r) sin θ∂θ Pℓ(cos θ) ,

δgrφ = εe−iωth1(r) sin θ∂θ Pℓ(cos θ) . (3.83)

It follows that the only nonvanishing component of the induced metric
perturbation is

δhtφ = εe−iωth0(r0) sin θ∂θ Pℓ(cos θ) . (3.84)

In the axial case, the normal vector to themembrane is given by Eq. (3.69)
up to the first order in the perturbation. As a consequence, the nonvan-
ishing components of the extrinsic curvature perturbation are

δKtφ =
1
2

e−iωtε
√

f
(
iωh1 + h′0

)
sin θ∂θ Pℓ(cos θ) ,

δKθφ = −1
2

e−iωtε
√

f h1

(
− cos θ∂θ + sin θ∂2

θ

)
Pℓ(cos θ) .(3.85)

Concerning the fluid velocity, the components Ut, Ur and Uθ are not
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affected by axial perturbations, whereas δuφ ̸= 0 and its expression can
be found by solving the tφ component of the junction condition, i.e.,

δuφ =
εe−iωt∂θ Pℓ(cos θ) [h0 f ′ − f (iωh1 + h′0)]

r0sinθ
√

f (2 f − R f ′)
. (3.86)

The perturbed components of the stress-energy tensor are

δTtφ = −εe−iωtρ0h0 sin θ∂θ Pℓ(cos θ)

−r2
0
√

f sin2 θ(p0 + ρ0)δuφ(t, θ) ,

δTθφ = −η r2
0 sin2 θ∂θδuφ(t, θ) . (3.87)

The θφ component of the junction condition then reduces to

1
2

√
f h1 = −

8πηr0 [h0 f ′ − f (iωh1 + h′0)]√
f (2 f − r0 f ′)

. (3.88)

In vacuum, theRegge-Wheeler functions are related to each other by [257]

h0(r) = − f (r)
iω

d
dr

[ f (r)h1(r)] . (3.89)

We use this relation to write h0 and h′0 in terms of h1, h′1 and h′′1 . Fur-
thermore, we replace h1 and its derivatives by introducing the Regge-
Wheeler function [257]

ψRW(r) =
f (r)

r
h1(r) , (3.90)

that satisfies Eq. (3.3) with the effective potential given in Eq. (3.5).
Finally, Eq. (3.88) yields to

ωψ(r0) = 16iπη

(
dψ

dr∗

∣∣∣∣
r0

+
r0Vaxial(r0)

2 f (r0)− r0 f ′(r0)
ψ(r0)

)
. (3.91)

that coincides with the boundary condition in Eq. (3.25).
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3.6.0.1. Polar sector

The nonvanishing components of the polar metric perturbation are

δgtt = εe−iωtPℓ(cos θ) f (r)H(r) ,

δgrr = εe−iωtPℓ(cos θ)
H(r)
f (r)

,

δgtr = εe−iωtPℓ(cos θ)H1(r) ,

δgθθ =
δgφφ

sin2θ
= εe−iωtPℓ(cos θ)r2K(r) , (3.92)

where the location of themembrane is perturbed as in Eqs. (3.79) and (3.82).
By projecting on the 3-dimensional membrane, the nonvanishing com-
ponents of the induced metric perturbation are

δhtt = ε
(

fH− f ′δr0
)

Pℓ(cos θ)e−iωt ,

δhθθ =
hφφ

sin2θ
= ε

(
r2

0K+ 2r0δr0

)
Pℓ(cos θ)e−iωt . (3.93)

The perturbed components of the normal vector to the membrane up to
the first order in the perturbation are

δnt =
ε iωe−iωtPℓ(cos θ)δr0√

f (r)
,

δnr =
εe−iωtPℓ(cos θ)H(r)

2
√

f (r)
,

δnθ = − εe−iωt∂θ Pℓ(cos θ)δr0√
f (r)

. (3.94)

Concerning the perturbed fluid velocity, in the polar sector δUt can be
uniquely determined from the condition of unit norm UµUµ = −1, i.e.,

δUt = δut =
ε ( fH− δr0 f ′)

2 f 3/2 Pℓ(cos θ)e−iωt . (3.95)

Moreover, δUφ = δuφ = 0 and δUr = −εUt iωe−iωtPℓ(cos θ), while
δUθ = δuθ is nonvanishing and can be determined by solving the tθ
component of the junction condition in Eq. (3.66), as we shown below.

The extrinsic curvature has the following nonvanishing components
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up to first order in ε

δKtt =
εe−iωtPℓ(cos θ)

4
√

f

[
δr0

(
4ω2 − f ′2

)

+ f
(
−2δr0 f ′′ + 3H f ′ + 4iωH1

)
+ 2 f 2H′

]
,

δKθθ =
εe−iωt

2
√

f

[
f
(

2δr0 − r0H+ r2
0K′ + 2r0K

)

+δr0

(
r0 f ′ − 2∂2

θ

) ]
Pℓ(cos θ) ,

δKφφ =
ε sin2 θe−iωt

2
√

f

[
f
(

2δr0 − r0H+ r2
0K′ + 2r0K

)

+δr0
(
r0 f ′ − 2 cot θ∂θ

) ]
Pℓ(cos θ) ,

δKtθ = − εe−iωt

2
√

f
∂θ Pℓ(cos θ)( fH1 − 2iδr0ω) . (3.96)

The nonvanishing components of the perturbation to the stress-energy
tensor are

δTtt = εe−iωtPℓ(cos θ)
[
ρ0 f ′δr0 + f (ρ1 − ρ0H)

]
,

δTθθ =
r0√

f

{
−

√
f r0

[
(ζ + η)∂θδuθ + (ζ − η) cot θδuθ

]

+εe−iωtPℓ(cos θ)
[√

f (p0r0K+ 2p0δr0 + p1r0)

+iωζ(r0K+ 2δr0)
]}

,

δTφφ =
r0 sin2 θ√

f

{
−

√
f r0

[
(ζ − η)∂θδuθ + (ζ + η) cot θδuθ

]

. + εe−iωtPℓ(cos θ)
[√

f (p0r0K+ 2p0δr0 + p1r0)

+iωζ(r0K+ 2δr0)
]}

,

δTtθ = −r2
0
√

f (ρ0 + p0)δuθ . (3.97)

From the tt, θθ, and φφ components of the junction conditions we ob-
tain analytical (albeit cumbersome) expressions for ρ1 and p1, and the
deviation of the membrane location

δr0 =
16πηr0 fH1

2 f − r0 f ′ − 32πηiωr0
, (3.98)
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whereas from the tθ component we derive

δuθ =
εe−iωt∂θ Pℓ(cos θ)r0

√
fH1

2 f − r0 f ′ − 32πηiωr0
. (3.99)

In vacuum, the metric perturbations, H(r), H1(r) and K(r), are re-
lated by the following algebraic equation [305, 304]:

H(r) =
1

qr + 3M

{[
qr − ω2r4

r − 2M
+ M

r − 3M
r − 2M

]
K(r)

+

[
iωr2 +

(q + 1)M
iωr

]
H1(r)

}
, (3.100)

where q = (ℓ − 1)(ℓ + 2)/2. The relation in Eq. (3.100) allows us to
eliminate, say, H(r). Moreover, we can rewrite H1(r) and K(r) in terms
of the Zerilli wave function ψZ(r) that satisfies Eq. (3.3)with the effective
potential given in Eq. (3.6). Indeed, [305, 304]

H1(r) = ωh(r)ψZ(r) + ωk(r)
dψZ(r)

dr∗
, (3.101)

K(r) = g(r)ψZ(r) +
dψZ(r)

dr∗
, (3.102)

where

h(r) = i
3qMr − qr2 + 3M2

(r − 2M)(qr + 3M)
,

k(r) = −i
r2

r − 2M
,

g(r) =
q(q + 1)r2 + 3qMr + 6M2

r2(qr + 3M)
. (3.103)

The last condition that closes the system of equations and determines
uniquely the boundary conditions for the polar metric perturbation is
found from the barotropic equation of state p = p(ρ) at the first order
in the perturbation that gives

δp = c2
s δρ , (3.104)

where the sound speed cs is given in Eq. (3.75).

By substituting the above algebraic equations, we obtain the follow-
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ing boundary condition

dψZ(r0)/dr∗
ψZ(r0)

= −16πηiω + G(r0, ω, η, ζ) , (3.105)

where G = A/B and

A = (y − 2)
{

9
[
−3 − 3w2y3 + w2y4 − 48iπwy2ζ + y(2 + 96iπwζ)

]

+q3y2
(
−3i + iy + 16πwy2η

)2
+ 3q

[
−9 + 3y2(1 + 64iπwζ)

−32iπwy3(3ζ + 2η) + wy4(−3w + 16iπη) + w2y5

(
1 + 256π2η2

)]
+ q2y

[
− 18 + 6y2(1 + 16iπw(ζ − 2η))

+256π2w2y5η2 + 32πwy4η(i + 24πwη)− iy3

(−i + 48πw(ζ + η))
]}

, (3.106)

B = y2(3 + qy)
{

3
[
− 3 − 3w2y3 + w2y4 − 48iπwy2ζ + y

(2 + 96iπwζ)
]
+ q

[
− 9 + 9y + w2y5 + y2(−3 + 192iπwζ)

+y3(1 − 32iπw(3ζ − η)) −wy4(3w + 16iπη)
]
+ q2y

[
3 − 3y

−16iπwy3(ζ + η) + y2(1 + 32iπw(ζ + η))
]}

, (3.107)

and we define the dimensionless quantities y = r0/M, w = Mω. Let us
notice that in the BH limit G(2M) = 0, and the BH boundary condition is
recovered for η = ηBH. Our computations show that, in the BH limit, the
boundary condition is independent of the bulk viscosity, as discussed
in the main text.

3.7. Appendix: Fisher information matrix

The Fisher information matrix of a template h̃( f ) in the frequency
domain for a detector with noise spectral density Sn( f ) is defined as

Γij = ⟨∂i h̃|∂j h̃⟩ , (3.108)

where i, j = 1, ..., N, N is the number of the parameters in the template,
and the inner product between two waveforms (h1 and h2) is defined as

⟨h1|h2⟩ ≡ 4ℜ
∫ ∞

0

h̃1h̃∗2
Sn( f )

d f , (3.109)
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where the tilde stands for the Fourier transform of the waveform. The
SNR ρ of a signal is defined as

ρ2 = ⟨h̃|h̃⟩ . (3.110)

The covariance matrix of the errors on the parameters of the template is
defined as the inverse of the Fisher information matrix, i.e.,

Σij = Γ−1
ij . (3.111)

Finally, the statistical error associated with the measurement of i-th
parameter is derived as

σi =
√

Σii . (3.112)
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4. Ergoregion instability

Una nuova popolazione cresceva sulla terra, nemica a noi. Ci davano addosso
da tutte le parti, non ce ne andava bene una. Adesso qualcuno dice che il gusto
di tramontare, la passione d’essere distrutti facessero parte dello spirito di noi.

Italo Calvino, Le Cosmicomiche

4.1. A spinning model
Let us analyze a spinning horizonless compact object whose exterior

spacetime is described by the Kerr metric. The absence of the Birkhoff
theorem in axisymmetry implies that the vacuum region outside a spin-
ning object can be described by geometries other than Kerr. However,
in the case of a horizonless compact object with large compactness,
any deviation from the multipolar structure of a Kerr BH dies off suffi-
ciently fast within GR or in modified theories of gravity whose effects
are confined near the radius of the compact object [256, 54, 35]. This
assumption is justified for gravity theories in which putative extra de-
grees of freedom are heavy. In this case, the corrections to the metric
and field equations are suppressed by powers of lP/r0 ≪ 1, where r0 is
the radius of the object, and lP is the Planck length or the scale of new
physics. In Boyer-Lindquist coordinates, the exterior spacetime reads

ds2 = −
(

1 − 2Mr
Σ

)
dt2 +

Σ
∆

dr2 − 4Mr
Σ

a sin2 θdφdt

+ Σdθ2 +

[
(r2 + a2) sin2 θ +

2Mr
Σ

a2 sin4 θ

]
dφ2 , (4.1)
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where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, with M and J ≡ aM the
total mass and angular momentum of the object, respectively.

Motivated by models of microscopical corrections at the horizon
scale, the radius of the compact object is located as in Eq. (2.1) where
ϵ ≪ 1. The properties of the object’s interior are parametrized in terms
of a complex and frequency-dependent surface reflectivity R(ω).

4.2. The ergoregion
The Kerr metric in Eq. (4.1) admits two horizons at

r± = M ±
√

M2 − a2 , (4.2)

where the BH spin is bounded by −M ≤ a ≤ M1. The horizons are null
hypersurfaces that separate regions of the spacetime where r = const
are timelike hypersurfaces from regions where r = const are spacelike
hypersurfaces. In the Kerr spacetime, the horizons do not coincide with
the infinite redshift surfaces located at

rS± = M ±
√

M2 − a2 cos2 θ , (4.3)

which are the hypersurfaceswhere theKilling vector field ξµ = (1, 0, 0, 0)
becomes spacelike. The horizons and the infinite redshift surfaces are
such that rS− ≤ r− < r+ ≤ rS+ : for θ = 0, π, the horizons coincide with
the infinite redshift surfaces, i.e., rS± = r±; whereas on the equatorial
plane, rS+ = 2M > r+ and rS− = 0. Consequently, there exists a
region outside the outer horizon where the Killing vector field becomes
spacelike, i.e.,

r+ < r < rS+ , (4.4)

that is called ergoregion. Its outer boundary, i.e., r = rS+ , is called
ergosphere.

A characteristic feature of the Kerr spacetime is that a static observer
cannot exist inside the ergoregion but is forced to corotate with the
compact object. A static observer is defined as a timelike curve whose
tangent vector field is proportional to the Killing vector ξµ = (1, 0, 0, 0)
and whose (r, θ, φ) coordinates are constant along its worldline. Such an
observer is not allowed in the ergoregion since ξµ is spacelike there. We

1 Compact objects violating the Kerr bound, i.e., with a ≥ M, are referred to as super-
spinars as detailed in Sec. 2.3.6.
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Fig. 4.1. Energy extraction from a Kerr BH via the Penrose process [244]. A particle with
energy E0 decays in two particles inside the ergoregion. One particle has a negative energy
(E2 < 0) and falls into the BH, whereas the second particle has an energy larger than the
initial value (E1 > E0) and escapes at infinity. [65]

can define a zero angular momentum observer (ZAMO) whose angular
velocity has the same sign of the angular momentum of the compact
object [294].

When a particle starts its motion at infinity, the constant of motion
coincides with the energy of the particle as measured by a static observer
at infinity. The requirement that the energy is positive implies that the
constant of motion is positive. However, when a particle starts its motion
in the ergoregion, its energy cannot be measured by a static observer
since the latter is not allowed in the ergoregion. The particle energy can
be measured, for example, by the ZAMO and does not coincide with
the constant of motion. The requirement that the energy as measured
by the ZAMO is positive implies that the constant of motion can be
negative for counterrotating particles inside the ergoregion. This result
has important consequences on the possibility of extracting energy from
Kerr BHs, as described in the next section.

4.3. The Penrose process
In Kerr spacetimes, it is possible to extract energy and angular mo-

mentum from BHs since the energy of a particle within the ergoregion
as measured by an observer at infinity can be negative. This scenario
was first discovered by Penrose [244] and is shown schematically in
Fig. 4.1. Let us consider a particle with energy at infinity E0 decaying
in two particles inside the ergoregion. One of the two particles can
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have negative energy as measured at infinity, i.e., E2 < 0, and the other
particle must have energy larger than the initial value, i.e., E1 > E0. The
horizon forces the negative-energy particle to fall into the BH, whereas
the positive-energy particle can escape at infinity and extract energy
from the BH. Indeed, the final mass of the BH is smaller than its initial
value, i.e., Mfin = M + E2 < M. The same scenario holds for the BH
angular momentum. Consequently, the ergoregion allows particles to
acquire energy and angular momentum at the expense of the BH.

If the compact object has an ergoregion but does not have a horizon,
the physical process is different. In the case of a perfectly reflecting hori-
zonless compact object, the negative-energy states cannot be absorbed by
the object and remain in orbital motion inside the ergoregion. It is there-
fore energetically favorable to cascade towards more negative-energy
states leading to a runaway instability. This process is called ergoregion
instability [130]. The only way to prevent such an infinite cascade is by
absorbing the negative-energy states efficiently. Indeed, Kerr BHs are
stable against the ergoregion instability since they can absorb the radia-
tion at the horizon. In the following section, we shall assess the impact
of the ergoregion instability on the astrophysical viability of horizonless
compact objects.

4.4. Ergoregion instability in horizonless compact objects
The ergoregion instability was proved by Friedmann in ultracompact

stars under scalar and electromagnetic perturbations [130] and analyzed
in uniform-density stars [100, 301, 179, 65, 220], gravastars [98], boson
stars [86], and superspinars [235]. In Kerr-like horizonless objects, the
ergoregion instability is explained by the existence of long-lived modes
in the potential cavity between the effective radius of the object and the
photon sphere. As shown in Fig. 3.2, the imaginary part of the QNMs of
a static horizonless object tends to zero in the limit of large compactness,
i.e., ϵ → 0. In the rotating case, these modes can turn unstable2 due to
the Zeeman splitting of the frequencies as a function of the azimuthal
number of the perturbation. Indeed, in the small-spin limit, the QNMs

2 We remind the reader that, in our convention, a stable mode has a negative imaginary
part of the frequency and corresponds to an exponentially damped sinusoidal sig-
nal, whereas an unstable mode has a positive imaginary part of the frequency and
corresponds to an exponential growth.
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can be expanded as [239]

ωR,I = ω
(0)
R,I + mχω

(1)
R,I +O(χ2) , (4.5)

where χ ≡ a/M is the dimensionless spin, ω
(0)
R,I are the real and imag-

inary parts of the QNMs in the static case, and ω
(1)
R,I are the first order

corrections to the QNMs in the spin. In the large compactness limit,
ω
(0)
I → 0 and the first order term in Eq. (4.5) can turn the sign of the

imaginary part of the frequency to be positive depending on the az-
imuthal number. The ergoregion instability affects horizonless compact
objects regardless of the azimuthal number of the perturbation due to
the symmetries of the Teukolsky wave function

m → −m , ω → −ω∗ , s Aℓm → s A∗
ℓ−m , (4.6)

as detailed in Sec. 4.4.1. Let us derive the QNM spectrum of a spinning
horizonless object and analyze the region of the parameter space in
which the object is affected by the ergoregion instability.

4.4.1. Linear perturbations in the Kerr background
Let us perturb the background geometry in Eq. (4.1) with a spin-

s perturbation, where s = 0,±1,±2 for scalar, electromagnetic and
gravitational perturbations, respectively. The perturbation can be de-
composed as in Eq. (3.2) where the radial and the angular functions are
governed by the Teukolsky master equations [276, 278, 274]

∆−s d
dr

(
∆s+1 dsRℓm

dr

)

+

[
K2 − 2is(r − M)K

∆
+ 4isωr − λ

]
sRℓm = 0 , (4.7)

[(
1 − x2

)
sSℓm,x

]
,x
+

[
(aωx)2 − 2aωsx + s

+ s Aℓm − (m + sx)2

1 − x2

]
sSℓm = 0 , (4.8)

where sSℓm(θ)eimφ are the spin-weighted spheroidal harmonics, x ≡
cos θ, K = (r2 + a2)ω − am, and the separation constants λ and s Aℓm

are related by λ ≡ s Aℓm + a2ω2 − 2amω. When a = 0, the angular
eigenvalues are λ = (ℓ− s)(ℓ+ s + 1), whereas when a ̸= 0 the angular
eigenvalues can be computed either numerically or with approximated
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analytical expansions (see Sec. 4.4.3 for more details).
It is convenient to introduce the Detweiler function [112]

sXℓm = ∆s/2


r2 + a2
1/2


α sRℓm + β∆s+1 dsRℓm

dr


, (4.9)

where α and β are radial functions that are given in Appendix 4.6. By
defining the tortoise coordinate such that dr∗/dr = (r2 + a2)/∆, Eq. (4.7)
becomes a Schrödinger-like equation

d2
s Xℓm
dr2∗

− V(r, ω) sXℓm = 0 , (4.10)

where the effective potential is

V(r, ω) =
U∆

(r2 + a2)
2 + G2 +

dG
dr∗

, (4.11)

where

G =
s(r − M)

r2 + a2 +
r∆

(r2 + a2)2 , (4.12)

U = VS +
2α′ + (β′∆s+1)′

β∆s , (4.13)

VS = − 1
∆


K2 − is∆′K + ∆(2isK′ − λ)


, (4.14)

and the prime denotes a derivative with respect to r. In the following,
we shall define Rs ≡ sRℓm, Xs ≡ sXℓm and omit the ℓ, m subscripts for
brevity.

The radial functions α and β are such that the effective potential in
Eq. (4.11) is purely real (see Appendix 4.6 for a derivation). Let us notice
that the Detweiler effective potential has the following asymptotics

V(r, ω) ∼



−ω2 as r∗ → +∞

−k2 as r∗ → −∞
, (4.15)

where k = ω − mΩH and ΩH = a/(2Mr+) is the angular velocity of a
Kerr BH at the horizon. Consequently, the two independent solutions
of Eq. (4.10) have the asymptotic behavior

X+
s ∼




e+iωr∗ as r∗ → +∞

Bout(ω)e+ikr∗ + Bin(ω)e−ikr∗ as r∗ → −∞
, (4.16)
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X−
s ∼





Aout(ω)e+iωr∗ + Ain(ω)e−iωr∗ as r∗ → +∞

e−ikr∗ as r∗ → −∞
, (4.17)

where the Wronskian of the solutions is

WBH =
dX+

s
dr∗

X−
s − X+

s
dX−

s
dr∗

= 2ikBout . (4.18)

Since the effective potential in Eq. (4.11) is real, X±
s and their complex

conjugates X±∗
s are independent solutions to the same equation which

satisfy complex conjugated boundary conditions. Via the Wronskian
relationships, the asymptotic coefficients satisfy the relations [90, 290]

|Bout|2 − |Bin|2 = ω/k ,

|Ain|2 − |Aout|2 = k/ω ,

ωAin = kBout , ωA∗
out = −kBin . (4.19)

4.4.2. Boundary conditions

The QNMs of a Kerr-like horizonless object are derived by adding
to Eq. (4.10) two suitable boundary conditions. At infinity, we impose
that the perturbation is a purely outgoing wave

Xs ∼ eiωr∗ , as r∗ → +∞ . (4.20)

The regularity at the center of the object implies the imposition of a
boundary condition at the effective radius of the object. For ϵ ≪ 1, the
effective potential in the Detweiler equation is constant at the radius of
the object, V ≈ −k2, so that the perturbation can be decomposed as a
superposition of ingoing and outgoing waves, i.e.,

Xs ∼ Cine−ikr∗ + Couteikr∗ , as r∗ → r0
∗ . (4.21)

where we define the surface reflectivity of the object as

R(ω) =
Cout

Cin
e2ikr0

∗ . (4.22)

A perfectly reflecting object, where the outgoing energy flux at the
effective radius is equal to the incident one, has |R(ω)|2 = 1. Two
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notable examples of perfectly reflecting boundary conditions are

Xs(r0) = 0 Dirichlet on axial (4.23)
dXs(r0)/dr∗ = 0 Neumann on polar (4.24)

where the Dirichlet boundary condition describes waves that are totally
reflected with inverted phase (R(ω) = −1), whereas the Neumann
boundary condition describes waves that are totally reflected in phase
(R(ω) = 1). In general, a partially absorbing object is described by the
boundary condition

dXs/dr∗
Xs

∣∣∣∣
r0

= −ik
1 −R(→)

1 +R(→)
, (4.25)

that reduces to the BH boundary condition of a purely ingoing wave
when R = 0. In the following, we shall derive the QNMs of a perfectly
reflecting ultracompact object.

In the case of electromagnetic perturbations, a perfectly reflecting
object can be modeled as a perfect conductor. In Appendix 4.7, we show
that this condition translates into Dirichlet and Neumann boundary con-
ditions on axial and polarmodes, respectively. An analogous description
of a perfectly reflecting compact object under gravitational perturba-
tions is not available. We assume that the results of electromagnetic
perturbations can also be applied to gravitational perturbations.

4.4.3. Numerical procedure

Equation (4.10) with boundary conditions at infinity in Eq. (4.20)
and the radius of the object in Eqs. (4.23) and (4.24) can be solved
numerically with a direct integration shooting method. We start with an
analytical high-order series expansion of the solution at infinity and we
integrate Eq. (4.10) from infinity to the radius of the object. We repeat
the integration for different values of the complex frequency until the
boundary condition in Eq. (4.23) or (4.24) is satisfied.

The angular eigenvalues are computed numerically using continued
fractions [50]. For aω ≪ 1, the eigenvalues can also be expanded
analytically as

s Aℓm =
∞

∑
p=0

f (p)
sℓm(aω)p , (4.26)
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where f (p)
sℓm are known expansion coefficients [50]

f (0)sℓm = (ℓ− s)(ℓ+ s + 1) , (4.27)

f (1)sℓm = − 2ms2

ℓ(ℓ+ 1)
, (4.28)

f (2)sℓm = h(ℓ+ 1)− h(ℓ)− 1 , (4.29)

and

h(ℓ) =

[
ℓ2 − (max(|m|, |s|))2

] [
ℓ2 −

(
ms

max(|m|,|s|)

)2
] (

ℓ2 − s2)

2
(
ℓ− 1

2

)
ℓ3

(
ℓ+ 1

2

) . (4.30)

We verified that the analytical approximation up to the second order
is in agreement with the numerical computation: the approximation
differs from the exact eigenvalue of ≲ 2% in the electromagnetic QNMs
and ≲ 4% in the gravitational QNMs for a compact object with high
spin.

4.4.4. Instability in the quasi-normal mode spectrum
The QNM spectrum of the system depends on two continuous di-

mensionless parameters, i.e., the spin of the object χ and its compact-
ness through the parameter ϵ. We focus on perfectly reflecting com-
pact objects that are described by the boundary conditions in Eq. (4.23)
and (4.24).

Furthermore, the QNMs depend on four integers, i.e., the spin s, the
angular number ℓ, the azimuthal number m, and the overtone number
n of the perturbation. We focus on fundamental modes (n = 0) with
ℓ = m = 1 for scalar and electromagnetic perturbations, and ℓ = m = 2
for gravitational perturbations that, in the unstable case, correspond
to the modes with the largest imaginary part and thus the shortest
instability timescale. The symmetries of the Teukolsky wave function
guarantee that we can focus on the modes with m ≥ 0 without loss of
generality.

Fig. 4.2 shows the scalar QNMs of a perfectly reflecting compact
object a a function of the spin, where the radius of the object is located
at r0 = r+(1 + ϵ) and ϵ = 10−10. The real part of the QNM has a
zero crossing at a critical value of the spin that depends on Dirichlet or
Neumann boundary condition. Most importantly, the imaginary part of
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Fig. 4.2. Real (left panel) and imaginary (right panel) part of the scalar and electromag-
netic QNMs (ℓ = m = 1, n = 0) of an ECO as a function of the spin. The radius of the
object is located at r0 = r+(1 + ϵ), where ϵ = 10−10. The cusps in the imaginary part of
the frequency correspond to the threshold of the ergoregion instability above which the
QNMs are unstable. The scalar QNMs with Dirichlet (Neumann) boundary conditions
are isospectral to the electromagnetic axial (polar) QNMs. [201, 200]

the QNM changes sign for the same critical value of the spin, turning
the object from stable to unstable.

Above the threshold of the ergoregion instability, the imaginary part
of the QNMs is positive and the modes are unstable. An interesting
feature is that the threshold of the instability is the same both for scalar
and electromagnetic perturbations with Dirichlet (Neumann) boundary
conditions on electromagnetic axial (polar) modes. This feature is be-
cause, in the zero-frequency limit, the scalar and electromagnetic wave
functions are related by a Darboux transformation [200], i.e.,

R−1 = R0 +
i∆
am

R′
0 , (4.31)

or equivalently

R0 = − iam
ℓ(ℓ+ 1)

(
R′
−1 +

iam
∆

R−1

)
, (4.32)

where the prime denotes a derivative with respect to r. In the gravita-
tional case, the threshold of the ergoregion instability is slightly shifted,
as shown in Fig. 4.3 for axial and polar perturbations, respectively. For
ϵ ≪ 1, the QNMs can be derived analytically in the low-frequency
regime [200, 85]

ωR ≃ − π

2|r0∗|

[
p +

s(s + 1)
2

]
+ mΩH , (4.33)

ωI ≃ − βsℓ

|r0∗|

(
2Mr+

r+ − r−

)
[ωR(r+ − r−)]

2ℓ+1 (ωR − mΩH) ,(4.34)
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Fig. 4.3. Real (left panel) and imaginary (right panel) part of the gravitational QNMs
(ℓ = m = 2, n = 0) of an ECO as a function of the spin. The radius of the object is located
at r0 = r+(1 + ϵ), where ϵ = 10−10. The cusps in the imaginary part of the frequency
correspond to the threshold of the ergoregion instability above which the QNMs are
unstable. The QNMs computed numerically (dashed curves) agree with the QNMs
computed analytically (continuous curves) using Eqs. (4.33) and (4.34) that are valid
when Mω ≪ 1 [200].

where
√

βsℓ =
(ℓ−s)!(ℓ+s)!
(2ℓ)!(2ℓ+1)!! , p is a positive odd (even) integer for Neu-

mann (Dirichlet) boundary conditions on scalar perturbations and polar
(axial) modes in electromagnetic and gravitational perturbations. A
detailed derivation of Eqs. (3.20) and (3.21) is given in Appendix 4.8.
As shown in Fig. 4.3, the analytical QNMs agree with the numerical
QNMs in the regime of validity of the approximation, i.e., Mω ≪ 1.

Furthermore, the critical value of the spin can be computed analyti-
cally from Eqs. (4.33) and (4.34) that are accurate when ωR ≃ ωI ≃ 0.
The ergoregion instability occurs for χ > χcrit where [200, 85]

χcrit ≃
π

m| log ϵ|

[
p +

s(s + 1)
2

]
. (4.35)

Fig. 4.4 shows the threshold of the ergoregion instability for gravitational
ℓ = m = 2 perturbations as a function of the compactness of the object.
For example, an ECO with Planckian corrections at the horizon scale
(ϵ ∼ 10−40) is unstable if spinning above χcrit ≃ 0.03, 0.05 for axial
and polar perturbations, respectively. We conclude that even slowly
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Fig. 4.4. Critical value of the spin above which a Kerr-like horizonless object is affected by
the ergoregion instability as a function of the compactness of the object. The threshold is
computed as in Eq. (4.35) for axial and polar gravitational ℓ = m = 2 perturbations. [200,
85]

spinning Kerr-like horizonless objects are unstable due to the ergoregion
instability.

The timescale of the instability is defined as τinst ≡ 1/ωI . From
Fig. 4.3, for an ECO with ϵ = 10−10 and spin χ = 0.7, the instability
timescale of the ℓ = m = 2 mode is

τinst ∈ (5, 7)
(

M
10M⊙

)
s , (4.36)

where the lower (upper) bound is for polar (axial) gravitational per-
turbations. Let us notice that the low-frequency approximation of ωI

in Eq. (4.34) is not accurate for the unstable modes with large spin, as
shown in Fig. 4.3 from the disagreement between the numerical and
the analytical curves. For this reason, we use the numerical values of
the imaginary part of the QNMs for the calculation of the instability
timescales.

The ergoregion instability acts on a timescalewhich is short compared
to the accretion timescale of astrophysical BHs, i.e., τSalpeter ∼ 4× 107 yr.
However, the instability timescale is longer than the decay time of the
BH ringdown, i.e., τringdown ∼ 0.5 ms for a 10M⊙ compact object. If the
remnant of a compact binary coalescence was an ECO, the ergoregion
instability would spin down the remnant over a timescale τinst until
the condition for the stability, χ = χcrit, is satisfied [65] via the emis-
sion of GWs. The incoherent superposition of the GW signals from the
unresolved sources in the population would produce a stochastic GW
background due to spin loss [123, 117]. The absence of such background
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in the first observing run of Advanced LIGO already puts strong con-
straints on perfectly reflecting ECOs that can be a small percentage of
the astrophysical population [38].

4.5. How to quench the ergoregion instability

The case of a horizonless compact object with a perfectly reflecting
surface is an idealization. In reality, we expect a compact object to
absorb part of the ingoing radiation through viscosity, dissipation, fluid
mode excitation, nonlinear effects, etc. Given that Kerr BHs can absorb
radiation efficiently and are stable against the ergoregion instability, it
is relevant to ask whether some absorption at the surface of Kerr-like
compact objects can quench the ergoregion instability.

Let us define the reflection and transmission coefficients of a wave
coming from the left of the photon-sphere barrierwith unitary amplitude
as

RBH =
Bin

Bout
, TBH =

1
Bout

. (4.37)

After each bounce in the cavity between the ECO radius and the photon
sphere the perturbation acquires a factor RRBH, where R is the ECO
surface reflectivity and RBH is defined in Eq. (4.37). Due to the conser-
vation of the Wronskian, |RBH| = |Aout/Ain| where Ain and Aout are
the coefficients of the incident and reflected wave, respectively, at the
photon sphere for a left-moving wave originating at infinity. It follows
that the amplification factor in the cavity is the same as the amplification
factor of BHs which is defined as

Zsℓm =

∣∣∣∣
Aout

Ain

∣∣∣∣
2
− 1 . (4.38)

The condition for the energy in the cavity to grow indefinitely is |RRBH|2 >

1 which implies that the object is unstable for the ergoregion instability
if

|R|2 >
1

1 + Zsℓm
. (4.39)

By definition, the surface reflectivity is |R|2 ≤ 1, therefore Eq. (4.39)
implies that the ergoregion instability occurs when the real part of the
QNM is in the superradiant regime, i.e., Zsℓm > 0. In order to quench
the ergoregion instability at any frequencies, the surface absorption,
1 − |R|2, needs to be larger than the maximum amplification factor of
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Fig. 4.5. Superradiant amplification factor of a BH as a function of the frequency for
(ℓ = m = 1) scalar, electromagnetic and (ℓ = m = 2) gravitational perturbations.
The analytical approximation valid at low-frequency (black dashed lines) is compared
to the exact numerical result. The minimum absorption rate to have a stable Kerr-like
horizonless object for any type of perturbation is 0.3% (6%) for a remnant with spin
χ = 0.7 (χ = 0.9). [200]

superradiance, namely

1 − |R|2 ≳ Zmax . (4.40)

Figure 4.5 shows the amplification factor of a BH as a function of the
frequency under scalar, electromagnetic and gravitational perturbations
and for several values of the BH spin. In order to have a stable Kerr-like
horizonless object under any type of perturbation, the surface absorption
needs to be at least 0.3% (6%) for an ECO with χ = 0.7 (χ = 0.9). Let
us notice that the maximum amplification factor of an extremal BH is
≈ 138% for ℓ = m = 2 gravitational perturbations [65, 274], therefore
an absorption rate of≈ 60% would allow for stable Kerr-like horizonless
objects with any spin.

A natural question is whether this level of absorption is achievable
by standard matter in compact objects. The reflective properties of
compact objects depend on the specific model, but should generically be
more extreme than those of an ordinary NS. For NSs, the most efficient
absorption mechanism is due to viscosity. A rough estimate of the
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kinematic viscosity yields [104]

ν ≈ 10−17

(
ρ

1014 g/cm3

)5/4 (
T

108 K

)−2
s . (4.41)

where ρ and T are the typical density and temperature of a NS, respec-
tively. As a response to some external perturbation, a viscous fluid can
dissipate radiation. The fraction of gravitational energy converted into
mechanical energy in a viscous and compressible fluid was estimated in
Refs. [121, 242], finding that dissipation occurs through sound waves
that propagate in the interior of the fluid and through shear waves that
heat the surface. In the limit νω ≪ 1, which is valid in the entire param-
eter space of interest, and after an angle average, the fraction of absorbed
energy in the flat spacetime approximation reads [121]

1 − |R|2 ∼ 64ρ

3ω2 (ων)3/2

≈ 0.004
(

M
r0

)27/4 [103 K
T

]3 √ 0.01
ωM

(
20M⊙

M

)4
,(4.42)

where we have normalized the physical quantities by their typical values
expected for an ECO in the BH limit, namely a density similar to that
of a fastly spinning Kerr BH, r0 ∼ M, and a low temperature. As a
reference, the local temperature of an isolated gravastar is of the order
of the Hawking temperature TH ≈ 10−7 K for M ∼ 20 M⊙ [215]. This
temperature is negligible in astrophysical scenarios and the object would
be in thermal equilibriumwith the hotter environment. The temperature
of the interstellar medium typically ranges between 10 K and 104 K, so
the normalization T ≈ 103 K adopted above is a conservative upper
bound. The estimate in Eq. (4.42) is only indicative and shows that
absorption at percent level can be naturally achieved by ECOs.

Some models of quantum BHs have a frequency-dependent reflec-
tivity R(ω) = e−|k|/(2TH) that allows for stable solutions against the
ergoregion instability for any spin [229]. This model of horizonless
compact object is analyzed in Sec. 6.7.

4.6. Appendix: The Detweiler transformation
In this appendix, we derive the transformation that brings the Teukol-

sky equation (4.7) in the Schrödinger-like form in Eq. (4.10) with real
effective potential. In doing so, we revisit and extend the original calcula-
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tions by Detweiler [112]. In particular, we refer the reader to the original
work in Ref. [112] for the explicit transformations in the electromagnetic
case. In in the gravitational case, instead, we correct several mistakes in
Eqs. (B3)–(B14) in Ref. [112] and provide explicit expressions of α and
β extending the calculations in Ref. [111] to gravitational perturbations.

The Starobinsky identity for gravitational perturbations is [274]

1
4

R2 = DDDDR−2 , (4.43)

where D = ∂r − iK/∆. According to Eq. (4.43), we can write

R2 = aR−2 +
b

∆
dR−2

dr
, (4.44)

where

a = (a1 + ia2) , (4.45)
b = ib2 , (4.46)

and

a1 = 4
[

8K4

∆4 +
8K2

∆3

(
M2 − a2

∆
− λ

)
− 4ωK

∆3 (3r2 + 2Mr − 5a2)

+
12r2ω2 + λ(λ + 2)

∆2

]
, (4.47)

a2 = 4
[
−24ωrK2

∆3 +
1

∆2

(
4λ(r − M)K

∆
+ 4ωrλ + 12ωM

)]
,(4.48)

b2 = 4
[

8K3

∆2 +
4K
∆

(
2(M2 − a2)

∆
− λ

)
− 8ω

∆
(Mr − a2)

]
. (4.49)

The radial functions α and β that define theDetweiler function in Eq. (4.9)
are

α =
κa∆2 + |κ|2

√
2|κ| [a1∆2 +R(κ)]

1/2 , (4.50)

β =
iκb2∆2

√
2|κ| [a1∆2 +R(κ)]

1/2 , (4.51)
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where

κ = 4
[
λ2(λ + 2)2 + 144a2ω2(m − aω)2 − a2ω2(40λ2 − 48λ)

+ aωm(40λ2 + 48λ)
]1/2

+ 48iωM , (4.52)

R(κ) = 4
[
λ2(λ + 2)2 + 144a2ω2(m − aω)2 − a2ω2(40λ2 − 48λ)

+ aωm(40λ2 + 48λ)
]1/2

, (4.53)

|κ| =
{

16
[
λ2(λ + 2)2 + 144a2ω2(m − aω)2 − a2ω2(40λ2 − 48λ)

+aωm(40λ2 + 48λ)
]
+ (48ωM)2

}1/2
. (4.54)

With this choice of the parameters, α and β satisfy the following relation

α2 − α′β∆s+1 + αβ′∆s+1 − β2∆2s+1Vs = κ , (4.55)

which guarantees that the Detweiler function defined in Eq. (4.9) sat-
isfies the Schrödinger-like equation in Eq. (4.10). Eq. (4.11) gives the
following expression of the effective potential

V(r, ω) =
−K2 + ∆λ

(r2 + a2)2 +
∆(b2 p′∆)′

(r2 + a2)2b2 p
+ G2 +

dG
dr∗

, (4.56)

where
p = |κ|

{
2
[

a1∆2 +R(κ)
]}−1/2

. (4.57)

The effective potential in Eq. (4.56) is purely real and has the following
asymptotics: at infinity V(r → +∞, ω) → −ω2, and at the horizon
V(r → r+, ω) → −k2.

Finally, the conserved energy flux is the same if computed by the two
independent solutions of the Teukolsky equation [Eq. (4.7)] or the two
independent solutions of the Detweiler equation [Eq. (4.10)] [111]. This
is an important consistency check since the energy flux is a measurable
quantity and cannot depend on the transformation of the perturbation
variable.

4.7. Appendix: Boundary condition for spinning objects
In this Appendix, we derive the boundary conditions that describe

a perflectly reflecting Kerr-like object under electromagnetic perturba-
tions [65]. The horizonless object can be modeled as a perfect conductor,
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whose electric and magnetic fields satisfy Eθ(r0) = Eφ(r0) = 0 and
Br(r0) = 0. In the Newman-Penrose formalism, the previous conditions
can be written in terms of the three complex scalars of the electromag-
netic field ϕ0, ϕ1, ϕ2 in the frame of a ZAMO [176]

Eθ =

[
∆1/2(r2 + a2)√

2ρ̂∗A1/2(r2 + a2 cos2 θ)

(
ϕ0

2
− ϕ2

ρ̂2∆

)
+ c.c.

]

−2a∆1/2

A1/2 sin θI(ϕ1) , (4.58)

(4.59)

Eφ =

[
− i∆1/2ρ̂√

2

(
ϕ0

2
+

ϕ2

ρ̂2∆

)
+ c.c.

]
, (4.60)

Br =

[
a sin θ√
2ρ̂A1/2

(
ϕ2 − ∆ρ̂2 ϕ0

2

)
+ c.c.

]
+ 2

r2 + a2

A1/2 I(ϕ1),(4.61)

where ρ̂ = −(r − ia cos θ)−1, A = (r2 + a2)2 − a2∆ sin2 θ, and c.c. stands
for the complex conjugate of the previous term. The conditions of a
perfect conductor translate into

|Φ0|2 =
|Φ2|2

∆2 , I(ϕ1) = 0 , (4.62)

where Φ0 ≡ ϕ0 and Φ2 ≡ 2ρ̂−2ϕ2. We use the decomposition

Φ0 =
∫

dωe−iωt ∑
ℓm

eimφ
sSℓm(θ) sRℓm(r) , (4.63)

Φ2 =
∫

dωe−iωt ∑
ℓm

eimφ
−sSℓm(θ) −sRℓm(r) , (4.64)

and omit the ℓ, m subscripts for brevity. The radial and the angular
functions are related by the Starobinky identities [274, 270]

DDR−1 = BR1 , L0L1S1 = BS−1 , (4.65)

where B =
√

λ2 + 4maω − 4a2ω2, D = ∂r − iK/∆, and Ln = ∂θ +

m csc θ − aω sin θ + n cot θ. By substituting Eqs. (4.63), (4.64) and (4.65)
in the condition for a perfect conductor in Eq. (4.62), we obtain the
boundary condition for a perflectly reflecting compact object on the

100 Probing the horizon of black holes with gravitational waves



4.7. APPENDIX: BOUNDARYCONDITIONFORSPINNINGOBJECTS101

Teuksolsky wave function

∂rR−1 =

[
iK
∆

− i
2K

(λ ± B + 2iωr)
]

R−1 , (4.66)

where the plus and minus signs refer to polar and axial perturbations,
respectively. In the following, we show that the boundary conditions
in Eq. (4.66) are equivalent to Dirichlet and Neumann boundary condi-
tions on the Detweiler wave function for axial and polar perturbations,
respectively, as in Eqs. (4.23) and (4.24).

Near the radius of an ultracompact object (ϵ ≪ 1), the Teuksolsky
wave function has the following asymptotics [274]

R−1 ∼ A∆e−ikr∗ + Be+ikr∗ , r∗ → −∞ , (4.67)

where A = A0 + ηA1 + ... and B = B0 + ηB1 + ..., with η ≡ r − r+.
Since ∆ ∼ (r+− r−)η near the surface, we consider in Eq. (4.67)A = A0
and B = B0 + ηB1 where [90]

B0 = −
21/2(r2

+ + a2)1/2k
B

, (4.68)

A0 = − iB
4K+R∗ B0 Bin/Bout , (4.69)

and K+ = K(r+), R = iK+ + (r+ − r−)/2, and Bin and Bout are the
asymptotic amplitudes defined in Eq. (4.16). By inserting Eq. (4.67) in
the Teukolsky equation (4.7), we find

B1 =

(
iam

M(r+ − r−)
+

2ωr+ − iλ
4Mr+k

)
B0 . (4.70)

Equation (4.67) with Eqs. (4.68), (4.69) and (4.70) defines the asymp-
totic expansion of the Teukolsky wave function R−1 near the horizon at
the first order in η. By inserting Eq. (4.67) in the boundary condition
(4.66), we get the following expression

Bouteikr0
∗ ∓ Bine−ikr0

∗ = 0 , (4.71)

for the two signs of Eq. (4.66) that correspond to polar (−) and axial
(+) modes, respectively. Eq. (4.71) takes the same form of Eqs. (4.23)
and (4.24), therefore the perfect-conductor boundary conditions imply
Dirichlet and Neumann boundary conditions on the Detweiler wave
function for axial and polar modes, respectively. Let us emphasize that
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the boundary conditions are derived when the radius of the compact
object is at microscopical distance from the would-be horizon, i.e., ϵ ≪ 1.

4.8. Appendix: Analytical quasi-normal modes

In this appendix, we derive the QNMs of a Kerr-like horizonless
object analytically in the small-frequency regime. We focus on an ul-
tracompact object whose radius is located as in Eq. (2.1) with ϵ ≪ 1,
and whose surface is perfectly reflecting. We use a matched asymptotic
expansion according to which the radial domain of the exterior space-
time is split into two regions: the near-region, i.e., r − r+ ≪ 1/ω, and
the far-region, i.e., r − r+ ≫ M. We solve the radial Teukolsky equa-
tion (4.7) in each region and we match the inner and outer solutions in
the overlapping region where M ≪ r − r+ ≪ 1/ω. Finally, we impose
the perfectly reflecting boundary conditions as in Eqs. (4.23) and (4.24)
and we derive the characteristic frequencies of the object.

In the region near the radius of the compact object, the radial wave
equation (4.7) reduces to [270]

[z(z + 1)]1−s ∂z

{
[z(z + 1)]s+1 ∂zRs

}

+
[

Q2 + iQs(1 + 2z)− λz(z + 1)
]

Rs = 0 ,(4.72)

where z = (r − r+)/(r+ − r−), Q = (r2
+ + a2)(mΩH − ω)/(r+ − r−),

and λ = (ℓ− s)(ℓ+ s + 1). Eq. (4.72) is valid when Mω ≪ 1 and it is
derived by neglecting the terms proportional to ω in Eq. (4.7) except
for the ones which enter into Q. The general solution of Eq. (4.72) is a
linear combination of hypergeometric functions, i.e.,

Rs = (1 + z)iQ
[
C1z−iQ

2F1 (−ℓ+ s, ℓ+ 1 + s; 1 − Q̄ + s;−z)

+C2ziQ−s
2F1 (−ℓ+ Q̄, ℓ+ 1 + Q̄; 1 + Q̄ − s;−z)

]
, (4.73)
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where Q̄ ≡ 2iQ. The large-r behavior of the solution is

Rs ∼
(

r
r+ − r−

)ℓ−s
Γ(2ℓ+ 1)

[
C1Γ(1 − Q̄ + s)

Γ(ℓ+ 1 − Q̄)Γ(ℓ+ 1 + s)

+
C2Γ(1 + Q̄ − s)

Γ(ℓ+ 1 + Q̄)Γ(ℓ+ 1 − s)

]
+

(
r

r+ − r−

)−ℓ−1−s (−1)ℓ+1+s

2Γ(2ℓ+ 2)[
C1Γ(ℓ+ 1 − s)Γ(1 − Q̄ + s)

Γ(−ℓ− Q̄)
+

C2Γ(ℓ+ 1 + s)Γ(1 + Q̄ − s)
Γ(−ℓ+ Q̄)

]
,

(4.74)

where the ratio of the coefficients C1/C2 is fixed by the boundary condi-
tion at the radius of the compact object.

At infinity, the radial wave equation (4.7) reduces to [87]

r∂2
r fs + 2 (ℓ+ 1 − iωr) ∂r fs − 2i (ℓ+ 1 − s)ω fs = 0 , (4.75)

where fs ≡ eiωrr−ℓ+sRs. The general solution of Eq. (4.75) is a linear
combination of a confluent hypergeometric function and a Laguerre
polynomial, i.e.,

Rs = e−iωrrℓ−s
[
C3U (ℓ+ 1 − s, 2ℓ+ 2, 2iωr) + C4L2ℓ+1

−ℓ−1+s (2iωr)
]

,
(4.76)

where C4 = (−1)ℓ−sC3Γ(−ℓ+ s) by imposing purely outgoing waves
at infinity. The small-r behavior of the solution is

Rs ∼ C3

[
rℓ−s (−1)ℓ−sΓ(ℓ+ 1 + s)

2Γ(2ℓ+ 2)
+ r−ℓ−1−s (2iω)−2ℓ−1 Γ(2ℓ+ 1)

Γ(ℓ+ 1 − s)

]
.

(4.77)

The matching of Eqs. (4.74) and (4.77) in the intermediate region
where M ≪ r − r+ ≪ 1/ω yields

C1

C2
= −Γ(ℓ+ 1 + s)

Γ(ℓ+ 1 − s)

[
R+ + i(−1)ℓ (ω(r+ − r−))

2ℓ+1 LS+

R− + i(−1)ℓ (ω(r+ − r−))
2ℓ+1 LS−

]
, (4.78)

where

R± ≡ Γ(1 ± Q̄ ∓ s)
Γ(ℓ+ 1 ± Q̄)

, S± ≡ Γ(1 ± Q̄ ∓ s)
Γ(−ℓ± Q̄)

,

L ≡ 1
2

[
2ℓ Γ(ℓ+ 1 + s)Γ(ℓ+ 1 − s)

Γ(2ℓ+ 1)Γ(2ℓ+ 2)

]2

. (4.79)
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Electromagnetic perturbations
For s = −1, the ratio C1/C2 is derived by imposing the boundary con-

ditions (4.23) and (4.24) in the near-horizon expansion of the solution
in the near-region. At the radius of the object, we obtain

C1

C2
= ∓B−1Q̄zQ̄

0 . (4.80)

where z0 ≡ z(r0), and the minus and plus signs refer to polar and axial
perturbations, respectively. By equating Eq. (4.78) with Eq. (4.80), we
obtain an algebraic equation for the real part of the QNM frequencies.
An approximate solution can be found in the small-spin and small-
frequency regime for which Q̄ ≪ 1. In this regime, Eq. (4.78) reduces to
C1/C2 = Q̄/ [ℓ (ℓ+ 1)], whereas B ≈ ℓ(ℓ+ 1) in Eq. (4.80). It follows

z−2iQ
0 = ∓1 . (4.81)

By using the tortoise coordinate where log(z0) ∼ r0
∗(r+ − r−)/(r2

+ + a2),
Eq. (4.81) yields

e−2iQr0
∗(r+−r−)/(r2

++a2) = ∓1 , (4.82)

which is analogous to Eq. (A18) in Ref. [87] in the case of scalar pertur-
bations. The solution of Eq. (4.82) is

ωR = − πp
2|r0∗|

+ mΩH , (4.83)

where p is a positive odd (even) integer for polar (axial) modes. Equa-
tion (4.83) is also valid for scalar perturbations where p is a positive
odd (even) integer for the modes with Neumann (Dirichlet) boundary
condition.

Gravitational perturbations
For s = −2, the ratio C1/C2 is derived by imposing the boundary

conditions (4.23) and (4.24) in the near-horizon expansion of the solu-
tion in the near-region. When Q̄ ≪ 1, we obtain at the radius of the
object

C1

C2
= ∓ 2

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
Q̄zQ̄

0 , (4.84)

where the minus and plus signs refer to polar and axial perturbations,
respectively. For Q̄ ≪ 1, Eq. (4.78) reduces to C1/C2 = −2Q̄/[(ℓ +
2)(ℓ+ 1)ℓ(ℓ− 1)]. By equating the latter equation with Eq. (4.84), it
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follows
z−2iQ

0 = ±1 , (4.85)

whose solution is
ωR = −π(p + 1)

2|r0∗|
+ mΩH , (4.86)

where p is a positive odd (even) integer for polar (axial) modes. By
comparing Eq. (4.83) with Eq. (4.86), we notice that the gravitational
QNM frequencies have a π phase shift with respect to the scalar and
electromagnetic ones.

The analytic expression of the real part of the QNMs for a generic
spin-s perturbation is given in Eq. (4.33).

Imaginary part of the quasi-normal mode frequencies
To compute the imaginary part of the QNMs analytically, we impose

the boundary conditions in Eq. (4.23) and (4.24) on the near-horizon
asymptotics of the Detweiler wave function in Eq. (4.16). The computa-
tion yields

ω = − 1
2|r0∗|

(
pπ + Φ − i ln

∣∣∣∣
Bin

Bout

∣∣∣∣
)
+ mΩH , (4.87)

where Φ is a phase that depends on the spin-s of the perturbation and it
is derived with the matching asymptotic expansion described above.

According to the Wronskian relations in Eq. (4.19), |Bin/Bout| =

|Aout/Ain| therefore the amplification factor of perturbations in the
cavity between the radius of the object and the photon sphere is related
to the amplification factor of BHs. For a perturbation of spin s, the
amplification factor of BHs is defined as

Zsℓm =

∣∣∣∣
Aout

Ain

∣∣∣∣
2
− 1 , (4.88)

that has the following form in the low-frequency regime as computed
by Starobinsky [270]

Zsℓm ≡ −Dsℓm = 4Qβsℓ

ℓ

∏
k=1

(
1 +

4Q2

k2

)
[ω(r+ − r−)]

2ℓ+1 . (4.89)

In our calculations, we impose Zsℓm ≡ −R(Dsℓm) since ωI ≪ ωR. By
inserting Eq. (4.89) in Eq. (4.88) and using the Wroskian relations, we
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derive ∣∣∣∣
Bin

Bout

∣∣∣∣
2
− 1 = −R(Dsℓm) . (4.90)

Eqs. (4.87) and (4.90) yield to the analytical expression of the imaginary
part of the QNM frequencies in the low-frequency regime

ωI ≃ −R(Dsℓm)

4|r0∗|
, (4.91)

that coincides with Eq. (4.34). Let us notice that Zsℓm > 0 (i.e., ωI > 0)
in the superradiant regime, where ωR(ωR − mΩ) < 0. Consequently,
the unstable modes of a perfectly-reflecting Kerr-like object can be under-
stood in terms of waves amplified in the ergoregion and being reflected
at the boundary.
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5. Gravitational-wave echoes

Una notte osservavo come al solito il cielo col mio telescopio. Notai che da una
galassia lontana cento milioni d’anni-luce sporgeva un cartello. C’era scritto:
TI HO VISTO. [...] Proprio duecento milioni d’anni prima, né un giorno di
più né un giorno di meno, m’era successo qualcosa che avevo sempre cercato di

nascondere.
Italo Calvino, Le Cosmicomiche

5.1. Schematic picture
GW echoes are an additional signal that would be emitted in the

postmerger phase of a compact binary coalescencewhen the remnant is a
horizonless ultracompact object. Possible sources of GW echoes are near-
horizon quantum structures [81, 82, 296], ultracompact NSs [125, 240],
and BHs in modified theories of gravity in which the graviton reflects
effectively on a hard wall [306, 228]. The key feature of the sources of
GW echoes is the existence of a cavity in the effective potential of the
perturbed object between the photon sphere and the effective radius of
the object, as shown in Fig. 5.1. If the object is sufficiently compact, the
cavity can support quasi-trapped modes that leak out of the potential
barrier through tunneling effects and are responsible for the emission
of GW echoes.

To describe the dynamical emission of GW echoes, we analyze the
scattering of a Gaussian pulse starting from infinity and going towards
the compact object. As shown in Fig. 5.1, when the pulse crosses the
photon-sphere barrier and perturbs it, a prompt ringdown signal is
emitted at infinity [290, 22, 85]. The prompt ringdown emitted by an
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Fig. 5.1. Schematic diagram of the propagation of a perturbation in the background
geometry of a horizonless compact object [290, 22, 85]. When the perturbation excites the
photon sphere, a prompt ringdown signal is emitted at infinity. Subsequent bounces of
the perturbation in the cavity between the radius of the object and the photon sphere are
responsible for the emission of GW echoes. [202]

ultracompact horizonless object is almost indistinguishable from the BH
ringdown since the photon sphere is approximately at the same location
and has a similar shape [81]. Afterward, the perturbation travels inside
the photon-sphere barrier and is reflected by the surface of the compact
object. A fraction of the radiation is absorbed by the compact object
depending on its reflective properties [200, 229].

After each interaction with the photon sphere, a GW echo is emitted
at infinity with a progressively smaller amplitude. The amplitude of
the GW echoes depends on the surface reflectivity of the object R and
the reflection (RBH) and transmission (TBH) coefficients of the wave
coming from the left of the photon sphere. After each bounce in the
cavity between the ECO radius and the photon sphere, the perturbation
acquires a factor RRBH.

The photon-sphere barrier acts as a frequency-dependent high-pass
filter. The characteristic frequencies governing the prompt ringdown are
approximately the BHQNM frequencies despite the latter are not part of
theQNMspectrumof horizonless compact objects. Each subsequentGW
echo has a lower frequency content, and at late times the GW signal is
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dominated by the low-frequency QNMs of horizonless compact objects.

The delay time between subsequent GW echoes is proportional to
the width of the cavity, therefore, the compactness of the object. The
delay time can be computed as the round-trip time of the radiation from
the photon sphere to the boundary. In the non-spinning case [81, 82]

τecho = 2M [1 − 2ϵ − 2 log(2ϵ)] , (5.1)

where the logarithmic dependence on ϵ would allow detecting even
Planckian corrections (ϵ ∼ lPlanck/M) at the horizon scale few ms after
the merger of a compact binary coalescence with a remnant of M ∼
10M⊙.

5.2. Analytical template

In this Section, we shall derive an analytical template for the ring-
down and the GW echoes emitted by a spinning horizonless compact
object. The waveform is parametrized by the standard ringdown param-
eters plus two quantities related to the properties of the exotic remnant.
The template can be easily implemented to performmatched-filter-based
searches for GW echoes and constrain models of horizonless compact
objects.

5.2.1. Transfer function

We analyze a spinning horizonless compact object whose exterior
spacetime is described by the Kerr metric, as detailed in Sec. 4.1. The
radius of the object is located as in Eq. (2.1), where we focus on ultra-
compact models with ϵ ≪ 1. We require the location of the surface to
be at a proper length δ ≪ M from the would-be horizon, where

δ =
∫ r0

r+
dr

√
grr|θ=0 , (5.2)

and the relation between the proper length δ and ϵ is given by

ϵ ≃
√

1 − χ2 δ2

4r2
+

. (5.3)

Let us perturb the background geometry with a spin-s perturbation.
The radial component of the perturbation is governed by the inhomoge-
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neous equation
d2Xs

dr2∗
− V(r, ω)Xs = S̃ , (5.4)

where Xs is the Detweiler function defined in Eq. (4.9), V(r, ω) is the
effective potential in Eq. (4.11), and S̃ is a source term. At asymptotic
infinity, we require the solution of Eq. (5.4) to be a purely outgoing
wave, Xs(ω, r∗ → ∞) = Z̃+(ω)eiωr∗ .

In the frequency domain, the GW signal emitted by a horizonless
compact object can be written in terms of the GW signal that would be
emitted by a BH and reprocessed by a transfer function [208], i.e.,

Z̃+(ω) = Z̃+
BH(ω) +K(ω)Z̃−

BH(ω) , (5.5)

where Z̃±
BH are the responses of a Kerr BH (at infinity and near the

horizon, for the plus and minus signs, respectively) to the source S̃, i.e.,

Z̃±
BH =

1
WBH

∫ +∞

−∞
dr∗S̃X∓

s , (5.6)

where X±
s are the two independent solutions of the homogeneous equa-

tion associated to Eq. (5.4) with asymptotics in Eqs. (4.16) and (4.17),
and WBH is the Wronskian defined in Eq. (4.18). The details of the hori-
zonless compact object are all contained in the transfer function that is
defined as [208]

K(ω) =
TBHR(ω)e−2ikr0

∗

1 −RBHR(ω)e−2ikr0∗
, (5.7)

where RBH and TBH are the reflection and transmission coefficients of
a wave coming from the left of the photon-sphere barrier defined in
Eq. (4.37), and R(ω) is the surface reflectivity of the object defined in
Eq. (4.22).

According to Eq. (5.5), the GW signal emitted at infinity by a hori-
zonless compact object is the same as the one emitted by a BH at infinity
with an extra GW emission that depends on the reflectivity and compact-
ness of the object. To get an insight of the additional GW emission, let us
expand the transfer function in Eq. (5.7) as a geometric series [208, 103]

K(ω) = TBHR(ω)e−2ikr0
∗

∞

∑
j=1

[RBHR(ω)]j−1 e−2i(j−1)kr0
∗ . (5.8)
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Given Eq. (5.8), the GW signal takes the form of a series of pulses where
the index j stands for the signal emitted by the j-th echo. The phase
factor 2ikr0

∗ corresponds to the time delay between two pulses due to
the round-trip time of the perturbation between the photon sphere and
the radius of the object. Subsequent echoes can have a phase inversion
to each other when the factor RBHR(ω) has a negative sign.

Eq. (5.5) allows us to construct an analytical template for the GW
signal emitted by a horizonless compact object. In the following sec-
tions, we provide an analytical approximation of each term in Eq. (5.5),
namely the BH reflection coefficient and the BH responses at infinity
and the horizon. In this way, the analytical template depends only on
the BH ringdown parameters and the parameters of the ECO, i.e., its
compactness and reflectivity.

5.2.2. Black hole reflection coefficient in the low-frequency ap-
proximation

The low-frequency regime is the most interesting regime for GW
echoes since the latter are obtained by the reprocessing of the ring-
down signal, whose frequency content is initially dominated by the BH
fundamental QNM and subsequently decreases in time. Hence, the
low-frequency approximation becomes increasingly more accurate at
late times. The analytical approximation of the BH reflection coefficient
in the small-frequency regime is computed in Appendix 4.8 through a
matched asymptotic expansion. In particular, the BH reflection coeffi-
cient is defined in Eq. (4.37) as the ratio of the ingoing and outgoing
coefficients in the near-horizon asymptotics of the Detweiler function
in Eq. (4.16). The latter coefficients are related to the coefficients in the
near-horizon expansion of the Teukolsky function derived in the small-
frequency regime in Eq. (4.78). For ℓ = 2, the BH reflection coefficient
reads

RLF
BH = −8Mke

ζ(γ−1)
γ+1

2Mk − i(γ − 1)
(γ − 1)2

[
−M(γ − 1)ξ

L

]ζ(γ−1)

×
[

16k2M2

(γ − 1)2 + 1
]

Γ(−2 + ζ)Γ(−1 − ζ)

Γ(−2 − ζ)Γ(3 − ζ)
×

1800iΓ(−2 − ζ) + (ωM(γ − 1)ξ)5 Γ(3 − ζ)

1800iΓ(−2 + ζ) + (ωM(γ − 1)ξ)5 Γ(3 + ζ)
, (5.9)
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where γ = r−/r+, ξ = 1+
√

1 − χ2, ζ = i(2ωM−m
√

γ)(γ+ 1)ξ/(γ−
1), and L is an arbitrary constantwith the dimension of a length. The low-
frequency expression of RBH for generic values of the angular number
ℓ is provided in a publicly available Mathematica® notebook [1].

In the high-frequency regime,RBH ∼ e−2πω/κH , where κH = 1
2 (r+ −

r−)/(r2
+ + a2) is the surface gravity of a Kerr BH [151]. We use a Fermi-

Dirac interpolating function to connect the two regimes in frequency
domain:

RBH = RLF
BH

exp
(
−2πωR

κH

)
+ 1

exp
(

2π(|ω|−ωR)
κH

)
+ 1

, (5.10)

where ωR is the real part of the fundamental QNM of a Kerr BH with
spin χ. For |ω| ≪ ωR the reflection coefficient reduces toRLF

BH, whereas
it is exponentially suppressed when |ω| ≫ ωR.

5.2.3. Modeling the black hole response at infinity

Wemodel the BH response at infinity using the fundamental ℓ = m =

2 QNM. We consider a generic linear combination of two independent
polarizations, namely [52, 71]

Z+
BH(t) ∼ Θ(t − t0) [A+ cos(ωRt + ϕ+) + iA× sin(ωRt + ϕ×)] e−t/τ ,

(5.11)
where R(Z+

BH) and I(Z+
BH) are the two ringdown polarizations h+(t)

and h×(t), respectively. In the above relation, Θ(t) is the Heaviside
function, t0 is the starting time of the ringdown,A+,× ∈ R and ϕ+,× ∈ R

are the amplitudes and the phases of the two polarizations, respectively,
and τ = −1/ωI is the damping time. Let us notice that Eq. (5.11) is
the most generic expression for the ringdown with the fundamental
ℓ = m = 2 mode and assumes thatA+,× and ϕ+,× are four independent
parameters. The most relevant case of a binary BH ringdown is that of
circularly polarized waves [71], that can be obtained from Eq. (5.11) by
setting A+ = A× and ϕ+ = ϕ×.

Given the BH response in the time domain, the waveform in the
frequency-domain is obtained through a Fourier transform

Z̃±
BH(ω) =

∫ +∞

−∞

dt√
2π

Z±
BH(t)e

iωt, (5.12)
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where the response at infinity is

Z̃+
BH(ω) ∼ eiωt0

2
√

2π

(
α1+A+ − α1×A×

ω − ωQNM
+

α2+A+ − α2×A×
ω + ω∗

QNM

)
, (5.13)

where ωQNM = ωR + iωI , α1+,× = ie−i(ϕ+,×+t0ωQNM), and α2+,× =

−α∗1+,×.

5.2.4. Modeling the black hole response at the horizon

The BH response at the horizon, defined in Eq. (5.6), has the same
poles in the complex frequency plane as the BH response at infinity.
Therefore, the near-horizon response at intermediate times can be writ-
ten as in Eq. (5.13) with different amplitudes and phases. Let us assume
that the source has support in the interior of the object, i.e., on the left
of the effective potential barrier, where V(r, ω) ≈ −k2. This is a reason-
able assumption since the source in the exterior can hardly perturb the
spacetime within the cavity [296, 229]. In this case, it is easy to show
that

Z̃−
BH =

RBH

TBH
Z̃+

BH +
1

TBHWBH

∫ +∞

−∞
dr∗ S̃eikr∗ . (5.14)

Using Eq. (5.6) and the fact that S̃ has support only where V(r, ω) ≈
−k2, the above equation can be written as

Z̃−
BH =

RBHZ̃+
BH + Z̃+

BH
TBH

, (5.15)

where Z̃+
BH is the BH response at infinity to an effective source S̃(ω, x) =

S̃(ω, x)e2ikx within the cavity. As such, the ringdown part of Z̃+
BH can

also be generically written as in Eq. (5.13) with different amplitudes
and phases. Two interesting features of Eq. (5.15) are noteworthy. First,
the final response of the horizonless compact object (in Eq. (5.5)) does
not depend on the BH transmission coefficient, since the term TBH in the
denominator of Eq. (5.15) cancels out with that in the transfer function
in Eq. (5.7). Second, the first term on the right-hand side of Eq. (5.15)
can be computed analytically using the low-frequency approximation
of the BH reflection coefficient in Eq. (5.10) and the BH response at
infinity in Eq. (5.11). For this reason, in the following, we focus only on
the first term of the right-hand side of Eq. (5.15). A discussion on the
expressions of Z̃+

BH for several sources is given in Appendix 5.6.
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ϵ compactness of the ECO
R(ω) reflection coefficient at the surface of the ECO
M total mass
χ spin
A+,× amplitudes of the polarizations of the BH ringdown
ϕ+,× phases of the polarizations of the BH ringdown
t0 starting time of the BH ringdown

Tab. 5.1. Parameters of the ringdown+echo template in Ref. [203]. The parameters ϵ and
R(ω) characterize the horizonless compact object, whereas the remaining 7 parameters
characterize the BH ringdown.

5.2.5. Parameters and validity of the template
In the frequency domain, the ringdown+echo template is given

by [203]

Z̃+(ω) = Z̃+
BH(ω)

(
1 +

RBHR(ω)e−2ikr0
∗

1 −RBHR(ω)e−2ikr0∗

)
, (5.16)

where the BH response at infinity is in Eq. (5.13) and the low-frequency
approximation of the BH reflection coefficient is in Eq. (5.10). ForR = 0,
we recover the template of a BH ringdown emitted at infinity. The
additional term in Eq. (5.16) is associated with the GW echoes that are
emitted in the case of horizonless compact objects. Overall, the final
template depends on the 7 parameters of a standard BH ringdown (i.e.,
mass and spin of the remnant, amplitudes and phases of the plus and
cross polarizations of the signal, and starting time of the ringdown)
plus two parameters that are related to the properties of the horizonless
compact object (i.e., its compactness and reflectivity), see Table 5.1.
For circularly polarized waves (A+ = A× and ϕ+ = ϕ×) or linearly
polarized waves (A× = 0), the number of the BH ringdown parameters
reduces to 5.

Fig. 5.2 shows the agreement at low frequency of the analytical tem-
plate with the result of a numerical integration of the Teukolsky equa-
tions. The left panels show the validity of the analytical approximation
of the BH reflection coefficient in the low-frequency regime, both for
a non-spinning and a spinning remnant. The right panels of Fig. 5.2
show the quantity that is responsible for the emission of GW echoes as
a function of the frequency, i.e., KZ̃−

BH normalized by the BH response
Z̃+

BH. The peaks in the GW response are due to the excitation of the
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Fig. 5.2. Comparison between the analytical template (thick curves) and the result of
a numerical integration of the Teukolsky equation (thin curves) for χ = 0 and χ = 0.7.
Left panels: the complex BH reflection coefficient. Right panels: the absolute value (top)
and the imaginary part (bottom) of the response of GW echoes KZ̃−

BH/Z̃+
BH as a function

of the frequency. In all the panels, ℓ = m = 2 and, in the right panels, δ = 10−10 M and
R = 1. [203]

low-frequency QNMs that characterize horizonless compact objects (see
a related discussion in Sec. 3.2.4). The agreement between the analytical
template and the numerical integration is very good at low frequencies
(both in the absolute value and imaginary part), whereas deviations
are present in the transition region where Mω ∼ 0.1. Crucially, the
low-frequency resonances – which dominate the response at infinity –
are properly reproduced.

To quantify the validity of the template, we compute the overlap

O =
|⟨h̃A|h̃N⟩|√

|⟨h̃N |h̃N⟩||⟨h̃A|h̃A⟩|
(5.17)

between the analytical signal h̃A and the numerical one h̃N in frequency
domain, where the inner product is defined in Eq. (3.109) inAppendix 3.7.
When |R| ∼ 1, the presence of very high and narrow resonances makes
a quantitative comparison challenging since a slight displacement of the
resonances (due for instance to finite-ω truncation errors) deteriorates
the overlap. For example, for the representative case shown in Fig. 5.2
(δ = 10−10M, χ = 0.7, and R = 1), the overlap is excellent (O ≳ 0.999)
when the integration is performed before the first resonance, however it
reduces quickly to zero after that. To overcome this issue, we compute
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the overlap in the case in which the resonances are less pronounced,
i.e., |R|2 < 1. Let us consider a remnant with M = 30 M⊙, χ = 0.7,
δ = 10−10M, and the aLIGO noise spectral density [268]. For R = 0.9
and in the frequency range f ∈ (20, 100)Hz (whose upper end corre-
sponds to the threshold ωM ∼ 0.1 beyond which the low-frequency
approximation is not accurate), the overlap is O = 0.48. This small value
is mostly due to a small displacement of the resonances. Indeed, by
shifting the mass of the analytical waveform by only 1.6%, the overlap
increases significantly, O = 0.995. For R = 0.8 and in the same con-
ditions, the overlap is O ≈ 0.8 without the mass shift and O ≳ 0.999
with the same mass shift as above. Let us notice that the agreement
between the analytical template and the numerics improves as δ → 0. In
this limit, the ECO QNMs appear at lower frequency and the resonant
frequencies are better reproduced by the analytical framework.

5.3. Properties of gravitational-wave echoes
TheGWsignal emitted by a horizonless compact object in the time do-

main is computed through an inverse Fourier transform of the analytical
template in Eq. (5.16), i.e.,

h(t) =
1√
2π

∫ +∞

−∞
dωZ̃+(ω)e−iωt , (5.18)

where R [h(t)] and I [h(t)] are the plus and cross polarizations of the
GW signal, respectively. Fig. 5.3 shows the ringdown+echo waveform
as a function of time for a remnant with δ = 10−7M and several values
of the surface reflectivity and spin. For simplicity, we focus on a purely
plus-polarized ringdown signal, i.e., A× = 0, and each waveform is
normalized to the peak of |R [h(t)] | in the ringdown (the peak is not
shown in the range of the y axis to visualize the GW echoes better).

The time delay between subsequent echoes is constant and depends
on the compactness and spin of the object. The time delay is computed
as the round-trip time of the perturbation from the photon sphere to the
radius of the object. In the spinning case [22, 84]

τecho ∼ 2M
[
1 + (1 − χ2)−1/2

]
| log ϵ| . (5.19)

The logarithmic dependence on the compactness of the object allows
the GW echoes to appear on a short timescale after the ringdown even
for Planckian corrections at the horizon scale (ϵ ∼ lPlanck/M).
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Fig. 5.3. Examples of the gravitational ringdown+echo template in the time domain for a
horizonless compact objectwith δ/M = 10−7 and different values of the surface reflectivity
R(ω) = const and the spin χ. The real (blue curve) and the imaginary (orange curve)
part of the waveform are the plus and cross polarization of the signal, respectively. For
simplicity, the ringdown signal is purely plus-polarized. Each waveform is normalized to
the peak of |R[h(t)]| in the ringdown. Additional waveforms are provided online [1, 203].

The amplitude of the absolute value of the signal decreases mono-
tonically and it is proportional to the product RRBH, i.e., it depends
on the combined action of the reflection at the ECO surface and the
photon-sphere barrier. Let us notice that the spin of the object and the
phase of the surface reflectivity introduce novel effects compared to
previous studies [208, 273] such as a nontrivial amplitude modulation
of subsequent echoes in each polarization of the GW signal. This is
evident, for example, in the panels of Fig. 5.3 corresponding to χ = 0.7,
R = 1 and χ = 0, R = eiπ/3.

5.3.1. Mixing of polarizations
An interesting feature of the GW echoes is that the signal can contain

both the plus and cross polarizations even if the initial ringdown is
purely plus polarized (i.e., A× = 0). This feature occurs in the cases
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of a spinning remnant or a complex surface reflectivity, as shown in
Fig. 5.3. This property can be explained as follows. In the non-spinning
case, and provided

Rχ=0(ω) = R∗
χ=0(−ω∗) , (5.20)

the transfer function satisfies the symmetry property

Kχ=0(ω) = K∗
χ=0(−ω∗) . (5.21)

The time domain echo waveforms are real (imaginary) if the ringdown
waveform is real (imaginary). Therefore, in the non-spinning case, the
echo signal contains the same polarization of the BH ringdown and the
two polarizations do not mix. Remarkably, this property is broken in
the following cases:

1. when R is complex and does not satisfy Eq. (5.20), as shown in
the second row of Fig. 5.3;

2. in the spinning case, even when R is real or satisfies Eq. (5.20), as
shown in the second and third columns of Fig. 5.3.

In either cases, a mixing of the polarizations occurs. In particular, in
the spinning case and when R is real, the transfer function satisfies an
extended version of Eq. (5.21)

K(ω, m) = K∗(−ω∗,−m) , (5.22)

that does not prevent themixing of the polarizations due to the m → −m
transformation.

As shown in Fig. 5.3, if the BH ringdown is a purely plus-polarized
wave, it can acquire a cross-polarization component upon reflection by
the photon-sphere barrier (when χ ̸= 0) or by the surface (when R is
complex and does not satisfy Eq. (5.20)). Themixing of the polarizations
can explain the involved echo pattern shown in some panels of Fig. 5.3.
For example, for χ = 0 andR = eiπ/3 each echo is multiplied by a factor
eiπ/3 relative to the previous one. As a consequence, every three echoes
the imaginary part of the signal (i.e., the cross polarization) is null.

5.3.2. Phase inversion
The phase of each subsequent echo depends on the term RRBH,

i.e., on the combined action of the reflection at the surface of the object
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and the photon-sphere barrier. The phase inversion occurs whenever
RRBH ≈ −1 for low frequencies. In Fig. 5.3, the first, the second, and
fourth row all correspond to perfect reflectivity, |R| = 1, however their
echo structure is different. This is because a phase term in the surface
reflectivity introduces a nontrivial echo pattern.

It is worth mentioning that there exist several definitions of the radial
wave function describing the perturbations of a Kerr metric; these are
all related to each other by a linear transformation similar to Eq. (4.9).
The BH reflection coefficients that are defined for each function differ
by a phase, while the quantity |RBH|2 (that is related to the energy
damping/amplification) is invariant [92].

The transfer function in Eq. (5.7) contains both the absolute value
and the phase of RBH. Therefore, one might wonder whether the ambi-
guity in the phase could affect the ECO response. For a given model, it
should be noted that the surface reflectivity R is affected by the same
phase ambiguity, in accordance with the perturbation variable chosen to
describe the problem. Since the transfer function depends on the combi-
nation RRBH, the phase ambiguity in R cancels out with that in RBH.
This ensures that the transfer function is invariant under the choice of the
radial perturbation function, as expected for any measurable quantity.

For example, at small frequencies the BH reflection coefficient de-
rived from the asymptotics of the Regge-Wheeler function at x → −∞
has a phase difference of π compared to the BH reflection coefficient de-
rived from the Detweiler function with χ = 0. Consistently, the surface
reflectivity associated to the former differs by a phase π to the latter, i.e.,
if R = 1 for the Regge-Wheeler function then R = −1 for the Detweiler
function in the same model. All the choices of the radial wave functions
are equivalent and – in the same ECO model – the surface reflectivity R
should be different for each of them. This fact is particularly important
in light of the mixing of the polarizations. As shown in the second row
of Fig. 5.3, a phase in R introduces a mixing of the polarizations for any
spin that results in a more involved pattern for the GW echoes.

The phase of the surface reflectivityR depends on the specific model
of horizonless compact object. In the analyses of Sec. 5.5, we parametrize
the surface reflectivity in a model-agnostic way as

R = |R|eiϕ . (5.23)

In principle, both the absolute value and the phase are generically
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Fig. 5.4. Total energy emitted in the ringdown+echo signal normalized by the one of the
BH ringdown as a function of the surface reflectivity R and for several values of the spin
χ. The total energy is much larger than the BH ringdown energy in the limit R → 1. We
set δ = 10−5 M and consider only one ringdown polarization with ϕ+ = 0; the result is
independent of δ in the δ ≪ M limit. [203]

frequency-dependent; for simplicity, we choose them to be constants.
Hence, we parametrize the template by |R| and ϕ, different choices of
which correspond to different models of horizonless compact objects.

5.3.3. Energy emission and superradiant instability
The energy emitted in the ringdown+echo signal is shown in Fig. 5.4,

where the energy
E ∝

∫ ∞

−∞
dω ω2|Ẑ+|2 (5.24)

is normalized by the one corresponding to the ringdown alone, i.e.,
ERD ≡ E(R = 0), and it is a function of the surface reflectivity R. We
use the prescription of Ref. [126] to compute the ringdown energy, i.e.,
Ẑ+

BH is the full response in the frequency domain obtained by a Fourier
transform of

Z+
BH(t) ∼ A+ cos(ωRt + ϕ+)e−|t|/τ , (5.25)

where the absolute value of t is at variance with Eq. (5.11). This prescrip-
tion circumvents the problem associated with the Heaviside function
in Eq. (5.11) that produces a spurious high-frequency behavior in the
energy flux, leading to an infinite energy in the ringdown signal. With
the above prescription, the energy defined in Eq. (5.24) is finite and
reduces to the energy of the BH ringdown in Ref. [126] when R = 0.
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The energy emitted by a horizonless compact object can be much
larger than the BH ringdown, as shown in Fig. 5.4 when R ≈ 1. This
feature is due to the reflection and the amplification of waves in the
cavity between the photon-sphere barrier and the radius of the compact
object. The energy contained in the echo part of the signal grows fast
as |R| → 1 reaching a maximum value that depends on the spin and
can be larger than the energy of the BH ringdown. This feature is due
to the excitation of the resonances corresponding to the low-frequency
QNMs of the compact object. However, it is worth noticing that the
low-frequency resonances are excited only at late times, therefore the
first few echoes contain a small fraction of the total energy of the sig-
nal. Conversely, when R is significantly smaller than unity, subsequent
echoes are suppressed and their total energy is modest compared to the
one of the BH ringdown.

Let us notice thatwhen |R| ≈ 1 the total energy is expected to diverge
due to the ergoregion instability, as discussed in Sec. 4. This feature
is not captured by the inverse Fourier transform of Ẑ+(ω) since the
time-domain signal is not integrable when t ≳ τinst. Since the instability
timescale is much longer than the echo delay time, the time interval of
validity of the waveform includes a large number of echoes. In partic-
ular, the ergoregion instability does not affect the first N ∼ | log δ/M|
echoes [85]. At late times, the signal growswhen |RRBH| > 1, i.e. when
the combined action of the reflection by the surface and the BH barrier
yields an amplification factor larger than unity. When |R| ≈ 1, this
requires |RBH| > 1 which occurs when the condition for superradiance,
ω < mΩH , is satisfied.

5.3.4. Frequency content
The photon-sphere barrier acts as a high-pass filter; therefore, each

GW echo has a lower frequency content than the previous one. This
expectation is confirmed by Fig. 5.5, where we display the first four
echoes that are shifted in time and rescaled in amplitude so that their
global maxima are aligned, for a horizonless compact object with δ =

10−7M, R = 1, and χ = 0.

The frequency content of the signal starts roughly at the BH QNM
frequency even if the latter is not part of the QNM spectrum of a hori-
zonless compact object. The frequency content of each subsequent
echo decreases until the signal is dominated by the low-frequency ECO
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Fig. 5.5. The first four echoes in the time-domain waveform for a horizonless compact
object with χ = 0, R = 1, δ/M = 10−7. The waveform has been shifted in time and
rescaled in amplitude so that the global maxima of each echo are aligned. Note that each
subsequent echo has a lower frequency content than the previous one. [203]

QNMs at late times. In the example shown in Fig. 5.5, the frequencies
of the first four echoes are approximately Mω ≈ 0.34, 0.32, 0.3, 0.29,
whereas the real part of the fundamental QNM of a Schwarzschild BH
is MωR ≈ 0.37367. Therefore, the frequency content between the first
and the fourth echo decreases by ≈ 17%.

Let us notice that the case shown in Fig. 5.5 is the one that provides
the simplest echo pattern since χ = 0 and R is real. The spinning case
χ ̸= 0 or a complex choice of the surface reflectivity would provide a
more involved echo pattern and polarization mixing.

Our results show that two different situations can occur:

A) the reflectivity R of the object is small enough so that the ampli-
tude of subsequent echoes is suppressed. In this case, most of the
SNR is contained in the first few echoes with a frequency slightly
smaller than the fundamental BH QNM.

B) the reflectivityR is close to unity so that subsequent echoes are rel-
evant and contribute to the total SNR significantly. In this case, the
frequency content becomes much smaller than the fundamental
BH QNM at late times.

Clearly, the low-frequency approximation used to derive the analytical
template is expected to be accurate in case B) and less accurate in case
A).
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Fig. 5.6. Ringdown of a horizonless compact object with radius r0 = 2M(1 + ϵ) and
effective shear viscosity η. We consider axial perturbations and an initial Gaussian profile.
Top panel: when ϵ ≪ 0.01, GW echoes appear for several values of η related to the
reflectivity of the object. Bottom panel: a selection of ringdown waveforms for ϵ ≳ 0.01.
In this case, the prompt ringdown is modified and GW echoes are absent. [199]

5.4. Modifications to the prompt ringdown
The prompt ringdown is associated with the scattering of a wave

packet off the photon-sphere barrier. If ϵ is sufficiently small, the follow-
ing causality argument shows that the boundary conditions at the radius
of the object cannot affect the prompt ringdown. The decay timescale
of the prompt ringdown is associated with the instability timescale of
the photon orbits at the light ring, or equivalently to the decay time
of the BH fundamental QNM. Thus, the boundary condition at the ra-
dius of the compact object does not affect the prompt ringdown if the
round-trip time of the radiation from the photon sphere to the boundary
is much longer than the decay time of the BH fundamental QNM. In
the Schwarzschild case, the round-trip time of the radiation in the cav-
ity is in Eq. (5.1), whereas the decay time of the fundamental QNM is
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τdamp = −1/ωI ≈ 10M. Consequently, when ϵ ≪ O(0.01) the prompt
ringdown is not modified and late-time GW echoes are emitted. On the
other hand, if ϵ ≳ O(0.01) the object’s interior should affect the prompt
ringdown.

These expectations are confirmed by the ringdownwaveforms shown
in Fig. 5.6, that are obtained by solving the linearized problem for ax-
ial perturbations in the Schwarzschild background. The boundary
condition at the radius of the compact object is obtained as the in-
verse Fourier transform of the boundary condition in Eq. (3.25). The
perturbation has an initial Gaussian profile where ψ(r∗, 0) = 0 and
∂tψ(r∗, 0) = exp[−(r∗ − 7)2]. The integration is performed using a
fourth-order Runge-Kutta finite-difference scheme. The top panel of
Fig. 5.6 shows the case in which ϵ ≪ O(0.01). Confirming previous
results, the prompt ringdown is universal and the details of the ob-
ject’s interior appear as GW echoes after the initial ringdown. The time
delay is given in Eq. (5.1), and their phase and frequency content are
modulated by the boundary conditions and the tunneling through the
potential barrier. The amplitude of the GW echoes depends on the shear
viscosity η of the fictitious fluid located at the radius of the compact
object, as described in Sec. 3.3.3. In particular, η ≈ 0 corresponds to
|R|2 ≈ 1 for which the amplitudes of the subsequent echoes are only
mildly damped, whereas the absorption is maximized as η ≈ ηBH. In
the latter case, the linear response is identical to that of a BH, since the
boundary conditions are the same in the limit η → ηBH and ϵ → 0.

The bottom panel of Fig. 5.6 focuses on the case ϵ ≳ O(0.01), where
the prompt ringdown is modified and no subsequent echoes appear.
The changes to the prompt ringdown can be understood by considering
that the part of the wave packet that initially tunnels through the barrier
has enough time to be reflected at the radius of the object and tunnel to
infinity. This process results in a superposition of the two pulses (the
one directly reflected by the potential barrier and the one reflected by
the object), which can interfere in an involved pattern. When the two
pulses sum in phase, the interference can produce high peaks in the
prompt ringdown. At late time, the prompt ringdown is dominated
by the fundamental QNM of the object, that is not the mode of the
universal prompt ringdown in the BH case. Indeed, by fitting the time-
domain waveform at late times with a damped sinusoid, we can verify
that the prompt ringdown is governed by the fundamental QNM of the
horizonless object shown in Fig. 3.5.
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Finally, one might wonder why there are no echoes for ϵ ≳ O(0.01).
The reason is that only waves with frequency V(r0) < ω2 < Vmax can
be trapped between the radius of the object and the potential barrier.
Therefore, when the compactness decreases, the resulting cavity is small.
Furthermore, the transmission coefficient of the potential barrier is large
when ω2 ≲ Vmax which implies that these frequencies cannot be trapped
efficiently. In practice, for ϵ ≳ O(0.01) one only sees the interference
between the prompt ringdown and the first echo, while subsequent
reflections are strongly suppressed or absent, as in the bottom panel of
Fig. 5.6.

5.5. Prospects of detection
In this section, we use the template derived in Sec. 5.2 for a prelim-

inary error estimation of the ECO properties with current and future
GW detectors.

The ringdown+echo signal in the frequency domain displays reso-
nances that originate from the long-lived QNMs of horizonless compact
objects, as shown in the right panel of Fig. 5.2. The relative amplitude of
each resonance depends on the source and the dominant modes are not
necessarily the fundamental harmonics [208, 70]. Moreover, the ampli-
tude of the echo signal depends strongly on the surface reflectivity of
the object, especially when |R| ≈ 1. This suggests that the detectability
of (or the constraints on) the echoes depends strongly on the surface
reflectivity and would be more feasible when |R| ≈ 1. In the follow-
ing, we quantify this expectation using a Fisher matrix analysis that is
accurate at large SNR [285]. The analysis is performed as in Ref. [273],
additionally including the spin of the object and allowing for a complex
reflection coefficient.

We compute the Fisher matrix with the template h̃( f ) = Z̃+( f ),
using the sensitivity curves of aLIGO with the design-sensitivity
ZERO_DET_high_P [268] and two configurations for the third-generation
instruments: Cosmic Explorer in the narrow band variant [6, 122], and
Einstein Telescope in its ET-D configuration [160]. We also consider
the noise spectral density of LISA proposed in Ref. [31]. Details on the
Fisher information matrix are given in Appendix 3.7. We focus on the
most relevant case of ℓ = m = 2 gravitational perturbations we consider
a remnant with M = 30 M⊙ (M = 106 M⊙) for ground (space) based
detectors.
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Fig. 5.7. Left panel: relative percentage error on the reflection coefficient, ∆|R|/|R|
multiplied by the SNR, as a function of |R| for different values of the spin. The inset
shows the same quantity as a function of 1 − |R|2 in a logarithmic scale. From top to
bottom: χ = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1). Middle panel: same as in the left panel
but for the absolute percentage error on the phase ϕ of the reflection coefficient, i.e.,
ρ∆ϕ. Right panel: same as in the left panel but for the compactness parameter δ/M, i.e.,
∆(δ/M)/(δ/M). We assume δ = 10−7 M, where the errors are independent of δ when
δ ≪ M. We set ϕ = 0 (i.e., we consider a real and positive R), but other choices give
similar results. [203]

As discussed in Sec. 5.2.5, the most generic BH ringdown template
contains 7 parameters (mass, spin, two amplitudes, two phases, and
starting time). For simplicity, we focus on a linearly polarized ringdown,
and we do not include the parameters A× and ϕ×. This implies that the
Fisher analysis has 5 standard ringdown parameters. Furthermore, the
template depends on two ECO quantities, i.e., the surface reflectivity and
the compactness of the ECO. We parametrize the surface reflectivity as
in Eq. (5.23), where |R| and ϕ are assumed to be frequency independent
for simplicity. This yields three ECO dimensionless parameters: δ/M,
|R|, and ϕ.

We analyze two cases: (i) a conservative case, in which the errors on
the 5 + 3 parameters are extracted in a Fisher matrix framework, and
(ii) a more optimistic case, in which the standard ringdown parameters
can be measured independently in the prompt ringdown and we are
left with the measurement errors on the 3 ECO parameters.

5.5.1. Conservative case: 5 ringdown+3 ECO parameters
The main results for the statistical errors on the ECO parameters

are shown in Fig. 5.7. In the large SNR limit, the errors scale as 1/ρ,
where ρ is defined in Eq. (3.110) in Appendix 3.7. Hence, Fig. 5.7
shows the quantities ρ∆|R|/|R| (left panel), ρ∆ϕ (middle panel), and
ρ∆(δ/M)/(δ/M) (right panel) as a function of the surface reflectivity
for several values of the spin.
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Fig. 5.8. Same as in Fig. 5.7 but including only the three ECO parameters (|R|, ϕ, and
δ/M) in the Fisher analysis. [203]

For a given SNR, the relative errors are almost independent of the
sensitivity curve of the detector, at least for the signals that are located
near the minimum of each sensitivity curve. Moreover, the statistical
errors are almost independent of the compactness of the object when
δ/M ≪ 1. Fig. 5.7 shows that the statistical errors depend strongly on
the surface reflectivity of the object. The reason for this can be traced
back to the presence of resonances as R ≈ 1. This feature confirms that
it should be relatively straightforward to rule out or detect models with
|R| ≈ 1, whereas it is increasingly more difficult to constrain models
with smaller values of |R|.

We also notice that the value of the spin of the remnant affects the
errors on |R| mildly, whereas it has a stronger impact on the phase of
R (probably due to the aforementioned mixing of the polarizations)
and a moderate impact on the errors on δ/M. Overall, the specific value
of ϕ does not affect the errors significantly, although it is important to
include it as an independent parameter to not underestimate the errors.

5.5.2. Optimistic case: 3 ECO parameters
Let us now assume that the standard ringdown parameters (mass,

spin, amplitude, phase, and starting time) can be measured indepen-
dently in the prompt ringdown signal, that is identical for BHs and ECOs
with δ/M ≪ 1. In this case, the remaining three ECO parameters (|R|,
ϕ, and δ/M) can be measured a posteriori, assuming that the standard
ringdown parameters are known.

A representative example for this optimistic scenario is shown in
Fig. 5.8. As expected, the errors are significantly smaller, especially the
ones on the phase of the reflectivity. The errors on the surface reflectivity
are only mildly affected, and the projected constraints on |R| at different
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Fig. 5.9. Projected exclusion plot for the ECO reflectivity |R| as a function of the SNR
in the ringdown phase. The shaded areas are the regions that can be excluded at a
given confidence level (2σ, 3σ, 4σ, 5σ). Vertical bands are the typical SNRs achievable
by aLIGO/Virgo, third-generation ground-based detectors, and LISA in the ringdown
phase; the horizontal band is the region excluded by the ergoregion instability [201, 200].
We assume χ = 0.7 for the spin of the remnant, and the result depends mildly on the
spin. [203]

confidence levels are similar to the ones shown in Fig. 5.9.

5.5.3. Constraints on the reflectivity
Let us calculate the SNR that is necessary to discriminate a partially-

absorbing horizonless compact object from a BH on the basis of a mea-
surement of the surface reflectivity at some confidence level. Clearly,
if ∆|R|/|R| > 100%, any measurement would be compatible with the
BH case (R = 0). On the other hand, relative errors ∆|R|/|R| <

(4.5, 0.27, 0.007, 0.00006)% suggest that it is possible to detect or rule out
a given model at (2, 3, 4, 5)σ confidence level, respectively. The result
of this analysis is shown in Fig. 5.9 that represents the exclusion plot
for the parameter |R| as a function of the SNR in the ringdown phase,
ρringdown. The shaded areas are the regions that can be excluded at some
given confidence level. Large SNRs would allow us to probe values of
the surface reflectivity close to the BH limit, R ≈ 0.

The extent of the constraints depends strongly on the confidence level.
For example, ρringdown ≈ 100 would allow us to distinguish horizonless
compact objects with |R|2 ≳ 0.1 from BHs at 2σ confidence level, but a
3σ detection would be possible if |R|2 ≳ 0.8.

Our analysis suggests that horizonless models with |R|2 ≈ 1 can be
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detected or ruled out with aLIGO/Virgo (for events with ρringdown ≳ 8)
at 5σ confidence level. These events could also allowus to probe values of
the reflectivity as small as |R|2 ≈ 0.8 at 2σ confidence level. Horizonless
compact objects with |R|2 = 1 are already ruled out by the ergoregion
instability [201, 200], the absence of a GW stochastic background in the
LIGO O1 run due to spin loss [38], and the negative searches for GW
echoes [18].

Excluding or detecting echoes for models with smaller values of the
reflectivity (for which the ergoregion instability is absent) requires SNRs
in the postmerger phase of O(100). This will be achievable only with
third-generation detectors (Einstein Telescope and Cosmic Explorer)
and with the space-based mission LISA. Our preliminary analysis con-
firms that very stringent constraints on (or detection of) ultracompact
horizonless objects can be obtained with current (and especially future)
interferometers.

5.6. Appendix: Black hole response to sources
In this appendix, we provide the expressions for the BH response at

the horizon for some specific toy models of the source. In the following,
we assume that the source is localized within the cavity.

The simplest case is that of a Gaussian source localized in space in
which the frequency dependence can be factored out

S̃(r∗, ω) = C(ω) exp
(
− (r∗ − rs

∗)
2

σ2

)
, (5.26)

where rS
∗ is the location of the source in the tortoise coordinate, and

|rs
∗| ≪ M. It is easy to show that

Z̃+
BH = e2ikrs

∗ Z̃+
BH . (5.27)

The latter equation, together with Eq. (5.15), yields

Z̃−
BH =

(
e2ikrs

∗ +RBH

TBH

)
Z̃+

BH . (5.28)

Remarkably, the above relation is independent of the width σ of the
Gaussian source and the function C(ω) characterizing the source.

Inspired by Eq. (5.27), we can also parametrize the BH response Z̃+
BH

in a model-agnostic way with a generically complex proportionality
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factor
Z̃+

BH = ηeiνZ̃+
BH , (5.29)

where η and ν are (real) parameters of the template. Since the BH
response at intermediate times is dominated by the QNM frequencies, a
model in which Z̃+

BH = F (ω)Z̃+
BH can be reduced effectively to Z̃+

BH =

F (ωR)Z̃+
BH. In such case, the term F (ωR) = ηeiν can be interpreted as

a generic parametrization of a complex number.
Finally, another possible model for the source is a plane-wave source

that travels towards r∗ → ±∞, where

S̃(r∗, ω) =
∫

dteiωtS(r∗, t) =
∫

dteiωtS(0, t ∓ r∗) = S̃(0, ω)e±iωr∗ .

(5.30)
Using Eq. (5.6), we obtain

Z̃+
BH(ω) = Z̃−

BH(ω)

∫ +∞
−∞ dr∗X−

s e±iωr∗
∫ +∞
−∞ dr∗X+

s e±iωr∗
, (5.31)

or, more explicitly,

Z̃+
BH(ω) = Z̃−

BH(ω)

[∫
r∗∼0

dr∗X−
s eiωr∗ +

∫ ∞
(Aoute2iωr∗ + Ain)dr∗

+
∫

−∞
dr∗eimΩr∗

]/ [∫
r∗∼0

dr∗X+
s eiωr∗ +

∫ ∞
e2iωr∗dr∗

+
∫

−∞
(Boute2iωr∗−imΩr∗ + BineimΩr∗)dr∗

]
, (5.32)

where r∗ ∼ 0 is the regionwhere the potential is non-zero andwe consid-
ered the case of a plane wave traveling to r∗ → +∞ for ease of notation.
Since Z̃+

BH(ω) has poles at ωQNM = ωR + iωI , we also expect Z̃−
BH(ω)

to have the same poles. Given that ωI < 0, the terms
∫ +∞ dr∗ dominate

the numerator and the denominator of Eq. (5.32) for ω ≈ ωQNM and
yield

Z̃+
BH ≈ −

(
RBH

TBH

)∗
Z̃−

BH . (5.33)

The case of a plane wave traveling towards r∗ → −∞ gives the same
relation.
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6. Horizonless extreme mass-ratio inspirals

Com’era il nostro gioco? È presto detto. Lo spazio essendo curvo, attorno alla
sua curva facevamo correre gli atomi, come delle biglie, e chi mandava più

avanti il suo atomo vinceva. Nel dare il colpo all’atomo bisognava calcolar bene
gli effetti, le traiettorie, saper sfruttare i campi magnetici e i campi di

gravitazione, se no la pallina finiva fuori pista ed era eliminata dalla gara.
Italo Calvino, Le Cosmicomiche

EMRIs are binary systems in which a stellar-mass compact object
orbits around a supermassive compact object at the center of a galaxy.
EMRIs are one of the main target sources of the space-based interferom-
eter LISA, and are unique probes of the nature of supermassive compact
objects. The defining feature of a classical BH is to be a perfect absorber
since its event horizon is a one-way hypersurface. Thus, any evidence
of partial reflectivity would indicate a departure from the classical BH
picture. In this chapter, we shall show that LISA would be able to probe
the reflectivity of compact objects with unprecedented accuracy.

6.1. A model for the central compact object
Weanalyze a central horizonless compact objectwhose exterior space-

time is described by the Kerr metric, as detailed in Sec. 4.1. The radius of
the compact object is located as in Eq. (2.1) where ϵ ≪ 1. For example,
if the radius of the object is at r0 = r+ + lPlanck, then ϵ ∼ 10−44 for a
supermassive compact object with mass M = 106M⊙ and spin χ = 0.9.

The properties of the interior structure are modeled in terms of a
complex and frequency-dependent reflectivity coefficient R(ω) at the
surface of the object. Spinning horizonless compact objects with a per-
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fectly reflecting surface (|R|2 = 1) are affected by an ergoregion in-
stability when spinning sufficiently fast. In the following, we focus on
stable spinning models with partial absorption (|R|2 < 1), as detailed
in Sec. 4.5. We also analyze a model of quantum BH with Boltzmann
reflectivity (|R(ω)|2 = e−|k|/TH , where k is the corotating frequency and
TH is the Hawking temperature), that is stable against the ergoregion
instability for any spin [229].

6.2. Linear perturbations from a point particle

We analyze a pointlike source orbiting around a central compact
object which is either a Kerr BH or a Kerr-like horizonless object. The
pointlike source moves along circular equatorial orbits from large dis-
tances to the ISCO. In line with the discussion in Sec. 4.1, we assume that
the gravitational perturbations in the exterior spacetime are described
as in the Kerr case. According to the Newman-Penrose formalism, the
Weyl scalar Ψ4 can be expanded as

Ψ4 = ρ̂4 ∑
ℓm

∫
dωRℓmω(r)−2Sℓmω(θ)ei(mφ−ωt) , (6.1)

where ρ̂ = (r − ia cos θ)−1, and the sum runs over ℓ ≥ 2 and −ℓ ≤
m ≤ ℓ. The radial wave function Rℓmω(r) obeys to the Teukolsky master
equation [275, 277, 274]

∆2 d
dr

(
1
∆

dRℓmω

dr

)
+

[
K2 + 4i(r − M)K

∆
− 8iωr − λ

]
Rℓmω = Tℓmω ,

(6.2)
and the spin-weighted spheroidal harmonics−2Sℓmω(θ)eimφ satisfy Eq. (4.8)
with s = −2. The polar part of the spin-weighted spheroidal harmonics
is normalized such that

∫ 1

−1
|−2Sℓmω(cos θ)|2 d cos θ = 1 . (6.3)

The source term Tℓmω is constructed by projecting the stress-energy
tensor Tαβ of a pointlike source with respect to the Newman-Penrose
tetrad, where [133]

Tαβ = µ
uαuβ

Σ sin θut δ (r − r(t)) δ (θ − θ(t)) δ (φ − φ(t)) , (6.4)
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with µ being the mass of the small orbiting body, uα = dzα/dτ, zα =

(t, r(t), θ(t), φ(t)) is the geodesic trajectory, and τ is the particle proper
time. The mass ratio of the system is defined as q ≡ µ/M.

In the case of circular equatorial orbits, θ(t) = π/2. In corotating
orbits, the orbital radius is related to the orbital angular frequency by

Ω =
√

M/(a
√

M + r3/2) . (6.5)

6.2.1. Central black hole

Let us first review the standard BH case. Owing to the presence of
the horizon, the two independent homogeneous solutions of Eq. (6.2)
have the following asymptotic behavior

Rin
ℓmω ∼




Btrans
ℓmω ∆2e−ikr∗ as r∗ → −∞

r3Bref
ℓmωeiωr∗ + r−1Binc

ℓmωe−iωr∗ as r∗ → +∞
, (6.6)

Rup
ℓmω ∼




Cup
ℓmωeikr∗ + ∆2Cref

ℓmωe−ikr∗ as r∗ → −∞

r3Ctrans
ℓmω eiωr∗ as r∗ → +∞

, (6.7)

where k = ω −mΩH , and ΩH = a/(2Mr+) is the angular velocity at the
horizon of the Kerr BH. The inhomogeneous solution of the Teukolsky
equation (6.2) is constructed as [133]

Rℓmω =
1

Wℓmω


Rup
ℓmω(r)

 r

r+
dr′

Tℓmω(r′)Rin
ℓmω(r

′)

∆2(r′)

+ Rin
ℓmω(r)

 ∞

r
dr′

Tℓmω(r′)Rup
ℓmω(r

′)

∆2(r′)


, (6.8)

where Wℓmω is the Wronskian given by

Wℓmω = ∆−1


Rin
ℓmω

dRup
ℓmω

dr
− Rup

ℓmω

dRin
ℓmω

dr



= 2iωCtrans
ℓmω Binc

ℓmω . (6.9)

The inhomogeneous solution in Eq. (6.8) has the following asymptotic
behavior

Rℓmω ∼




ZH
ℓmω∆2e−ikr∗ as r∗ → −∞

Z∞
ℓmωr3eiωr∗ as r∗ → +∞

, (6.10)
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where

ZH
ℓmω = CH

ℓmω

∫ ∞

r+
dr′

Tℓmω(r′)Rup
ℓmω(r

′)

∆2(r′)
, (6.11)

Z∞
ℓmω = C∞

ℓmω

∫ ∞

r+
dr′

Tℓmω(r′)Rin
ℓmω(r

′)

∆2(r′)
, (6.12)

and
CH
ℓmω =

Btrans
ℓmω

2iωCtrans
ℓmω Binc

ℓmω

, C∞
ℓmω =

1
2iωBinc

ℓmω

. (6.13)

The amplitudes ZH
ℓmω and Z∞

ℓmω determine the gravitational energy
fluxes emitted at infinity and through the horizon [274, 163]:

Ė∞ = ∑
ℓm

|Z∞
ℓmω |

2

4π(mΩ)2 , (6.14)

ĖH = ∑
ℓm

αℓm|ZH
ℓmω |

2

4π(mΩ)2 , (6.15)

where

αℓm =
256(2Mr+)5k(k2 + 4ϖ2)(k2 + 16ϖ2)(mΩ)3

|cℓm|2
, (6.16)

where ϖ =
√

M2 − a2/(4Mr+) and

|cℓm|2 = [(λ + 2)2 + 4ma(mΩ)− 4a2(mΩ)2]

× [λ2 + 36ma(mΩ)− 36a2(mΩ)2]

+ (2λ + 3)[96a2(mΩ)2 − 48ma(mΩ)]

+ 144(mΩ)2(M2 − a2) . (6.17)

For circular equatorial orbits, the angular momentum fluxes are related
to the energy fluxes, at infinity and the horizon, by J̇∞,H = Ė∞,H/Ω.

In the case of a central BH, the total energy flux emitted by a point
particle in a circular equatorial orbit with orbital angular frequency Ω is

Ė(Ω) = Ė∞(Ω) + ĖH(Ω) , (6.18)

where Ė∞(Ω) and ĖH(Ω) are defined in Eqs. (6.14) and (6.15), respec-
tively.
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6.2.2. Central horizonless compact object
Let us analyze the case of a horizonless compact object whose cor-

rections to the Kerr case are incorporated in the boundary condition at
the radius of the object. A gravitational perturbation can be written as a
superposition of ingoing and outgoing waves at the radius of the object
as in Eq. (4.21), where the surface reflectivity of the object is defined in
Eq. (4.22). For a generically complex and frequency-dependent reflectiv-
ity, a horizonless compact object is described by the boundary condition
in Eq. (4.25) that reduces to the BH boundary condition when R = 0.

In the horizonless case, the solutions of the homogeneous Teukolsky
equation are such that the ‘up’ modes have the same asymptotics as in
Eq. (6.7), whereas the ‘in’ modes have the following asymptotics

Rin
ℓmω ∼




B′trans
ℓmω ∆2e−ikr∗ + C′up

ℓmωeikr∗ as r∗ → r0
∗

r3B′ref
ℓmωeiωr∗ + r−1B′inc

ℓmωe−iωr∗ as r∗ → +∞
, (6.19)

where

B′trans
ℓmω = Btrans

ℓmω + c1Cref
ℓmω , (6.20)

C′up
ℓmω = c1Cup

ℓmω , (6.21)
B′ref
ℓmω = Bref

ℓmω + c1Ctrans
ℓmω , (6.22)

B′inc
ℓmω = Binc

ℓmω , (6.23)

and the coefficient c1 is determined by imposing the boundary condition
in Eq. (4.25) where

Rℓmω = Rin
ℓmω + c1Rup

ℓmω . (6.24)

The inhomogeneous solution of the Teukolsky function is derived as in
Eq. (6.8), with Rin

ℓmω as in Eq. (6.19) and Rup
ℓmω as in Eq. (6.7), and it has

the following asymptotic behavior

Rℓmω ∼




ZH+

ℓmω∆2e−ikr∗ + ZH−
ℓmωeikr∗ as r∗ → r0

∗

Z∞
ℓmωr3eiωr∗ as r∗ → +∞

, (6.25)

where

ZH+

ℓmω = ZH
ℓmω , ZH−

ℓmω =
C′up
ℓmω

B′trans
ℓmω

ZH
ℓmω . (6.26)

To determine the energy emitted by the particle in the horizonless case,
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we note that – by assumption – the gravitational perturbations in the
neighbourhood of the particle are exactly those of a Kerr background,
albeit with unusual boundary conditions. We can, therefore, determine
the emitted energy by appealing to the energy balance law in the Kerr
background. The energy flux to infinity is formally given by the same
formula as in the BH case, Eq. (6.14). The energy flux to the ECO side
is determined by extending Rℓmω analytically to the horizon of the Kerr
background and measuring the flux there. Thus, the internal energy
flux on the ECO side Ėint is given by

Ėint = ĖH+ − ĖH−
, (6.27)

where ĖH+ and ĖH− are the energy fluxes across the future and past
horizon, respectively. The energy flux across the future horizon is given
in Eq. (6.15) as in the BH case, whereas the energy flux coming in across
the past horizon is [274]

ĖH−
= ∑

ℓm

ω

4πk(2Mr+)3(k2 + 4ϖ2)
|ZH−

ℓmω |
2 . (6.28)

In the case ofR = 0, Eq. (6.27) reduces to Ėint = ĖH+ . When |R(ω)|2 =

1, the outgoing flux is equal to the ingoing flux at the radius of the object
and Ėint = 0, as expected from perfectly reflecting boundary conditions.

In the ECO case, the total energy flux emitted by a point particle in a
circular equatorial orbit is

Ė(Ω) = Ė∞(Ω) + Ėint(Ω) , (6.29)

where Ė∞(Ω) and Ėint(Ω) are defined in Eqs. (6.14) and (6.27), respec-
tively.

6.3. Numerical procedure
We study the dynamics of a point particle in circular equatorial orbits

around a Kerr-like horizonless object by adapting the frequency-domain
Teukolsky code originally developed in Refs. [286, 289, 287, 288]. In
particular, the solutions to the homogeneous Teukolsky equation are
calculated via the numerical Mano-Suzuki-Takasugi method [206, 207,
133, 132]. We have modified the boundary conditions at the radius of
the compact object in terms of R(ω) and ϵ as discussed in Sec. 6.2.2,
and computed the energy and angular-momentum fluxes at infinity and
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through the object’s surface.
Our algorithm is as follows:

1. Choose the intrinsic parameters of the binary, namely the central
mass M, the mass ratio q ≪ 1, the primary spin χ, the reflectivity
R(ω), and the compactness of the central object via ϵ.

2. For a given ℓ = m mode, produce the data for a bound orbit with
orbital radius r and compute the energy fluxes in the cases of a
central BH and a central horizonless compact object, respectively.

3. Loop on the orbital radii with an equally spaced (radial) grid
starting from the ISCO radius to r = 10M.

4. Find the local maxima and minima in the energy fluxes at infinity
for a central horizonless compact object. If present, these extrema
bracket resonances in the flux that should be resolved by increasing
the grid resolution. Let us notice that the initial equally-spaced
grid in the orbital radii needs to be dense enough to find local
maxima and minima in the energy fluxes. For this reason, we set
the initial discretization in the orbital radii to be 0.003M.

5. Refine the grid on the orbital radii around the local maxima and
minima through the bisection method until a target accuracy is
reached. The refinement of the grid stops either when the differ-
ence between two subsequent orbital radii is < 10−5M or when
the difference in the energy fluxes of two subsequent points is
< 10−5q2.

6. For a given ℓ and each m = ℓ − 1, ..., 1 loop on the orbital radii
with an equally spaced grid from the ISCO radius. The loop on
the orbital radii stops when the total energy flux in the case of a
central BH (defined in Eq. (6.18)) in a given ℓ, m mode is 10−6

times smaller than the total energy flux in the dominant mode
with ℓ = m.

7. For a given ℓ and each m = ℓ− 1, ..., 1 repeat steps 4 and 5.

8. For the harmonic index ℓ = 2, ..., ℓmax = 12 repeat the steps 2 to 7.

9. For each ℓ, m mode, interpolate the total energy flux as a function
of the orbital angular frequency.
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10. Sum over the modes and perform an integration to compute the
orbital phase both in the BH and in the horizonless cases. The
initial condition on the orbital angular frequency is Ω0 = Ω(r =
10M) and the integration stops at the inspiral-plunge transition
frequency Ω(tmax) = Ω(r = rISCO + 4q2/3) [227].

We compute the gravitational waveform where for the modes with
negative m we make use of the following symmetries

Z∞
ℓ−mω = (−1)ℓ (Z∞

ℓmω)
∗ , (6.30)

−2Sℓ−mω(θ) = (−1)ℓ −2Sℓmω(π − θ) . (6.31)

For each ℓ, m mode the asymptotic amplitudes at infinity and the spin-
weighted spheroidal harmonics are interpolated functions of the time-
dependent orbital angular frequency. The waveform is constructed
by summing over the modes with ℓ ≤ 4 and −ℓ ≤ m ≤ ℓ. In the
case of small reflectivity (|R|2 ≤ 10−6) the waveform is constructed
by summing over the ℓ, m modes until ℓ = 5 since one needs higher
accuracy to keep the truncation errors smaller than the ECO corrections.
We checked that the mismatch between the BH and ECO waveforms
does not change quantitatively by including modes with higher ℓ in the
waveforms.

We tested our code by reproducing the standard results for the Kerr
BH case [164, 48, 271, 152]. Furthermore, we reproduced the results of
Ref. [110], where the horizonless case is obtained from the BH case by
artificially imposing that only a fraction (1 − |R|2) of the radiation is
absorbed at the surface.

The fractional truncation error of the code in the dephasing is esti-
mated as ∆tr = 1 − ∆ϕℓmax+1(t f )/∆ϕℓmax(t f ), where the energy fluxes
are truncated at ℓmax = 12 and t f is the time in which the orbital radius
reaches r = rISCO + 4q2/3. For a reference compact object with χ = 0.9,
|R|2 = 0.9, ϵ = 10−10, and q = 3 × 10−5, we find ∆tr = 2 × 10−5.

6.4. Energy fluxes and excitation of resonances
Horizonless compact objects contain low-frequency modes in their

spectrum that are associated with long-lived states confined within
the photon sphere, as described in Sec. 3.2.4. At variance with the BH
case, these low-frequency modes can be excited during the inspiral
when the orbital frequency matches the QNM frequencies, leading to
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resonances in the fluxes [238, 197, 128]. The role of the resonances in the
EMRI dynamics was studied in Ref. [78] for a perfectly reflecting and
non-spinning horizonless object in the low-frequency approximation.
The analysis of Ref. [78] assessed that the impact of such excitations is
negligible since the resonances are very narrow and are crossed quickly
during the inspiral. In the following, we shall extend the analysis of
Ref. [78] to the case of a partially absorbing compact object with generic
spin. As we shall show, differently from the analysis in Ref. [78], in
more generic cases the presence of resonances provides an important
contribution to the EMRI dynamics.

Another relevant feature of horizonless compact objects is the pres-
ence of partial reflectivity at the surface. In Ref. [110] a phenomenolog-
ical approach was adopted to parametrize the energy flux emitted by
a point particle around a horizonless and partially absorbing compact
object. In particular, the energy flux at infinity is modeled as the one in
the BH case, whereas the energy flux on the ECO side is modeled by
removing a (|R|2) fraction of TH from the BH energy flux through the
horizon, i.e., [110]

Ė(Ω) = E∞
BH(Ω) +

(
1 − |R|2

)
EH

BH(Ω) . (6.32)

The TH is associated with the energy and angular-momentum absorp-
tion by the compact object and results in an increase of the mass and an-
gular momentum of the latter, unless superradiance occurs [65]. Let us
notice that Eq. (6.32) does not include the excitation of the low-frequency
resonances in the energy fluxes both at infinity and on the ECO side.
Moreover, Eq. (6.32) does not fix a specific location of the radius of the
compact object. According to the analysis in Ref. [110], EMRIs could
provide constraints on the reflectivity of compact objects at the level
of |R|2 ≲ 10−4. We shall show that, by taking a consistent model of
horizonless compact object, the bounds derived by Ref. [110] can be
further improved by several orders of magnitude.

Let us analyze the energy flux emitted by a point particle in quasicir-
cular equatorial orbits around a spinning horizonless compact object, as
detailed in Sec. 6.2.2. The energy flux is computed as in Eq. (6.29) that
takes into account both the excitation of the low-frequency resonances
and the reflective properties of the compact object. As a representative
example, Fig. 6.1 shows the ℓ = m = 2 component of the energy flux
as a function of the orbital frequency for a horizonless compact object
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Fig. 6.1. Total energy flux of the ℓ = m = 2 mode as a function of the orbital angular
frequency for a point particle in quasicircular equatorial orbits from r = 10M (low
frequency) to r = rISCO (high frequency). The energy flux emitted in the case of a central
BHwith spin χ = 0.9 is compared to the case of a central horizonless compact object with a
perfectly reflecting surface (|R|2 = 1), spin χ = 0.9, and ϵ = 10−10. In the latter case, the
energy flux is resonantly excited when the orbital frequency matches the low-frequency
QNMs of the ECO [204].

with ϵ = 10−10, χ = 0.9, and two choices of perfectly reflecting bound-
ary conditions (Dirichlet and Neumann for the lower and upper case,
respectively, R = ±1). As expected, the flux is resonantly excited when
the orbital frequency matches the low-frequency QNMs of the central
object, i.e.,

Ω =
ωR
m

, (6.33)

where ωR is the real part of the QNM and m is the azimuthal number
of the perturbation. This is a striking difference with respect to the
BH case in which the QNMs have higher frequencies and cannot be
resonantly excited by quasicircular inspirals. In the small-ϵ limit, the
Dirichlet and Neumann modes are described by Eqs. (4.33) and (4.34)
with s = −2. As shown in Fig. 6.1, for a compact object with a given
spin and compactness, the modes are equispaced by

∆ωR =
π

|r0∗|
∼ | log ϵ|−1 , (6.34)

whereas consecutive Dirichlet and Neumannmode frequencies are sepa-
rated by half this width. The difference between consecutive resonances
scales as | log ϵ|−1. It follows that the resonances are denser in the ϵ → 0
limit.
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Interestingly, the resonances appear at the same frequencies in all
the individual fluxes: Ė∞, ĖH+ , and ĖH− . This is because the QNMs are
associated with the poles of the Wronskian appearing in the solutions
of the Teukolsky equation (as in Eq. (6.8)). However, when |R|2 = 1,
the fluxes ĖH+ and ĖH− are exactly equal to each other since Ėint = 0.
Consequently, for perfectly reflecting compact objects the resonances
appear only in the energy flux at infinity.

Equation (4.34) shows that ωI ≪ ωR, which implies that the res-
onances are typically very narrow and hard to resolve [238, 78, 128].
To assess the relation between the width of the resonances and the
imaginary part of the QNMs, we make use of the harmonic oscillator
model [250]. According to the latter, a compact object which resonates
at a QNM frequency can be modeled as a forced harmonic oscillator
that satisfies [250]

ξ̈ − 2ωI ξ̇ +
(

ω2
R + ω2

I

)
ξ = bω2e−iωt , (6.35)

where ξ is the amplitude of the GW emitted at infinity normalized by a
reference amplitude, e.g., the amplitude of the GW emitted at infinity
when the central object is a BH, and the orbiting point particle acts as a
driving force. The solution is ξ(t) = ξ(ω)e−iωt, where

ξ(ω) =
−bω2

ω2 − ω2
R − ω2

I − 2iωIω
. (6.36)

Near the resonance, the amplitude of the GW is the sum of two contri-
butions, one due to the orbital motion and one due to the resonance to
the QNM. The normalized energy flux across a single resonance is well
fitted by the model [250]

ĖECO

ĖBH = |1 − ξ(ω)|2 =

[
(1 − b)ω2 − ω2

R − ω2
I
]2

+ (2ωIω)2

(
ω2 − ω2

R − ω2
I
)2

+ (2ωIω)2
, (6.37)

where Ė is the total energy flux as computed in Eq. (6.18) and Eq. (6.29)
for the BH and ECO cases, respectively, b = 1 − (Ωmax/Ωmin)

2, and
Ωmax and Ωmin are the orbital angular frequencies of the maximum
and the minimum of each resonance. The width of each resonance in
the orbital frequency scales as δΩ ∼ ωI [78], where ωI ∼ ω2ℓ+2

R from
Eq. (4.34). It follows that the width of the resonances increases with the
orbital angular frequency, as it is shown in Fig. 6.1.
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Fig. 6.2. Energy fluxes that are emitted on the ECO side and at infinity by a point particle
around a central ECO with χ = 0.9, ϵ = 10−10, and R =

√
0.9 for the ℓ = m = 2 mode.

The fluxes are compared with those of Ref. [110] in which the effect of the ECO was
accounted for by removing a fraction of the tidal heating (TH) from the standard Kerr
flux. [204]

In the non-spinning and perfectly reflecting case, we recover the
results of Ref. [78], namely that low-frequency resonances do not con-
tribute significantly to the GW phase due to their narrow width. How-
ever, for highly spinning compact objects, the ISCO frequency occurs
at higher frequencies to the non-spinning case. Consequently, the reso-
nances with larger width can be excited and contribute to a significant
dephasing to the BH case (as shown in Sec. 6.5).

The system shown in Fig. 6.1 is purely indicative since a horizonless
compact object with a perfectly reflecting surface is unstable due to the
ergoregion instability and would spin down on short timescales (see
Secs. 4.4.4 and 4.5 for a related discussion). Stable models of horizonless
compact objects require either small values of the spin or partial absorp-
tion [201, 200]. In both cases, the resonances are less evident, as shown
in Fig. 6.2 for a partially absorbing compact object with |R|2 = 0.9, a
value that guarantees stability for a central object with spin χ = 0.9.

Fig. 6.2 shows that, also for reflectivities smaller than unity, the reso-
nances are excited both in the energy flux at infinity (Ė∞) and on the
ECO side (Ėint). The resonances are less peaked than in the perfectly
reflecting case but, as shown below, can still have a sufficiently large
width to be efficiently excited. Overall, the energy flux on the ECO side
is several orders of magnitude smaller than the energy flux at infin-
ity. However near the ISCO frequency, Ėint is comparable to Ė∞ and
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contributes significantly to the GW phase.
Finally, Fig. 6.2 also shows the energy fluxes at infinity and on the

ECO side computed in Ref. [110] by removing a fraction of TH from the
BH energy flux as in Eq. (6.32). In this case, the energy flux at infinity
is similar to the exact result except for the presence of the resonances
that are absent in the model of Ref. [110]. On the other hand, the energy
flux of the ECO side can change significantly. Due to the presence of the
resonances, Ėint computed in Ref. [110] is a sort of averaged value of
the exact result. The latter is modulated by the presence of resonances
that can be as high as the flux at infinity.

In Fig. 6.3 we show the difference between the total energy flux of
the ℓ = m = 2 mode in the horizonless case with respect to the BH case,
both in our consistent model and in the phenomenological approach
of Ref. [110]. In particular, the top panel shows the absolute value of
the difference between the ECO and BH fluxes on a logarithmic scale,
to appreciate the relatively small numbers involved. The bottom panel,
instead, shows the difference between the energy fluxes on a linear scale,
to appreciate the change of sign during the oscillations, for several values
of the reflectivity.

For |R|2 ≈ 1 the differences between the consistent model and the
model of Ref. [110] are due to two factors: the excitation of the res-
onances and the (subleading) effect that the flux computation in the
consistent model accounts for the fraction of the GWs that are reflected
by the object andmake their way to infinity rather than being reabsorbed
by the particle, as implicitly assumed in Ref. [110]. For small values of
the reflectivity, the difference between the consistent model and the phe-
nomenological one is even more important. In this case, the resonances
are suppressed in amplitude but still appear in the total energy flux with
a larger width, as shown in the top panel of Fig. 6.3. The bottom panel
grid in Fig. 6.3 shows the oscillatory trend of the total energy flux in
the horizonless case compared to the energy flux in Ref. [110] for small
reflectivities. The amplitude of the oscillations increases with the orbital
angular frequency and decreases with the reflectivity. The oscillations
are related to the resonances and, as we shall see in Sec. 6.5, they can
contribute significantly to the GW phase also for small values of the
reflectivity.

Interestingly, when the superradiance condition is met, Ω < ΩH , the
flux on the ECO side can be negative due to the energy and angular-
momentum extraction from the central object [65]. Since Ėint and Ė∞
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Fig. 6.3. Difference between the total energy flux of the ℓ = m = 2 mode in the ECO case
with respect to the BH case. Top panel: absolute value of the difference for a central object
with χ = 0.8, ϵ = 10−10, and several values of the reflectivity. The dotted lines are the
estimated differences in the total energy flux due to the absence of TH relative to the BH
case, as in Ref. [110]. Bottom panels: same as in the top panel but without the absolute
value and in a linear scale, to appreciate the change of sign of the oscillations associated
with the resonances. [204]

have the opposite sign, it is interesting to check whether they can com-
pensate each other at some given frequency, giving rise to a total zero
flux and hence to “floating” orbits [170, 76]. As clear from Fig. 6.2, in
the case of a single mode (e.g., ℓ = m = 2) such orbits would exist
near the high-frequency resonances, where Ėint (which is typically sub-
dominant) can be as large as Ė∞ in absolute value. When including the
contribution of multipoles, we find that the total flux at infinity is larger
than the flux on the ECO side because modes with different (ℓ, m) are
resonantly excited at different frequencies. The net result is that the
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total flux, Ė∞ + Ėint, is overall positive and the orbit shrinks during the
adiabatic evolution.

6.5. Adiabatic evolution and dephasing
In EMRIs, the radiation-reaction timescale is much longer than the

orbital period. For this reason, at the first order in the mass ratio the
orbital parameters can be evolved using an adiabatic expansion [161].
For a particle in a circular, equatorial and corotating orbit, the evolution
of the orbital angular frequency Ω and the orbital phase ϕ are governed
by

Ω̇ = −
(

dEb
dΩ

)−1
Ė(Ω) , (6.38)

ϕ̇ = Ω , (6.39)

where Eb is the binding energy of the system

Eb = µ
1 − 2v2 + χv3

√
1 − 3v2 + 2χv3

, (6.40)

where v ≡
√

M/r, r is the orbital radius that is related to the orbital
angular frequency through Eq. (6.5), and Ė(Ω) is the total energy flux
defined in Eqs. (6.18) and (6.29) in the BH and the ECO case, respec-
tively.

Equations (6.38) and (6.39) can be solved by adding two initial con-
ditions, namely

Ω(t = 0) = Ω0 , (6.41)
ϕ(t = 0) = 0 , (6.42)

without loss of generality. The GW phase of the dominant mode is re-
lated to the orbital phase by ϕGW = 2ϕ. We compute the GW dephasing
accumulated up to a certain time between the cases of a central BH and
a central horizonless compact object as [110]

∆ϕ(t) = ϕBH
GW(t)− ϕECO

GW (t) . (6.43)

6.5.1. Non-spinning central object
Let us analyze the case of a central compact object which is non-

spinning. Fig. 6.4 shows the dephasing in the case of a perfectly reflect-
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Fig. 6.4. Dephasing as a function of time in the case of a non-spinning and perfectly
reflecting ECO relative to the Schwarzschild BH case for different values of the compactness
parameter ϵ and q = 3 × 10−5. The resonances in the energy flux do not contribute to
the dephasing which is well approximated by the phenomenological model in Ref. [110]
marked as TH. [204]

ing ECO relative to the Schwarzschild BH, for different values of the
compactness parameter ϵ. As shown in Fig. 6.4, the dephasing does not
depend on ϵ and is not affected by the resonances, that are too narrow
to be efficiently excited in the non-spinning case. For this reason, the
dephasing is well approximated by the model adopted in Ref. [110]
that removes a fraction of TH from the BH energy flux. Overall, the
results in Fig. 6.4 are compatible with the analytical estimates in Ref. [78]
which assessed that the impact of resonances is negligible in the case of
a non-spinning and perfectly reflecting compact object.

6.5.2. Spinning central object
Let us analyze the dephasing between a spinning horizonless com-

pact object and the standard Kerr case. This is shown in Fig. 6.5 for
a fiducial binary with primary mass M = 106M⊙, secondary mass
µ = 30M⊙, and a central object with spin χ = 0.8 and ϵ = 10−10. We
analyze different values of the reflectivity and for each of them, we
compare our exact result with the one of the model in Ref. [110].

The dephasing increases monotonically in time and also as a func-
tion of the reflectivity. When |R|2 ≈ 1, the difference to the model
in Ref. [110] is small until the inspiral moves across a resonance. In
particular, for |R|2 = 0.9, the dephasing in the horizonless case devi-
ates from the dephasing due to the absence of TH at t = 9.47 months
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Fig. 6.5. GW dephasing between the BH and the ECO case as a function of time for a
binary with mass ratio q = 3 × 10−5 and a central object with spin χ = 0.8, ϵ = 10−10 and
several values of the reflectivity. The dashed lines show the dephasing due to the absence
of TH relative to the BH case as in Ref. [110]. The vertical dashed line corresponds to the
time in which a resonant orbital frequency is excited. The horizontal line is a reference
value ∆ϕ = 0.1 rad for the resolvability of the dephasing by LISA. [204]

(marked in Fig. 6.5 by a dashed vertical line) due to the presence of a
ℓ = m = 2 resonance with MΩ = 0.0473 and MωI = −4.22 × 10−5.
Subsequent resonances are excited at later times and are responsible for
the deviations of the dephasing from the model adopted in Ref. [110].

Interestingly, the phenomenological model of Ref. [110] and the exact
result differ significantly for small reflectivities even if the resonances are
less evident. This is due to several factors: the energy fluxes at infinity
and on the ECO side display some differences in the two models since a
fraction of the energy is reflected by the object and leaves the system;
moreover, both fluxes (at infinity and on the ECO side) can be resonantly
excited only in our model and these resonances contribute significantly
to the GW phase even for intermediate values of R. The dephasing in
the consistent model is always larger than the dephasing with TH only.
For small values of R, the two models differ from each other but both
produce a small dephasing to the Kerr case.

For a signal with SNR ∼ 30, a dephasing ∆ϕ = 0.1 rad is consid-
ered to be resolvable by LISA [193, 60]. Fig. 6.5 shows that the phase
difference is above this threshold only after half a month of observation
for a horizonless compact object with |R|2 = 0.9. After twelve months
of inspiral, values of the reflectivity as small as |R|2 = 10−8 would be
detectable by LISA. In Sec. 6.6, we shall assess the measurability of the
reflectivity with a more robust method based on the computation of the
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Fig. 6.6. Top panel: Resonances in the ℓ = m = 2 energy flux for an ECO with χ = 0.8,
|R|2 = 0.9 and several values of ϵ, as a function of time. Bottom panel: GW dephasing
between the BH and the ECO case as a function of time for q = 3 × 10−5, χ = 0.8 and
several values of ϵ. [204]

overlap between the waveforms.

6.5.3. The role of the compactness
In this section, we analyze the role of the compactness in the energy

fluxes emitted by an EMRI with a central horizonless compact object.
The top panel of Fig. 6.6 shows the difference between the ECO and BH
energy fluxes for several values of ϵ as a function of time. We note that for
ϵ → 0, more resonances appear and they also appear at lower frequen-
cies. The first low-frequency resonances could give a large contribution
to the GW phase since the orbital evolution is slower at low frequency
and the particle can spend more time across the resonance. On the other
hand, the width of each resonance is proportional to the imaginary part
of the QNMs where ωI ∼ ω2ℓ+2

R , therefore low-frequency resonances
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are also more narrow. The two effects are competitive and the actual
contribution of a resonance on the GW phase depends on the specific
parameters of the configuration.

The bottom panel of Fig. 6.6 shows the dephasing between the ECO
and the BH case for several values of the reflectivity and compactness.
The dependence on ϵ is mild, except for the excitation of the resonances
whose impact depends on the specific values of χ, ϵ and R.

6.6. Waveform and overlap
The waveform emitted by an EMRI is computed from theWeyl scalar

in Eq. (6.1) at infinity and reads [164, 245]

h+ − ih× = − 2√
2π

µ

D ∑
ℓm

Z∞
ℓmω(t)

[mΩ(t)]2
eim(Ω(t)rD

∗ −ϕ(t))
−2Sℓmω(θ, t)eimφ ,

(6.44)
where D is the luminosity distance of the source from the detector,
rD
∗ ≡ r∗(D), and (θ, φ) identify the direction of the detector in a reference
frame centered at the source in Boyer-Lindquist coordinates. Since the
initial phase is degenerate with the azimuthal direction, we rescale the
initial phase as φ ≡ ϕ(t = 0).

Although the dephasing ∆ϕ between two waveforms (h1 and h2) is a
useful and quick measure to estimate the measurability of any deviation
from a reference signal, a more reliable and robust measure is given by
the overlap:

O(h1|h2) =
⟨h1|h2⟩√

⟨h1|h1⟩ ⟨h2|h2⟩
, (6.45)

where the inner product is defined in Eq. (3.109) od Appendix 3.7. For
the power spectral density, we adopt the LISA curve of Ref. [260] adding
the contribution of the confusion noise from the unresolved Galactic
binaries for a one-year mission lifetime. Since the waveforms are defined
up to an arbitrary time and phase shift, it is also necessary to maximize
the overlap in Eq. (6.45) over these quantities. This can be done by
computing [28]

O(h1|h2) =
4√

⟨h1|h1⟩ ⟨h2|h2⟩
max

t0

∣∣∣∣∣F
−1

[
h̃1h̃∗2

Sn( f )

]
(t0)

∣∣∣∣∣ , (6.46)

where F−1[g( f )](t) =
∫ +∞
−∞ g( f )e−2πi f td f is the inverse Fourier trans-

form. The overlap is defined such that O = 1 indicates a perfect agree-
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Fig. 6.7. Mismatch between the plus polarization of the waveforms with a central ECO
and a central BH as a function of time, for a binary with mass ratio q = 3 × 10−5 and a
central object with spin χ = 0.8 and several values of the reflectivity and the compactness.
The horizontal line is a reference value M ≈ 10−3 for the resolvability by LISA. [204]

ment between two waveforms. It is also customary to define the mis-
match as M ≡ 1 −O.

In Fig. 6.7 we show the mismatch between the waveforms in the ECO
case and in the Kerr case with the same mass and spin for various values
of the reflectivity and two choices of ϵ. Let us notice that the compactness
does not affect themismatch significantlywhen ϵ ≪ 1. Consistentlywith
dephasing presented in Sec. 6.5, the mismatch is larger in the consistent
model than in the phenomenological approach of Ref. [110], especially
at small reflectivity.

As a useful rule of thumb, two waveforms are indistinguishable for
parameter estimation purposes if [127, 193]

M ≲ 1/(2ρ2) , (6.47)

where ρ is the SNR of the true signal. For an EMRIwith ρ ≈ 20 (ρ ≈ 100)
one has M ≲ 10−3 (M ≲ 5 × 10−5). In Fig. 6.7, the more conservative
threshold M = 10−3 is denoted with a dashed horizontal line. Ex-
ceeding this threshold is a necessary but not sufficient condition for a
deviation to be detectable. This level of mismatch is quickly exceeded
after less than one year of data even for small values of the reflectiv-
ity. For example, for the fiducial case considered in Fig. 6.7 (χ = 0.8,
M = 106M⊙ and µ = 30M⊙), and assuming ρ = 20, the threshold is
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Fig. 6.8. Top panel: GW dephasing between the Kerr case and a quantum BH horizon
with Boltzmann reflectivity [in Eq. (6.49)], where q = 3 × 10−5, ϵ = 10−10 as a function
of time. Bottom panel: Mismatch between the plus polarization of the waveform with a
quantum BH horizon with Boltzmann reflectivity and a standard BH as a function of time
for several values of the spin. [204]

exceeded after roughly one year unless

|R|2 ≲ 10−8 . (6.48)

This result is in agreement with the estimation based on the dephasing
in Sec. 6.5. It shows that EMRIs could place stringent constraints on the
reflectivity of supermassive compact objects at the remarkable level of
O(10−6)%. Let us notice that the bound in Eq. (6.48) is solely based on
the mismatch calculation and does not take into account, e.g., correla-
tions with the waveform parameters. Rigorous parameter estimation is
necessary to derive an accurate projected upper bound in the case of no
detection.
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6.7. A case study: Boltzmann reflectivity
The surface reflectivity of a horizonless compact object can be a

complex function of the parameters of the model and the frequency.
In this section, we consider a case study for the ECO reflectivity. In
particular, we analyze a model recently proposed to describe quantum
BH horizons that gives rise to the “Boltzmann” reflectivity [229, 296]

R(ω) = e−
|k|

2TH , (6.49)

where TH = r+−r−
4π(r2

++a2)
is the Hawking temperature of a Kerr BH. In this

model, the reflectivity depends explicitly on the frequency and the spin
of the compact object. The reflectivity in Eq. (6.49) provides sufficient
absorption to quench the ergoregion instability and have a stable hori-
zonless compact object with any spin [229]. Let us notice that Eq. (6.49)
can also contain a phase term, that depends on the specificmodel and the
perturbation function on which the corresponding boundary condition
is imposed [229, 296, 299]. Recently, Refs. [94, 299] proposed a model of
the reflectivity that is related to the tidal response of the ECO to external
curvature perturbations. In this model, the reflectivity contains extra
terms that multiply the Boltzmann factor. For simplicity, we neglect
such phase terms, which would not affect our analysis significantly.

Figure 6.8 shows the dephasing (top panel) and the overlap (bottom
panel) obtained in the Boltzmann reflectivity model as compared to the
classical BH case. An interesting feature of this model is that there is no
free parameter that continuously connects themodel to the classical Kerr
case, so there is a concrete chance to rule it out with observations or to
provide evidence for it. Interestingly, owing to its spin dependence, the
Boltzmann reflectivity is much smaller at the relevant orbital frequencies
when the central object is highly spinning. Consequently, the dephasing
and the mismatch to the standard Kerr BH case are very small when
χ ≳ 0.8 as shown in Fig. 6.8. The oscillatory trend in the dephasing in
the top panel is due to the contribution of high-frequency resonances
appearing at late times.
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Conclusions and future prospects

According to the BH paradigm, any compact object heavier than
a few solar masses is described by the Kerr metric. In this thesis, we
considered the possibility that the compact objects in the Universe are
horizonless and singularity-free. This hypothesis is supported by several
models of ECOs that have been conceived in extensions of GR [144, 85].
ECOs are a tool that allows us to quantify the existence of horizons in
astrophysical sources.

In this thesis, we derived the characteristic frequencies of horizonless
compact objects in the ringdown [201, 199]. We developed a model-
independent framework relying on the membrane paradigm to quantify
the deviations from the BH spectrum [199]. We assessed that current
measurement accuracies impose a strong lower bound on the compact-
ness of the merger remnant of 90% of the BH compactness.

Spinning horizonless compact objects might be affected by an ergore-
gion instability when rotating sufficiently fast [130]. In this thesis, we
assessed the astrophysical viability of spinning horizonless compact
objects under linear perturbations. From the analysis of the QNM fre-
quencies, we determined the conditions for which horizonless compact
objects are unstable [201, 200]. Finally, we found a mechanism that al-
lows for stable solutions, i.e., energy absorption within the object [201].
We showed that a surface absorption of 60% ensures the stability of
horizonless compact objects for any spin [200].

In this thesis, we also explored the fingerprints of horizonless com-
pact sources in the appearance of a modulated train of GW echoes at
late times in the ringdown [81]. We provided an analytical template
for the GW echoes that relates the key parameters of ECOs with the
gravitational waveform [203]. This template would allow us to constrain
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the parameters of exotic sources or perform model selection in the case
of detection of GW echoes.

We also assessed how the future space-based interferometer LISA
will allow us to perform tests of the BH paradigm, especially with new
sources like EMRIs [52]. We derived the gravitational waveform emitted
by a stellar-mass object in orbital motion around a supermassive horizon-
less compact object. During the inspiral, we assessed the impact of extra
resonances that would be excited when the orbital frequency matches
the characteristic frequencies of the central ECO [78, 204]. Finally, we es-
timated that EMRIs could potentially place the most stringent constraint
on the reflectivity of supermassive compact objects at the remarkable
level of O(10−6)% [204].

A possible future research direction would be the development of
data analysis techniques to infer the properties of compact sources from
GW observations. Current constraints on the deviations from GR can be
converted into constraints on the parameters of astrophysical sources.
The mapping between the two descriptions needs to be developed and
would be relevant to understand the nature of compact sources.

Moreover, full inspiral-merger-ringdown waveforms in various mod-
ified theories of gravity and alternative sources need to be developed.
The accurate modeling of the gravitational waveform in alternative sce-
narios is crucial to look for new physics with current and future GW
detections. The comparison of the echo templates obtained within per-
turbation theory with the postmerger signal of an ECO coalescence is
an open problem. Numerical simulations of these systems are currently
unavailable.

Furthermore, the extension of the membrane paradigm to spinning
horizonless compact objects is left for future work. The membrane
paradigm would allow us to describe several models of spinning ECOs
with different interior solutions. The ECO phenomenology would be
parametrized in terms of the properties of a fictitious rotatingmembrane
located at the effective radius of the object.

Concerning EMRIs detectable by LISA, a natural extension concerns
the generalization to eccentric and inclined orbits. The bounds on the
reflectivity of compact objects estimated in our work are based on the
overlap calculation, and therefore neglect possible correlations among
the waveform parameters. An interesting research line would be to
perform accurate data analyses with exact waveforms either using the
Fisher-information matrix or Bayesian inference.
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